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Abstract: Underwater acoustic channels are recognized for being 
one of the most difficult propagation media due to considerable 
difficulties such as: multipath, ambient noise, time-frequency 
selective fading. The exploitation of sparsity contained in 
underwater acoustic channels provides a potential solution to 
improve the performance of underwater acoustic channel 
estimation. Compared with the classic l0 and l1 norm constraint 
LMS algorithms, the p-norm-like (lp) constraint LMS algorithm 
proposed in our previous investigation exhibits better sparsity 
exploitation performance at the presence of channel variations, 
as it enables the adaptability to the sparseness by tuning of p 
parameter. However, the decimal exponential calculation 
associated with the p-norm-like constraint LMS algorithm 
poses considerable limitations in practical application. In this 
paper, a simplified variant of the p-norm-like constraint LMS 
was proposed with the employment of Newton iteration method 
to approximate the decimal exponential calculation. Numerical 
simulations and the experimental results obtained in physical 
shallow water channels demonstrate the effectiveness of the 
proposed method compared to traditional norm constraint LMS 
algorithms.  
Keywords: p-norm-like constraint; underwater acoustic channels; 
LMS algorithm; sparsity exploitation 
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1 Introduction1 
In recent years, there has been an increasing interest in 

underwater communications in many scientific, industrial, and 
research areas. However, due to the difficulties encountered in 
underwater acoustic (UWA) channels, digital communications 
through the usage of UWA channels are much more difficult 
than those in radio channel (Akyildiz et al., 2005; Chitre et al., 
2008; Singer et al., 2009; Zhang et al., 2011). Due to the 
complicated and random nature of the propagation channel, 
the impulse response of which may extend over several tens 
or even a hundred milliseconds, severe inter symbol 
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interference (ISI) will be caused at high transmission rates 
(Stojanovic, 2008). Thus, the R&D of high speed, large 
capacity, bandwidth-efficient digital communication systems 
are highly extremely challenging in underwater conditions. 
For the underwater acoustic research community, the channel 
estimation provides an effective solution to obtain the 
characteristics of underwater acoustic channels and also 
enable the adjustment of the algorithm parameter such as; the 
coefficients of channel equalizer accordingly.    

As noted by Stojanovic (2005), the impulse response of the 
sparse systems typically consists of a large number of 
near-zero taps and with only a few large ones (Stojanovic, 
2005), thus, providing significant potential of sparsity 
exploitation to improve the performance of system 
identification. The topic of sparsity exploitation has been 
extensively studied in many applications (Angelosante et al., 
2010; Cotter and Rao, 2002; Gu et al., 2009; Jin et al., 2010; 
Kalouptsidis et al., 2011; Naylor et al., 2006; Shi K and Shi P, 
2010, 2011). In Cotter and Rao (2002), a residual signal was 
used to maximize the correlation of a column of the mixture 
matrix, which is used to estimate channel taps one by one for 
sparsity utilization. However, this method has resulted in poor 
performance at the presence of significant inter-path 
interference or dense clusters. In a study conducted by Naylor 
et al., (2006), conventional LMS algorithm were modified to 
exploit the sparse characteristics of target systems, however, 
priori information of the unknown system is required. 

The 0l -norm and 1l -norm constraint have been integrated 
into the cost function of the standard LMS algorithm to 
accelerate the convergence of near-zero coefficients in sparse 
system (Gu et al., 2009; Jin et al., 2010; Shi and Shi, 2010, 
2011). It has been recognized that applying the concept of 
norm constraint for sparsity evaluation in LMS is helpful to 
improve performance. However, from the viewpoint of norm 
constraint, neither 0l -norm penalty LMS nor 1l -norm 
penalty LMS can provide adaptability to the characteristics of 
sparse systems (Shi and Shi, 2010, 2011), such as the time 
varying sparseness of underwater acoustic channels.  

Time varying sparsity contained in underwater acoustic 
channels has already been addressed by using estimation 
methods based on two-dimensional delay-Doppler model (Li 
and Preisig, 2007). Previous, investigations indicate that 
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utilization of these types of approaches were capable of 
accommodating rapidly time-varying sparse channels. 
However, for underwater acoustic channels with large time 
spread scale, the huge computational complexity of the 
two-dimensional parameter optimization poses significant 
difficulties for the practical applications.  

