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a b s t r a c t

In order to improve the sparsity exploitation performance of norm constraint least

mean square (LMS) algorithms, a novel adaptive algorithm is proposed by introducing a

variable p-norm-like constraint into the cost function of the LMS algorithm, which

exerts a zero attraction to the weight updating iterations. The parameter p of the

p-norm-like constraint is adjusted iteratively along the negative gradient direction of

the cost function. Numerical simulations show that the proposed algorithm has better

performance than traditional l0 and l1 norm constraint LMS algorithms.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Aiming to improve the performance of LMS algorithm
for identification of sparse systems, Gu and Jin [1]
proposed l0-LMS, l1-LMS [2] algorithms, respectively by
integrating l0-norm and l1-norm constraint into the cost
function of the standard LMS algorithm to accelerate the
convergence of near-zero coefficients in sparse system.
Further analysis concerning the convergence performance
of such algorithms was provided in [3–6]. However, as the
l0-norm or the l1-norm constraint itself does not contain
any adjustable factor, on the form of norm constraint, it
cannot provide adaptability to the characteristics of
sparse system when the number of the nonzero taps
varies.

Compressive sensing or compressive sampling (CS)
methods provide a robust sparsity exploitation frame-
work to estimate a sparse signal [7,8]. The concept of
ll rights reserved.
p-norm-like is proposed as an effective diversity measure
in [9,10]. Note that minimizing diversity (antisparsity) is
equivalent to maximize the concentration (sparsity)
[9,10], in this paper a p-norm-like constraint is introduced
to the cost function of classic LMS algorithm.

Considering that the p-norm-like enables the quanti-
tative adjustment of diversity measure by adjusting p, we
aim to optimize the p-norm-like constraint with respect
to the characteristics (such as the sparsity) of sparse
systems by gradient descent tuning of p.

Some gradient iteration algorithms have been proposed to
address unit-norm constraints [11] or lp-norm constraints
[12]. But these algorithms are not suitable for solving the
nonconvex, non-Lipschitz continuous p-norm-like constraint
problem. Inspired by [13], we impose some constraints on
the gradient descent iteration of p to derive a novel p-norm-
like constraint LMS algorithm. Numerical simulations show
that the new algorithm outperforms l0-norm and l1-norm
algorithm. In addition, from the viewpoint of norm based
sparsity exploitation, the proposed algorithm provides a
formal and systematic way to unify the existing norm
constraint LMS algorithms [1–6] into a generalization
framework.
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2. Derivation of the proposed algorithm

Generally, norm means Euclidean norm which is some-
times called Holder norm noted by Lp or 99.99p. In [9,10], a
general criterion is proposed as an effective measure of
diversity:

99x99p-like ¼
Xn

i ¼ 1

9xðiÞ9p
, 0rpr1, ð1Þ

where x is the data vector. As 99x99p-like is different from the
classic Euclidean norm, due to its close connection to
lp-norms we call it ‘‘p-norm-like’’ [10]. It is obvious that
‘‘p-norm-like’’ is not a classical norm.

For a typical system identification case, the estimation
error of the adaptive filter output with respect to the
desired signal d(n) is:

eðnÞ ¼ dðnÞ�xT ðnÞwðnÞ, ð2Þ

where wðnÞ ¼ ½w0ðnÞ,w2ðnÞ,. . .,wL�1ðnÞ�
T, xðnÞ ¼ ½xðnÞ,

x n-1ð Þ,. . .,x n-Lþ1ð Þ�T denote the coefficient vector and
input vector, respectively, and n is discrete time index, L

is the filter length. The cost function of the traditional LMS
is defined as:

xðnÞ ¼ 9eðnÞ92
, ð3Þ

Then, the cost functions of l0-LMS and l1-LMS are, respec-
tively defined as:

x0ðnÞ ¼ 9eðnÞ92
þg99wðnÞ990, ð4Þ

x1ðnÞ ¼ 9eðnÞ92
þg99wðnÞ991, ð5Þ

where 0ogo1 is a factor to balance the constraint term
and the estimation error e(n), the solution of l0-norm is an
NP hard problem [1], which is usually solved by an
approximate function. However, l1-norm is a convex
function and it is defined by Euclidean norm [2].

