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A B S T R A C T

With the previously proposed non-uniform norm called lN -norm, which consists of a sequence of l1-norm or
l0-norm elements according to relative magnitude, a novel lN-norm sparse recovery algorithm can be derived by
projecting the gradient descent solution to the reconstruction feasible set. In order to gain analytical insights
into the performance of this algorithm, in this letter we analyze the steady state mean square performance of the
gradient projection lN -norm sparse recovery algorithm in terms of different sparsity, as well as additive noise.
Numerical simulations are provided to verify the theoretical results.

1. Introduction

Obtaining the sparse recovery solution under the framework of
compressed sensing (CS) has gained more and more attention in recent
years. The l1-norm reconstruction algorithms, such as the interior-point
method for large-scale l1-regularized least squares (l1-ls) method [2]
and gradient projection for sparse reconstruction [3], are usually
adopted by searching for a solution with minimum l1-norm. In
comparison, because direct search of minimum l0-norm will generally
lead to NP hard problem [4–7], various approximation methods are
also investigated to solve the difficulties caused by l0-norm [4–6] such
as the smoothing l0–norm (SL0) [8] and l0–norm zero-point attracting
projection (l0–ZAP) [9]. Another type of popular approaches is greedy
method such as matching pursuit (MP) and orthogonal matching
pursuit (OMP) [4,5], by which the approximation is generated via an
iteratively process to search the column vectors that most closely
resemble the required. Based on block based least square and mini-
mum mean-square-error cost function, iteratively reweighted least
squares (IRLS) minimization technique is used for iterative sparse
recovery [6]. Moreover, in [10] the Frobenius norm and the l1-norm of
the Euclidean norm are used to design an iterative optimization
algorithm for the structured sparse coding model.

In [11,12], a new non-uniform norm called lN-norm, which
consisted of a sequence of l0 or l1 norm elements according to relative
magnitude, is proposed to exploit the sparseness while providing
adaptability to different sparsity of sources. It is pointed out in [11]
that imposing lN-norm constraint on the Least Mean Square (LMS)
iteration yields enhanced convergence rate as well as better tolerance
upon different sparsity in system identification. The sparsity exploita-

tion performance of the lN-norm LMS algorithm has been compared
with that of other existing sparsity-aware algorithms in [14,15]. In
[16], the concept of non-uniform norm is further combined with
variable step-size to derive the p norm variable step-size LMS
algorithm, which claims to outperform the classic lN-norm LMS.

The concept of lN-norm can be also introduced into the sparse
signal reconstruction at the presence of source signals associated with
different sparsity. Similar to previous gradient projection type ap-
proaches [3], the iterative optimization solution of the proposed
lN-norm sparse reconstruction can be derived by directly minimizing
the lN-norm cost function via the steepest descent method, and then
affine projecting the solution to the feasible set. However, there is a lack
of analytical steady state performance in terms of lN-norm sparsity
recovery. In this letter, the steady state mean-square performance of
the lN-norm gradient projection sparse recovery algorithm is theoreti-
cally performed. Finally numerical simulation results are provided to
verify the analysis.

2. Derivation of the non-uniform norm CS Algorithm

The problem to obtain l1-norm or l0-norm sparse solution can be
respectively expressed as:

x Ax ymin subject to =
x

1 (1)

x Ax ymin subject to =
x

0 (2)

where x ix = ∑ ( )i
n

1 =1 and i x i i nx = #{ | ( ) ≠ 0, = 1,…, }0 .
In [11,12], the concept of p-norm like is introduced and defined as:
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∑ x i px = ( ) , 0 ≤ ≤ 1.p
p

i

n
p

=1 (3)

Furthermore, a non-uniform norm, denoted as x N in this study, is
defined in [12]. It is noticeable that x N utilizes different value of p for
each entry of x, i.e. x i px = ∑ ( ) , 0 ≤ ≤ 1N i

n p
i=1

i . Moreover, by
classifying the entries of x i( ) into 'large' and 'small' ones according to
relative magnitude [12], the non-uniform norm actually consists of a
sequence of l1-norm or l0-norm elements, with pi taking 0 for 'large'
entries and taking 1 for 'small' entries respectively.

As the definition indicates, the non-uniform norm is a quasi-norm.
Similarly, the lN-norm sparse solution can be expressed as:

x Ax ymin subject to =N
x (4)

(4) can be further relaxed as the following problem:

λx y Ax x= arg min( − + )opt N
x (5)

where y Ax− means Eulidean norm and xopt is the lN-norm sparse
optimization solution, λ > 0 is a factor to balance the contribution of
the lN-norm sparsity criterion. Different from the classic Eulidean
norm, the adjustability of pi parameter enables certain adaptability to
the sparsity by implicitly tuning between the l0 norm and l1 norm [12],
as taking p = 0i or p = 1i to large or small element will lead to different
mixing pattern of l1-norm or l0-norm element.