In our previous investigation (Wu and Tong, 2013), a novel 
p-norm-like-LMS was proposed to incorporate the p-norm 
like constraint with the LMS algorithm, in which the p 
parameter was adjusted by gradient descent. Furthermore, in 
this paper we aimed to exploit the adaptability of the 
p-norm-like constraint to develop a computationally efficient 
and effective solution to identify sparse underwater acoustic 
channels. Specifically, to avoid the huge computational 
expense caused by the decimal exponential calculation 
contained in the p-norm-like constraint, we utilized Newton 
iteration (Richard, 1971; Taylor, 1970) to simplify the 
gradient descent optimization p-norm-like constraint LMS 
algorithm (Simplified p-norm-like constraint LMS, S pl - 

LMS). Next, we applied it in the estimation of underwater 
acoustic channels at the presence of time variations. The 
experimental results obtained with from the simulation, as 
well as at-sea data verified the effectiveness of the proposed 
algorithm in improved sparsity exploitation performance and 
low complexity implementation. 

2 Derivation of the simplified p-norm like 
constraint LMS algorithm 
2.1 Basis of the norm constraint LMS algorithm 

We consider the following minimization problem: 
  ( ) argmin ( ).nJn =

w
w w    (1) 

The cost function ( )nJ w  is defined as: 

T
2

( ) ( ) ( ) ( )( ) p
n p

J d n n n nγ−= +w x w w  (2) 

where ( )d n , T
0 2 1( ) = [ ( ), ( ), , ( )]Ln w n w n w n−w  and 

T( ) = [ ( ), ( 1), , ( 1)]n x n x n x n L+− −x denote the desired 
signal, adaptive filter coefficient vector and input vector 
respectively, L is the filter length. The estimation square 

error term T
2

( ) ( ) ( )d n n n− x w  in (2) is commonly used as 

the cost function in classic LMS-type adaptive methods. 
Then, we can see that: 

00
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ipp
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which means counting the number of nonzero coefficients, 
and 
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The constraint term as (3) or (4) has been utilized and 
analyzed popularly for the solution of sparse system 
estimation to derive various l0-LMS and l1-LMS algorithm 

(Shi and Shi, 2010, 2011). Meanwhile, the cost functions of 
l0-LMS and l1-LMS can be rewritten respectively as: 

T
2

0 0
( ) ( ) ( ) ( )( )nJ d n n n nγ−= +w x w w   (5) 

T
2

1 1
( ) ( ) ( ) ( )( )nJ d n n n nγ−= +w x w w      (6) 

The investigation of Wu and Tong (2013) provides a 
formal and systematic way to unify the existing norm 
constraint LMS algorithms into a generalization framework 
as Eq. (2). Where the last term ( )

p

p
nγ w is a p-norm-like 

constraint term, where, 0γ > is a factor to balance the 
constraint term and the estimation square error, and 

( )
p

p
nw is called P

PL  norm or “p-norm-like” (Wu and Tong, 

2013). 
Thus, the gradient descent recursion of the filter 

coefficient vector is: 

1

ˆ( +1)= ( )

             ( )+ ( ) ( )

sgn[ ( )]
              ,       0 <

+ ( )

i i n

i

i
p

i

w n w n

w n e n x n i

p w n
i L

w n

μ

μ

κ

ε −

∇

− −

∀ ≤

− =
        (7) 

where an element in the vector ( )nw is noted as ( )iw n , 
0 1ε< << is a constant set for avoiding the ill-condition 
calculations. μ is the step size parameter of the LMS 
algorithm, 0κ μγ= > is a parameter combining the 
contributions of step size and balance factor, 

T( ) = ( ) ( ) ( )e n d n n n− x w  represents estimation error,  

sgn[ ( )]iw n is the sign function.  

The gradient ( )pG n of the diversity measures with respect 

to the p parameter can be expressed as:   
( )

( )  ln( )( ) ( )
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n n
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= =
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With the iteration formula given by:  
1
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where δ  is a constant factor to control the step size of 
descent gradient updating.  
 
2.2 The simplification of the p-norm like constraint 
algorithm 

Considering the practical algorithm implementation in 
engineering applications, the decimal exponential 
computation contained in the proposed algorithm will lead 
to significant complexity. The simplification of the proposed 
p-norm like constraint algorithm has been addressed in this 
paper.  