For the proposed p-norm-like constraint, we define a
cost function xp(n) similar to Eqs. (4) and (5):

xpðnÞ ¼ 9eðnÞ92
þg99wðnÞ99p-like ð6Þ

where 99w(n)99p-like is defined by Eq. (1). The gradient of the
p-norm-like constraint cost function Eq. (6) with respect to
element w(n) (defined previously) can be solved as:

r̂n ¼
xpðnÞ

@wðnÞ
þg

@99wðnÞ99p-like

@wðnÞ

¼ �e nð Þx n�ið Þþg psgn½wiðnÞ�

9wiðnÞ9
1�p

, 80r ioL, ð7Þ

Accordingly the filter coefficients are updated iteratively as:

wi nþ1ð Þ ¼wi nð Þ�mr̂n

¼wi nð Þþme nð Þx n�ið Þ�
kpsgn½wiðnÞ�

9wiðnÞ9
1�p

, 80r ioL,

ð8Þ

where k¼mg40 and sgn½wiðnÞ� is a sign function defined as:

sgn½wi

�
nÞ� ¼

1, wiðnÞ40

�1, wiðnÞo0,

0, wiðnÞ ¼ 0

80r ioL:

8><
>: ð9Þ
It is necessary to impose an upper bound on the last
term in Eq. (8) to avoid divergence when an element of
wi(n) approaches zero, which may exist for a sparse
system. Then Eq. (8) is modified as:

wi nþ1ð Þ ¼wi nð Þþme nð Þx n�ið Þ�
kpsgn½wiðnÞ�

eþ9wiðnÞ9
1�p

, 80r ioL,

ð10Þ

where 0oe51 is a constant set for avoiding the ill-
condition calculations in Eq. (8).

As Eq. (10) shows, with the imposing of the p-norm-like
constraint, the weight updating of the new algorithm
consists of the original LMS updating term and the newly
introduced zero-attraction term. Meanwhile, Eq. (10) still
contains a variable parameter p. The adjustability of p offers
a possible way to adapt the newly introduced p-norm-like
constraint to specific sparse system. Thus we hope that p

could be adjusted iteratively along the negative gradient
direction of the p-norm-like constraint cost function to
attain its optimal value. The gradient Gp(n) of the cost
function with respect to p can be expressed as:

Gp nð Þ ¼
xpðnÞ

@p
¼
@ g9wðn
� �

9p
Þ

@p

¼ g9wðnÞ9p
ln 9wðn
� �

9Þ, ð11Þ

However, there exists a problem that we cannot
guarantee the cost function is a concave function with
respect to p. It means that the classic gradient descent
method may unexpectedly lead to convergence along
local optimum value other than the global optimum
value. Inspired by [13], we adopt some constraints to
impose on the gradient descent derivation to avoid this
problem.

First, instead of the exact gradient expressed in
Eq. (11), we use the sign of the gradient obtained with a
sign function to reduce the possibility at local minimums.
The sign function of Gp(n) is given as:

sgn Gpðn
� �

Þ ¼ sgn 9wðn
� �

9�oneðnÞÞ, ð12Þ

where one(n) is a unit column vector which has the same
size with w(n).

Furthermore, to alleviate the impact of transient noise
caused by stochastic gradient method, smoothed gradient
calculated every T iterations are used to guide the descent
gradient recursion of p. The iteration formula is thus given
by:

pnþT ¼ pn�dsgn
1

T

XnþT

j ¼ n

GpðjÞ

0
@

1
A

¼ pn�dsgn
1

T

XnþT

j ¼ n

½wjðnÞ��1

8<
:

9=
;, ð13Þ

where d is a constant factor to control the step size of
descent gradient updating. Thus the proposed algorithm
is described using MATLAB like pseudo-codes as Table 1.

3. Brief discussion

The recursion of filter coefficients adopting the spar-
sity related norm constraint to the classic LMS can be



Table 1
Pseudo-codes of the proposed algorithm.

Given m, k, p, e, d, L, T

Initial w¼zeros(L,1), pinitial

for n¼ 1,2. . .