As a penalty term in the modified LMS cost function, the iterative
optimization of the non-uniform norm is achieved by gradient descent
in [12]. Inspired by similar gradient projection method [3], the lN norm
sparse recovery can be obtained by iteratively projecting the lN-norm
gradient descent sparse solution to the feasible set of reconstruction.
The proposed sparse recovery algorithm is described using pseudo-
codes as Table 1.

In Table 1, A A AA= ( )T T+ −1, μ is the step size and
x x k x nx = [ (1) ,…, ( ) ,…, ( ) ]j j j j

T at j-th iteration. sgn() denotes sign func-
tion defined as:

⎪

⎪⎧⎨
⎩x

x
xsgn( ) =

0, = 0
, ≠ 0x

x (9)

The iteration of the lN norm CS method can be divided as two
parallel processes: the first one is finding lN norm gradient descent
sparest solution with (7), the second one is using affine projection via
Laplacian method [8,9] to obtain lN norm CS solution from the
reconstruction feasible set by (8).

3. Steady state performance analysis of the lN norm CS
algorithm

Without loss of generality, in this letter the entries of mixing matrix
A are independently sampled from a normal distribution with mean
zero and variance of

m
1 , which ensure each column vector of A are

normalized.
We define the misalignment vector as h x x= −j j O, where xO is the

optimum gradient descent solution, and the actual possible sampling
result y1 related to the optimum gradient descent solution can be
rewritten as:

y Ax w= +1 O (10)

where w can be regarded as deviation noise signal between the actual
possible sampling result y1 and AxO. As the gradient descent iteration is
used to find the lN sparsest solution x of

y Ax= (11)

Thus the reconstruction error can be expressed as:

e y y
Ax w Ax
w A x x

= −
= + −
= − ( − )

1

O

O (12)

Theorem 1. Suppose xO is the original signal, and x is the optimum
solution of lN norm CS method, the final mean square derivation (MSD)
in steady state is:

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥D E tr n

mn m
n m

n
γ μ SR μ m

n
σP(∞) = { [ ]} ≤

2 −
2 − ⋅ ⋅ + + w∞

2

2
2

2
2

(13)

where γ x x= max( − )j O , σw
2 denotes the variance of the noise signal w.

The sparse ratio (SR) is defined as the ratio of the number of nonzero
elements to the number of the whole original source signal xO.

Proof: In (6), the value of f k( )j−1 just can be 0 or 1, then in (7), we
denote:

g x k
μ x k f k

ε x k
k n( ( )) =

⋅sgn( ( ))⋅ ( )
1 + | ( )|

, 1 ≤ ≤ ;j
j j

j
−1

−1 −1

−1 (14)

Obviously, the value of g x k( ( ))j−1 just can be 0 or ± μ
ε x k1 + | ( )|j−1

,

denote the vector g j−1 as:

g x g x k g x n k ng = [ ( (1)), ... ( ( ))... ( ( ))] , 1 ≤ ≤ ;j j j j
T

−1 −1 −1 −1

(15)

We can get μg 1< ⋅j−1 , where 1 has the same size of x, then (7) can
be rewritten as:

x x g= +j j−1 (16)

Combination of (8) and (10) leads to:

x x A w A x x= + ( − ( − ))j j j+1
+

O (17)

Using the definition of the misalignment vector h x x= −j j O, thus
we have:

h h A w Ah g I A A h A w g= + ( − ) + = ( − ) + +j j j j+1
+ + + (18)

By post-multiplying both sides of (18) with their respective
transposes, we have:

h h I A A h h I A A I A A h w A

I A A h g A wh I A A A w w A A wg

gh I A A gA w gg

= ( − ) ( − ) + ( − ) ( )

+ ( − ) + ( − ) + ( ) +

+ ( − ) + +

j j
T

j j
T T

j
T T

j
T

j
T T T T T

j
T T T

+1 +1
+ + + +

+ + + + + +

+ + (19)

As the noise w is independent with x and A. Let
EP h h= [ ]j j j

T , ER A A= [ ]+ , taking expectations on both sides of (19)
will lead to:

E

E σ

P I R P I R I R h g
gg A A

= ( − ) ( − ) + 2 ( − ) [ ]
+ [ ] + ( )

j j
T

j
T

T T
w

+1
2 + + (20)

where σw
2 denotes the variance of the noise w. According to the central

limit theorem [13], the following equation holds approximately

m
n

AA I( ) ≈T −1
(21)

Table 1
Pseudo-Codes of The Proposed Algorithm.

1: Initialize μx A y= , = ;
x0 + 1

max(| |)
choose μ α ε d J, , , , .th

2: Judge whether stop condition is satisfied μ μ> th. If satisfied, send xj back to x and

exit; otherwise turn to Step 3.