From the formula (7) and (9), we can see that the main 



Journal of Marine Science and Application (2013) 12: 1-3 

 

3

problem of simplification is to solve 1( ) np
iw n − and to avoid 

the use of decimal exponential calculation. Devoid of loss of 

generality, we set
1δ =
Δ

where Δ as a positive integer 

adopted to avoid the use of decimal. Thus, the term 1-pn can 

be expressed as
1m ⋅
Δ

, where (1 )nm p= Δ ⋅ −  and is a 

positive integer between 0 and Δ . Next, we have:  
1( ) ( )n

mp
i iw n w n−

Δ=    (10) 

For convenience, we set ( )
m

ig w n Δ= , and it can be 

rewritten as: 
0( ) m

ig w nΔ − =          (11) 

With Newton iterative method (Richard, 1971; Taylor, 1970), 
we have initial iteration as: 
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Here, '( ( ) )m
ig w nΔ − means a derivation of g . Then the 

iteration of it can be written as: 

1 1

*(1 )

1       

( ( ) )
*

( )1
*

n

m
j i

j j
j

p
i

j
j

g w n
g g

g

w n
g

g

Δ

+ Δ−

Δ −

Δ−

−

=

= −
Δ

Δ −
+

Δ Δ

       (13) 

It has been recognized that Newton's method converges 
much faster towards a local maximum or minimum than the 
gradient descent method does (Richard, 1971; Taylor, 1970). 
Hence, the number of iterations can be a small number like 
3 or 4 and still meet the general performance requirement. 

A detailed description of the proposed algorithm is 
described using MATLAB pseudo-codes as follow: 

Given , , , , ,p L Tμ κ ε  

Initial ( )zeros ,  1 , initialL p=w  

for 1,2n =  
 Input new ( )nx  and ( )d n ; 
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end 
 

Compared to the classic LMS algorithm and norm 
constraint LMS algorithms (Wu and Tong, 2013), the 

computational complexity per iteration of the simplified 
p-norm-like algorithms is listed as Table 1. As the Table 1 
indicating, by approximating the exponential calculation 
with the Newton iteration method, the proposed algorithm 
considerably alleviates the computational complexity of the 
p-norm-like constraint LMS algorithm. In each iteration, 

pl -LMS has L+1 exponential calculation and the 

exponential calculation is implemented by the form of table 
look-at for considering its complexity (Wu and Tong, 2013). 
However, this process is avoided in S

pl -LMS with the 

Newton iteration method, so, it to some extent converted 
amount of computation to addition and multiplication in 
each iteration. 
Table 1 Computational complexity per iteration of each 

algorithm  

Algorithms Addition Multiplication Sign 
Exponential 
calculation

LMS 2L 2L+1 NA NA 

0l - LMS 3L 2L NA NA 

pl - LMS 3L+1 2L+1 L L+1 

S
pl -LMS 3L+4 5L+7 L NA 

 
3 Numerical simulations 

In this section the performance of simplified p-norm-like 
constraint LMS (S lp-LMS) was compared with that of the 
standard LMS algorithm, l0-norm penalty constraint LMS 
and p-norm-like constraint LMS (lp -LMS) (Shi and Shi, 
2010, 2011; Wu and Tong, 2013) to evaluate the tradeoff 
between the channel estimation performance and the 
algorithm complexity. Firstly, the numerical simulation was 
designed to analyze the performance of the proposed 
algorithms. For the algorithm comparison of channel 
estimation, two performance metrics were used (Li and 
Preisig, 2007): channel prediction error 2

wε and signal 

residual prediction error 2
yε , which are defined as Eq. (14) 

and Eq.(15) respectively: 
2 2[ ]( ) ( ) ,    0 <   = 1,2,...i iw n w n i L, n= − ∀ ≤wε   (14) 

2 2[ ]( 1) ( ) ,    0 <   = 1,2,...i iy n y n i L, n= + − ∀ ≤yε  (15) 

where ( )iw n is the estimation of the channel impulse 

response at n time, ( )iw n is the true one, and ( )iy n is the 
estimation of the channel output signal at n time. Although 
the channel prediction error 2

wε  is often used in simulations, 
it is not a very useful metric in practice because in reality 
the true channel impulse response is usually unknown. 
Instead, the signal residual prediction error 2

yε  is often 

used as a good surrogate for 2
wε . The mean square of errors 

(MSE) 2
wε  and 2

yε  will be used for the remainder of this 
paper to evaluate various channel estimation algorithms. 
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In the numerical simulation, similar to the prior 
investigations (Stojanovic, 2005; Hosein, 2009), sparse 
channels are artificially created using mixture of Gaussian 
(MOG) model, which is also called the Bernoulli-Gaussian 
model: 

~ (0, ) (1 ) (0, ),    0 <i M mw a N a N i Lσ σ⋅ + − ⋅ ∀ ≤  (16) 

where a denotes probability of activity of the larger taps, σM 
and σm are the standard deviations of the larger taps and 
smaller ones, respectively. A typically sparse system with 50 
coefficients was adopted. We initially set the 6th and 7th tap 
as dominant coefficients, associated with magnitude of 1.0 
and −0.5 respectively, with all the other coefficients set to 
zero. The signal adopted to excite the sparse system was 
white Gaussian random sequences with the length of signal 
N=4000, zero mean, and standard unit deviation. The output 
of the sparse system was mixed with the white Gaussian 
random noise to create an SNR of 40 dB. We adopted 
Sparsity Ratio (SR) to quantitatively evaluate the sparsity of 
unknown system, which has been defined as the ratio of the 
number of non-zero taps to the total number of coefficients. 
All the algorithms were simulated for 100 times. 

