Sedimentation and lateral transport of ²¹⁰Pb over the East China Sea Shelf

Ziming Fang · Weifeng Yang · Xinxing Zhang · Min Chen · Dejiang Fan · Qiang Ma · Run Zhang · Minfang Zheng · Yusheng Qiu

Received: 2 January 2013 © Akadémiai Kiadó, Budapest, Hungary 2013

Abstract ²¹⁰Pb is an effective tracer of constraining particle transport and sedimentation in shelf regions. To reveal the spatial pattern of ²¹⁰Pb over the East China Sea (i.e. ECS) Shelf, ²¹⁰Pb in the surface sediments were examined at 11 stations, as well as ²³⁴Th and ²¹⁰Pb in the water column at four stations. Overall, the plume zone of the Yangtze River along the coastline is a source area of ²¹⁰Pb for the outer shelf, exporting 0.46 dpm cm^{-2} year⁻¹ at least, which accounts for about 25 % of ²¹⁰Pb input into this region. In the southern ECS Shelf to the north of the Taiwan Strait, the focusing factor (f) values are higher than unity, indicating a sink area of ²¹⁰Pb. Boundary scavenging of ²¹⁰Pb contributes $0.36 \text{ dpm cm}^{-2} \text{ year}^{-1}$ to this sink area on the basis of a mass balance model evaluation. Lateral transport of ²¹⁰Pb to this region, quantified by ²³⁴Th and ²¹⁰Pb in the water column, varied from 3.34 to 6.39 dpm cm^{-2} year⁻¹ with an average of 4.83 dpm cm⁻² year⁻¹, also supporting its sink characteristic. To the southwest of the Cheju Island, the f values were less than unity, revealing a source region of ²¹⁰Pb. The average export flux of ²¹⁰Pb from this region was 1.64 dpm cm⁻² year⁻¹. Therefore, ²¹⁰Pb sedimentation/ settling showed significantly heterogeneous sedimentation of particulate matter over the ECS Shelf.

Keywords 210 Pb \cdot Boundary scavenging $\cdot ^{234}$ Th \cdot East China Sea \cdot Lateral transport

Z. Fang · W. Yang (⊠) · X. Zhang · M. Chen · Q. Ma · R. Zhang · M. Zheng · Y. Qiu State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China e-mail: wyang@xmu.edu.cn

D. Fan

College of Marine Geosciences, Ocean University of China, Qingdao 266003, China

Introduction

The East China Sea (ECS), situated in the western Pacific Ocean, is one of the most affected marginal seas by anthropogenic activities in the past 30 years, because its coastal cities witnessed the most rapid development of Chinese economy. The current system of the ECS mainly consists of a northward Kuroshio branch along the shelfslope edge, the Taiwan Warm Current from the Taiwan Strait and the southward Zhejiang-Fujian Coastal Current along the coastline of Chinese mainland [1]. The Yangtze River is the primary sediment contributor of the ECS Shelf. Before 1980s, the ECS Shelf received about 4.8×10^8 tons of particulate matter from the Yangtze River every year [2]. Thereafter, the sediment load from the Yangtze River has significantly dropped because of a large number of dams were built which depressed the sediment transport [3, 4]. Due to the strong currents and tides in the ECS, the sedimentation of suspended particles on the shelf shows a fairly heterogeneous distribution pattern [5]. For example, there are two mud type sediment patches in the inner ECS Shelf and to the south of the Cheju Island [6-9]. Their sedimentation mechanisms and special impacts upon local ecosystems have been investigated by many researchers [3, 4, 8, 9]. Xu et al. [3] and Liu et al. [8, 9] examined the composition and source of inner shelf sediments. Huh et al. [5] and Su et al. [10] studied the sedimentary dynamics and budget of the ECS Shelf sediment using radionuclide tracers (¹³⁷Cs and ²¹⁰Pb). However, the lateral transports of dissolved and particulate matters are poorly understood, which prevent us from learning about the interactions between various areas and successive ecological effects over the ECS Shelf, especially after the building of the Three Gorges Dam which resulted in an apparent decreasing of sediment load and a wave of unexpected ecological variations on the ECS Shelf [11].