Input new x(n) and d(n);

e(n)¼d(n)�xT(n)w(n);

pnþ1 ¼ pn�dsgn 1
T

PnþT

j ¼ n

½wjðnÞ��1

( )
;

f ðnÞ ¼ pnþ1sign wiðnð ÞÞ:= eþabs wiðnð Þ: 1�pnþ 1ð ÞÞ

�
;

wi(nþ1)¼wi(n)þme(n)x(n� i)�kf(n), 80r ioL

end

Table 2
Computational complexity per iteration of each algorithm.

Algorithms Addition Multiplication Sign
Exponential

calculation

LMS 2L 2Lþ1 NA NA

l0-LMS (p¼0, [2]) 3L 2L NA NA

l1-LMS (p¼1, [4]) 3L 2Lþ1 L NA

p-norm-like LMS 3Lþ1 2Lþ1 L Lþ1
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presented as:

wi nþ1ð Þ ¼wiðnÞþmeðnÞx n�ið ÞþZAnorm-related

¼wiðnÞþmeðnÞx n�ið Þ�kf 99:99
� �

ð14Þ

where ZAnorm-related is specific norm related zero attrac-
tion term designed to exert an attraction to zero on small
coefficients, f(99.99) of the classic l0-norm and l1-norm
constraint algorithm can be found in [11] and [12],
respectively. In the proposed algorithm f(99.99) can be
obtained from Eq. (10). The zero attraction term means
that new filter weight coefficient will decrease a little
when its previous weight coefficient is positive, or
increase a little when it is negative. The extent of zero
attraction depends on the specific norm constraint
adopted, and the algorithm parameters.

In the proposed algorithm, as p can be set to any value
between 0 and 1, the p-norm-like is actually degraded to
the classic l0-norm and l1-norm, respectively when p¼0
and p¼1. Specifically, when p¼0, the solution of l0-norm
is an NP hard problem which is usually solved by an
approximate function [1]. When p¼1, Eq. (8) will be
degraded to l1-norm constraint LMS algorithm because
the p-norm-like constrain has the same gradient function
with [2]. Thus, from the viewpoint of generalization, the
proposed p-norm-like constraint LMS algorithm offers
a unified framework to generalize classic l0-norm and
l1-norm constraint algorithms. Moreover, as p can be
adjusted iteratively to attain its optimum value, it is
predicable that the proposed p-norm-like constraint LMS
algorithm will achieve better sparsity exploitation perfor-
mance than l0-norm or l1-norm constraint algorithm does.

Here a brief discussion about the choices of the
algorithm parameters, computational complexity as well
as the analysis of convergence is given:

The choice of k: The parameter k denotes the intensity
of zero attraction [1,2], when k increases, the strength of
zero attraction will be promoted to accelerate the conver-
gence. However, a large k results in a large steady-state
misalignment. So the k is determined by the trade-off
between adaptation speed and adaptation quality.

Initialization of p: The negative gradient updating of p

is derived in Eq. (13) to attain its optimum value. At the
initial stage, generally we can set the original value of p as
any value between 0 and 1 to start the descent gradient
search.
The choice of d: As a constant factor to control the step
size of p iteration, it may be determined by the trade-off
between optimization speed and optimization accuracy.

The computational complexity: The computational
complexity per iteration of the four algorithms is listed
as Table 2 [2]. For the proposed algorithm, the exponen-
tial calculation can be implemented by the form of table
look-at to alleviate the complexity at the expense of
memory space.

The analysis of convergence: We define the weight
error vector v(n)¼w(n)�wO, where wO is the optimum
filter coefficient vector of the classic LMS algorithm.
Substituting it to Eq. (10) and taking expectations on both
sides of the equation, we obtain:

E v nþ1ð Þ½ � ¼ I�mR
� �

E v nð Þ½ ��
kpsgn½wðnÞ�

eþ9wðnÞ91�p
ð15Þ

where R¼x(n)x(n)T, I is the identity matrix, and the
vector kpsgn½wðnð Þ�=eþ9wðnÞ91�p

Þ is bounded between
(�kp/eþ9w(n)91�p) and (kp/eþ9w(n)91�p). Therefore,
E[v(n)] converges if m remains within the range
0omo 1=lmax

� �
, where lmax is the maximum eigenvalue

of (I�mR) [4].

4. Numerical simulation

In this section, the proposed p-norm-like constraint
LMS is compared with LMS, l1-LMS, l0-LMS in the applica-
tion of sparse system identification. Simulations are
designed to test the performance of these algorithms at
the presence of unknown system with different sparsity.