To simulate the variation of the channel characteristics, 
during the simulation the SR of the sparse system varies 
only once, taking place at the 2000th iteration. After 
variation, four new dominant coefficients were added to 
produce two different SRs 2/50, 6/50 of the target sparse 
system corresponding to the initial 2000 iterations and the 
second 2000 iterations. The locations of the newly added 
dominant coefficients were chosen according to Gaussian 
distribution within the range of global impulse response. 
The magnitudes of the newly added dominant coefficients 
were created with Gaussian random value between −1 and 1. 
The length of filter L was 50 for all the selected algorithms. 
The parameters of all the algorithms were carefully chosen 
to guarantee the same rate of convergence to facilitate the 
comparison of the steady-state errors, as listed in Table 2. 
For the proposed algorithm, the initial p value was 
empirically set to 1. 

 
Table 2 Parameters of candidate algorithms 

Algorithms μ  κ  δ  T  

LMS 0.02 NA NA NA 

0l - LMS 0.02 1.0e-4 NA NA 

S
Pl -LMS 0.02 1.0e-4 0.05 10 

Pl - LMS 0.02 1.0e-4 0.01 10 

 
As shown in Fig. 1, the proposed S lp- LMS yields better 

steady-state error of 2
wε than the standard LMS or l0-norm 

LMS does, while the classic lp-LMS achieves the smallest 
MSE than all the other methods. It indicates that, the 
proposed simplified algorithm can attain low complexity 
implementation at the expense of a slight sacrifice of 

steady-state error performance. In view of the practical cases 
where the real channel is unknown, we also evaluated 
candidate algorithms in numerical simulations with MSEs 
of 2

yε , as defined in Eq. (18). The Fig. 2 provides the 
performance curves of the proposed and referenced 
algorithms. From Fig. 2, one can see that, while the 
qualitative result of the performance comparison is the same, 
the quantitative performance gap of the proposed algorithm 
with respect to other algorithms was reduced in terms of the 
steady-state error of 2

yε .  
Shown in Fig. 3 are the iteration curves of the p parameter 

under the classic and the proposed simplified p-norm like 
constraint LMS algorithm, from which we can see that the 
behaviors of p optimization of S lp-LMS and lp-LMS 
algorithm exhibit similar pattern with the variations of the 
SR. Meanwhile, there exist small-range discrete fluctuations 
of p parameter at the iteration curve of the proposed S 
lp-LMS algorithm, which is caused by the adoption of the 
Newton iteration to replace the decimal exponential 
calculation. 
 

 
Fig. 1 MSEs of 2

wε of different algorithms for the sparse channel 
 

 
Fig. 2 MSEs of 2

yε of different algorithms for the sparse channel 
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Fig. 3 Iterative optimization of p parameter for the 

simulated channel 

4 Design of at-sea experiment 
The coherent UWA communication link used to test the 

algorithm performance is shown in Fig. 4. The link consists 
of two computers (one acting as a bit resource while the 
other acting as a signal recorder): a DA and AD card used 
for data output and acquisition, power amplifier, 
preamplifier, and two transducers (one for transmitting and 
the other for receiving). 
 

 
Fig. 4 Bock chart of experimental UWA link 

The signal frame consisted of a linear frequency 
modulation chirp to acquire synchronization and detect the 
channel, a guard time and the modulated data. The carrier 
frequency was 16k Hz, with the sampling rate at 96ksps. 
The modulation format was BPSK, and the signals were 
transmitted at 6.4 kilobits per second. The bandwidth of the 
transducer couple was 13-18 kHz. 

The experiment in the ocean was conducted at Wuyuan 
Bay, Xiamen, China. The depth of the experiment area was 
approximately 7m under the pier and 12 m offshore. The 
transmit transducer was suspended from the pier at the depth 
of 5 m from the sea surface. Similarly, the receive transducer 
was suspended from a boat at the depth of 5 m from the sea 
surface. The distance between the transmitter and receiver 
was 2 km. 