²¹⁰Pb is a strong particle reactive radionuclide with the half-life of 22.3 year. It has been proven to be an effective proxy of sedimentary process over centurial timescale in coastal and shelf regions [5, 10, 12]. Owing to its combination with particulate matters, ²¹⁰Pb is usually removed from the water column and settles into sediment. After being buried, ²¹⁰Pb decreases exponentially with time following its half-life, hence the activities of ²¹⁰Pb in deep sediment is lower than the surface sediment under steady state conditions. Because the decay of ²¹⁰Pb is independent of surrounding environments, the vertical profiles of ²¹⁰Pb in sediments record the sedimentation rates which can be used to quantify sedimentation of particulate matters in overlying water and subsequent lateral transport [10, 13].

To reveal the sedimentation and lateral transport of ²¹⁰Pb over the ECS Shelf, ²¹⁰Pb was determined in 11 surface sediment samples, as well as ²¹⁰Pb and ²³⁴Th in the water columns at 4 stations. The focusing factor and mass balance models of ²¹⁰Pb were also used to quantitatively examine the boundary scavenging and resuspension processes.

Methods

Sampling sites

Three regions were selected for their specific sedimentation characteristics and geographical locations (Fig. 1). The coast, influenced by the Yangtze River plume, is generally regarded as a high sedimentation rate. However, whether it receives/provides sediments from/for the outer shelf has not been well understood. The mud region to the south of the Cheju Island has shown little variable sedimentation in the past 150 years [13], its sediment origins have been arguable to date. The southern shelf of the ECS, i.e. to the north of the Taiwan Strait, is the interface connecting the South China Sea (SCS) and the ECS. Seawater from the SCS and western Pacific Ocean, characterized by higher dissolved ²¹⁰Pb than the Taiwan Strait [14–16], has been directly transported into this region. Theoretically, boundary scavenging most probably occurs in this area. Thus, the three regions represent typical sediment environments on the ECS Shelf. Particle reactive ²¹⁰Pb might reveal insights into their sedimentation dynamics.

Analysis of ²¹⁰Pb and ²²⁶Ra in sediment

Samples were collected from the top 0–3 cm surface sediment using a box-corer over the ECS Shelf (Table 1) and frozen at -20 °C. In the land laboratory, sediment samples were freeze dried and homogenized. Activities of ²¹⁰Pb and ²²⁶Ra were measured by non-destructive gamma counting using a Canberra ultra-high purity germanium detector

interfaced with a multi-channel analyzer, at 46.4 and 351.6 keV for ²¹⁰Pb and ²²⁶Ra [17, 18], respectively. The net counts of ²¹⁰Pb and ²²⁶Ra were more than 400 and 1,000 respectively, resulting in the statistical counting errors were <5% for ²¹⁰Pb and 3 % for ²²⁶Ra. The detector efficiencies were calibrated by standard materials [19]. All activities of ²¹⁰Pb and ²²⁶Ra were corrected to the sampling time.

Analysis of ²³⁴Th in the seawater

Four stations (i.e. S1002, S1004, S1008 and S0508) were selected to determine both ²³⁴Th and ²¹⁰Pb in seawater. For ²³⁴Th, 10 L of seawater at various depths were sampled by Niskin bottles. Particulate and dissolved ²³⁴Th were immediately separated through GF/F filter. Two liters of filtrate were used to determine dissolved ²³⁴Th [20, 21]. After adding NH₄OH to adjust the pH value to 9, right amounts of KMnO₄ and MnCl₂·4H₂O were successively added while stirring. The MnO₂ precipitate was settled for 6 h, and collected by GF/F filter. The filters, carrying particulate ²³⁴Th and MnO₂, were dried at 60 °C. The activities of dissolved and particulate samples were measured by low background α/β counter. The errors were propagated from ±1 σ counting errors.