3:

for j J

f k k n

x k x k

end for
x x A y Ax

= 1:

( ) = , 1 ≤ ≤ ; (6)

( ) = ( ) + ; (7)

= + ( − ); (8)

j
xj k α μ

j j
μ xj k f j k

ε xj k

j j j

−1
sgn(| −1( ) | − ⋅ ) + 1

2

−1
⋅ sgn( −1( )) ⋅ −1( )

1 + | −1( )|

+1 +

4: Step size updates: μ dμ= ;
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where A A I≈T since the entries of mixing matrix A are indepen-
dently sampled from a normal distribution with mean zero and
variance of

m
1 . Then, we have:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

m
n

m
n

m
n

A A A AA A AA A A I( ) = ( ) ( ( ) ) ≈ =T T T T T T T T
T

+ + −1 −1
2

(22)

and

E E m
n

R A A A AA A I= [ ] = [ ( ) ] ≈T T+ −1
(23)

Substituting (22) and (23) into (20), then one can get

E

E σ

P P h g

gg I

= (1 − ) + 2 (1 − ) [ ]

+ [ ] + ( )

j
m
n j

m
n j

T

T m
nw

+1
2

2 2
(24)

where (1 − ) < 1m
n

2 means that the iteration process is convergent.
Considering that the value of g x k( ( ))j−1 just can be 0 or

± μ
ε x k1 + | ( )|j−1

, and the number of nonzero elements in vector g j−1 is

proportional to SR. Take trace of the expectation of h gj T , one can get

E tr E E tr E γ μ SRh g x x g{ [ [ ] ]} ≤ { [ ( − ) ]} ≤ ⋅ ⋅j
T

j
T

O (25)

where γ x x= max( − )j O . Then
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Thus the final steady state mean square deviation is obtained as:
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4. Numerical simulation

In this section, numerical simulations are performed to verify the
theoretical analysis of mean-square performance. The MSD of the
sparse reconstruction is defined as:

MSD x x= − O 2
2 (28)

where xO is ideal sparse signal size of n × 1. In order to formulate the
CS problem, the matrix and vectors are generated according to (10),
and the nonzero value of xO is generated according to normal
distribution process as following:

x SR N σ SR N σ i n~ ⋅ (0, ) + (1 − )⋅ (0, ), ∀ 0 ≤ ≤i u w
2 2 (29)

where σu
2 and σw

2 are the variance of the zero-mean white Gaussian
random distributed sources in active mode and inactive mode respec-
tively. In the sources σw

2 actually models the noise at the form of small
value”inactive” sources. The”inactive” sources can be regarded as the
noise signal w. Then the SNR of the source signal is defined as:

SNR
SR σ

SR σ
= 10⋅log

⋅
(1 − )⋅

u

w
10

2

2 (30)

According to the discussion above, for each column of the m n×
dimension matrix A, vector elements are generated according to
normal distribution process, with mean zero and variance of

m
1 . The

algorithm parameters are set as: α = 4, d = 0.8, ε = 4, J = 3,
μ = 0.001th . If there is no other explanation, the parameters in the
proposed algorithm are set as described above. All the simulations were
repeated 100 times with the same conditions.

First, the steady-state MSD with respect to different noise level is
compared between numerical simulation and theoretical analysis, with
SR = 0.1,n = 300,m = 100. Both the analytical and simulated steady-
state MSDs are shown in Fig. 1, It is observed that the simulation

results are generally consistent with our analytical MSD performance
especially when the SNR of source signal is more than 27 dB. For the
aim of performance comparison, simulation results of the sl0 norm
sparse recovery algorithm [8] are also provided in Fig. 1, which
indicating that the lN norm CS method outperforms the sl0 algorithm.
Furthermore, iterative convergences of the lN norm CS method
associated with SNR of 25 dB, 27 dB, and 30 dB are provided in
Fig. 2, which verified the effectiveness of the theoretical MSD analysis.

Next, the Theorem 1 is investigated with numerical simulations in
terms of different sparsity with the parameter of
SR i i= 0.01 + 0.02( − 1), = 1, ... ,5 and the SNR of 30 dB. To guar-
antee the sparse signal xO and the measurement matrix A meet the
condition of RIP [1–6], the rows of A are set to be big enough, as
m=130, 140, and 150 respectively. The corresponding steady-state
MSDs are depicted in Fig. 3. One can observe that MSDs of simulated
results are consistent with the analytical results. It is also evident from
Fig. 3 that, with increasing of the SR, both the analytical and the
numerical simulation MSDs exhibit a rising trend, due to the contribu-
tion of the first term in (13).

5. Conclusion

Extending from the application of the non-uniform norm for
sparsity exploitation in the framework of LMS algorithm, a novel
lN-norm sparse recovery algorithm is derived in this letter, by project-
ing the gradient descent lN norm solution to the reconstruction feasible
set. Meanwhile, the steady state MSD performance of the proposed lN

Fig. 1. Analytical and simulation results under different SNR.

Fig. 2. The iteration process of theoretical and simulation MSD.
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norm compressed sensing signal recovery algorithm is theoretically
investigated in terms of different sparsity as well as different additive
noise. The performance analysis is verified by numerical simulations.
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