The adaptive channel estimation algorithm described in 
the previous section was implemented in MATLAB and 
used for off-line processing of experimental data. For the 
purpose of comparison, classic LMS, l0-LMS, S lp-LMS and 
lp-LMS algorithms were also adopted to process the signal. 
The parameters of the proposed and reference algorithms 
were chosen to minimize the corresponding bit error rate, as 
shown in Table.3. The multipath intensity profile (MIP) of 
the experimental channel obtained with the matched filtering 

of the periodic linear frequency modulation (LFM) pulses is 
shown in Fig. 5. It can be observed that the experimental 
underwater acoustic channel exhibits typical multipath 
structure, sparseness and time variations. The raw data 
received signal recorded during the sea experiment had a 
signal noise ratio (SNR) of 14 dB. 

 
Table 3 Parameters of candidate algorithms for experimental 

data 

Algorithms μ  κ  δ  T  

LMS 0.01 NA NA NA 

l0-LMS 0.01 10−4 NA NA 

Slp-LMS 0.01 10−4 0.05 10 

lp-LMS 0.01 10−4 0.01 10 

 
 

 
Fig. 5 Multipath intensity profile of the experimental 

underwater channel 
 

As the exact physical channel impulse response is 
unknown in the practical at-sea experiment, the signal 
residual prediction error 2

yε  instead of 2
wε is adopted for the 

performance comparison. The MSE results of the different 
algorithms are shown in Fig.6. As we can observe from 
Fig.6, l0-LMS yields better MSE than LMS, lp -LMS yields 
better MSE than l0-LMS, which is consistent with previous 
investigation (Gu et al., 2009; Jin et al., 2010; Shi and Shi, 
2010, 2011; Wu and Tong, 2013). After the algorithm 
simplification, the proposed algorithm achieved a slightly 
lower performance than the classic lp-LMS did, indicating a 
good agreement with the result of numerical simulation. 
Similar to the numerical simulation, from Fig.7, we can see 
that the gradient descent p optimization of S lp - LMS and lp 
- LMS generally exhibit the same variation pattern, with the 
proposed simplification of the S lp - LMS algorithm 
producing a small-range discrete fluctuation effect on the 
iteration of p parameter. 
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Fig. 6 MSEs of different algorithms for the experimental 

underwater channel 
 

 
Fig. 7 Iterative optimization of p parameter for the 

experimental channel 
 

Furthermore, as the purpose of the channel estimation is 
to provide the channel response to construct channel 
equalizer, the accuracy of the channel estimation will 
determine the performance of the equalizer, as well as the 
communication quality. Thus, the channel responses 
obtained in the experiment with the proposed and reference 
algorithms are used to construct a linear minimum 
mean-square error (LMMSE) equalizer to achieve symbol 
recovery, the bit error rate (BER) of which is adopted to 
evaluate the performance of those algorithms. The 
input-output relationship of the LMMSE equalization can be 
written as: 

2 1ˆ ( )H H
ws xσ −= +H H I H    (16) 

where I denotes the identity matrix and H is the underwater 
acoustic channel response obtained with channel estimation 
algorithm. So the LMMSE equalizer is a channel 
estimate-based equalizer and thus the associated 
performance is closely related to the channel estimation 
accuracy (Zeng and Xu, 2012). 

The length of the LMMSE equalizer is 50, the same as 
that of the channel estimator. As the experimental 
underwater channel exhibits typical time variations as 
shown in Fig.5, the LMMSE equalizer is calculated every 50 
symbols with the channel estimation result to accommodate 

the time variations. 
 The BER obtained by the LMMSE equalizer calculated 

with the LMS, l0-LMS, lp-LMS and the proposed simplified 
lp-LMS algorithm is 9.78%, 6.55%, 5.70%, and 6.27% 
respectively. It is evident that the BER performance of the 
channel estimation based LMMSE equalizer as well 
validates the effectiveness of the proposed simplified 
algorithm, which achieving a BER worse than that of the 
lp-MS, but better than that of LMS and l0-LMS. 

5 Conclusions 
In order to improve the performance of sparse system 

identification at the expense of low computational 
complexity, a new simplified algorithm was derived in this 
paper, through incorporating p-norm-like constraint with 
classic LMS algorithm, and lastly utilizing Newton iteration 
algorithm to simplify the algorithm implementation process. 
With the proposed approximation of the decimal exponential 
calculation, the computational complexity can be 
significantly reduced at the expense of a slight sacrifice of 
performance. Numerical simulation and experimental results 
demonstrate the effectiveness of the proposed simplified 
lp-LMS in sparsity exploitation performance enhancement 
and computational complexity saving compared to the 
classic norm constraint LMS algorithms. From a practical 
point of view, the proposed low-complexity lp-LMS 
algorithm has the potential of being applied in the practical 
identification of sparse underwater acoustic channels. 
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