Analysis of ²¹⁰Pb in seawater

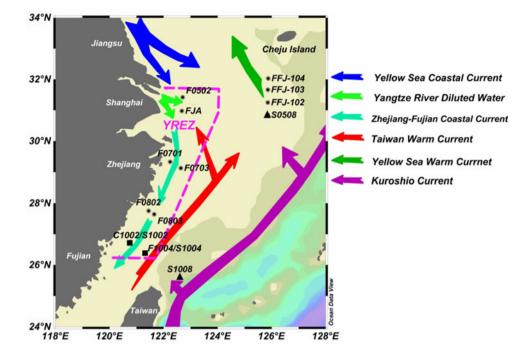

 210 Pb in seawater was measured by α -spectrometry (ORTEC^{plus}) via its granddaughter of 210 Po. Detailed procedures were described by Yang et al. [22] and modified

 Table 1
 Sampling dates and the salinity of surface water at various stations

Station	Latitude (N)	Longitude (E)	Depth (m)	Surface salinity (psu)	Sampling date
F0502	31°25.254′	122°42.535′	43	33.591	2007-11-20
F0701	29°19.799′	122°14.745′	14	26.171	2007-11-19
F0703	29°07.664′	122°38.531′	54	34.063	2007-11-19
F0802	27°45.161′	121°26.885′	29	28.727	2007-11-16
F0803	27°38.453'	121°39.428′	46	33.504	2007-11-16
F1004	26°22.562'	121°18.246′	81	34.077	2007-11-15
FFJ-102	31°14.932′	125°51.470′	66	34.014	2007-11-08
FFJ-103	31°39.978′	125°51.671′	69	33.961	2007-11-07
FFJ-104	32°01.778′	125°52.358′	78	33.682	2007-11-07
C1002	26°43.253'	120°46.972′	48	33.931	2009-05-07
FJA	30°58.614′	122°40.651′	22	n.d.	2009-05-10
S1002	26°43.375'	120°47.103′	50	32.216	2006-06-28
S1004	26°22.563'	121°18.253′	79	33.074	2006-06-28
S1008	25°35.387'	122°36.512′	372	33.562	2006-06-30
S0508	30°50.765′	125°51.242′	75	32.453	2006-07-12

n.d. no data

Fig. 1 Sampling stations on the ECS Shelf, *circles* denote only surface sediments were collected, *triangles* denote only water samples were collected and *square* means both sediments and water were collected; *arrows* represent the primary circulation in the ECS, YREZ namely Yangtze River Estuary Zone

in this study. Briefly, 5 L of seawater was filtered through polycarbonate membrane filter with 0.4 µm pore size. The filtrate, i.e. dissolved 210 Pb, was acidified with 4 mol L $^{-1}$ nitric acid to pH < 1, and then Fe^{3+} carrier (FeCl₃), quantified Pb²⁺ and ²⁰⁹Po were added as ²¹⁰Pb and ²¹⁰Po yield tracers. After 24 h, ammonia was added to adjust the pH value to 9, Po and Pb were co-precipitated with Fe(OH)₃, which was collected by settling and centrifugation. The precipitation was dissolved with HCl. By adjusting the pH value to 1.5 and adding ascorbic acid to combine Fe^{3+} , Po isotopes (²⁰⁹Po and ²¹⁰Po) were plated onto a sliver disc at 90 °C for 4 h. Particulate samples were digested by mixed acid (i.e.HNO₃, HClO₄ and HF) after Pb and Po spikes were added. The following plating procedures of polonium isotopes were the same as used for the dissolved samples. ²¹⁰Pb in both dissolved and particulate samples were determined by ingrowth ²¹⁰Po after 1.5 years. The chemical yield of 210 Pb was determined by stable lead measured by atomic absorption spectrometry. The net counts of ²¹⁰Po were more than 400, thus the counting errors were $<\pm 5$ %.