The driven signal is zero mean, unit variance white
Gaussian signal. The SNR is 40 dB with the length of signal
N¼12,000. The unknown sparse system is a typical
underwater acoustic multipath channel [14] which con-
tains 72 coefficients, with the 9th, 11th and 32th domi-
nant coefficients associated with magnitude of 0.5, �0.25
and 1.0, respectively. The other coefficients are all set to
zero. We adopt sparsity ratio (SR) to quantitatively
evaluate the sparsity of unknown system, which is
defined as the ratio of the number of non-zero taps to
the total number of coefficients.

During the simulation the SR of the sparse system
varies 2 times, taking place at the 4000th and 8000th
iterations, respectively. In the first and second variation,
two and three new dominant coefficients are added,
respectively, producing three sparsity ratios 3/72, 5/72,
8/72 of the target sparse system corresponding to the
initial 4000 iterations, the second 4000 iterations and the



Table 3
Parameters of candidate algorithms.

Algorithms m k d T

LMS 0.0034 NA NA NA

l0-LMS 0.0056 2.52e�6 NA NA

l1-LMS 0.0050 2.80e�6 NA NA

p-norm-like LMS 0.0078 3.92e�6 0.01 10

Fig. 1. The iterations of p with different initial value.

Fig. 2. MSD curves of different algorithms with different SR when

SNR¼40 dB.
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third 4000 iterations. The locations of the newly added
dominant coefficients are chosen according to Gaussian
distribution within the range of global impulse response.
The magnitudes of the newly added dominant coefficients
are created with Gaussian random value between �1 and
1. For the selected algorithms, the length of filter L is 72.
The other parameters are carefully selected as listed
in Table 3 to make the steady-state errors of each
algorithm the same at the initial 4000 iterations. All the
algorithms are simulated for 100 times (Monte Carlo, MC
simulations).

For the proposed algorithm, initial p is set to 0.3 and
0.9, respectively to test the performance of the negative
gradient p parameter optimization. As shown in Fig. 1, p

can iteratively converge starting from both initial value of
0.3 and 0.9. Moreover, one can also notice that p con-
verges to a new value after each variation of the sparsity.
It can be seen from Fig. 1 that high SR may lead to a low p

under the gradient guided p-norm-like constraint.
The mean square deviations (MSDs) of each algorithm

are shown in Fig. 2. As we can see from Fig. 2, due to
performance enhancement of sparsity exploitation,
l1-norm constraint LMS, l0-norm constraint LMS and
p-norm-like constraint LMS generally yield faster conver-
gence rate than the standard LMS does. Comparing Fig. 1
with Fig. 2, it can be observed that, under both initial p

values of 0.3 and 0.9, the p-norm-like LMS achieves faster
convergence rate than l1-norm LMS, l0-norm LMS and
LMS does.

In addition, from Fig. 2 one may also observe that three
sparsity exploitation algorithms show different perfor-
mance enhancement compared to the standard LMS
system when the SR of unknown system varies. For l0
norm and l1 norm constraint algorithm, Fig. 2 indicates
that the performance enhancement with respect to the
classic LMS algorithm considerably shrinks with the
increasing SR of unknown system. Meanwhile, with the
proposed negative gradient tuning of p, the proposed
algorithm exhibits better tolerance upon different spar-
sities, corresponding to slight performance degradation
when the SR of unknown system increasing from 3/72, to
5/72 and 8/72.

5. Conclusion

In order to improve the performance of sparse system
identification, a new algorithm is derived in this paper by
incorporating p-norm-like constraint with LMS algorithm.
Different from the classic norm constraint algorithms
which use fixed norm constraint such as l1-norm or
l0-norm, p of the proposed algorithm can be iteratively
adjusted along the negative gradient to attain its opti-
mum value. Numerical simulations demonstrate that the
proposed p-norm-like constraint LMS exhibits better
sparsity exploitation performance, as well as better toler-
ance upon different sparsity than the existing l1-norm and
l0-norm constraint algorithms. Furthermore, from the
viewpoint of norm constraint based sparsity exploitation,
the proposed algorithm theoretically generalizes existing
norm (l1-norm and l0-norm) constraint LMS algorithms
into a unified framework.
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