Results and discussion

Excess ²¹⁰Pb

Excess ²¹⁰Pb (i.e. ²¹⁰Pb_{ex}), exceeding its grandparent of ²²⁶Ra, is the unsupported ²¹⁰Pb, which can be quantified by subtracting ²²⁶Ra activity from the total ²¹⁰Pb. Generally, ²¹⁰Pb_{ex} in sediment is from ²¹⁰Pb combined with

particulate matter in overlying seawater due to its stronger particle reactivity contrasting with ²²⁶Ra. Because ²¹⁰Pb_{ex} decayed after sedimentation, comparison of ²¹⁰Pb_{ex} activities at different sites requires normalization back to its initial deposition time. In our study, the top 3 cm sediment was collected, thus the measured activities of ²¹⁰Pb_{ex} need to be corrected according to the sedimentation rates at corresponding stations.

Provided that A_i is the ²¹⁰Pb_{ex} activity for infinitesimal layer (*i*), it can be expressed as

$$A_i = A_0 e^{-\lambda t_i} \tag{1}$$

where A_0 represents the ²¹⁰Pb_{ex} activity when ²¹⁰Pb sinks into sediment (i.e. ²¹⁰Pb_{ex} in dpm g⁻¹), t_i denotes the age of *i* layer (year). In a steady state, the inventory of ²¹⁰Pb_{ex} (i.e. *I* in dpm cm⁻²) in the top 3 cm sediment can be calculated by

$$I = \int_0^T A_i m_\nu dt = \int_0^T A_0 m_\nu e^{-\lambda t} dt$$
(2)

where m_{ν} represents the sediment accumulation rate in g cm⁻² year⁻¹, which were constrained by ¹³⁷Cs [10, 23], *T* is the deposit time for the top 3 cm sediment. Based on our measurements, the inventory of excess ²¹⁰Pb can be expressed as

$$I = A_m M \tag{3}$$

where A_m represents the measured excess ²¹⁰Pb activity in the top 3 cm sediments (dpm g⁻¹) and *M* denotes the dry weight of sediment in g cm⁻² (Table 2). Combining the Eqs. (2) and (3),

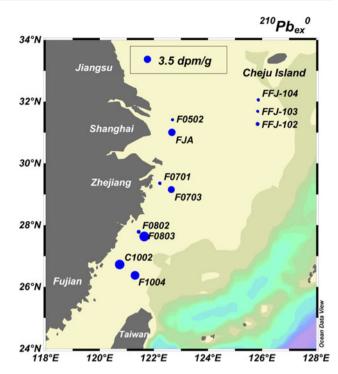


Fig. 2 Distribution pattern of ²¹⁰Pb_{ex}⁰ over the East China Sea Shelf

$$A_m M = \int_0^T A_0 e^{-\lambda t} m_v dt \tag{4}$$

Because the sedimentation time of the top 3 cm sediment (i.e. *T*) can be constrained by *M* and m_v (i.e. $T = M/m_v$), A_0 can be acquired by the following equation

$$A_0 = A_m \frac{\lambda M}{m_v (1 - e^{-\lambda M/m_v})} \tag{5}$$

The specific activities of excess ²¹⁰Pb over the ECS Shelf varied from 0.5 to 6.3 dpm g⁻¹ with an average of 2.6 dpm g⁻¹ (Table 2), which was close to the values in the East Malaysia coastal sediments [24]. The result at C1002 station was also comparable with that obtained in its adjacent region [25]. Overall, ²¹⁰Pb⁰_{ex} was low at inshore stations, and it increased towards outer shelf (Fig. 2). The large variability of ²¹⁰Pb⁰_{ex}, spanning an order of magnitude, indicated that ²¹⁰Pb sedimentation over the ECS shelf has a fairly heterogeneous spatial distribution pattern. Because excess ²¹⁰Pb in the ECS sediments predominantly resulted from the atmospheric deposition of ²¹⁰Pb [5, 10], which showed little spatial variability [10, 26], the heterogeneity of ²¹⁰Pb⁰_{ex} potentially revealed the significant spatial variations in ²¹⁰Pb sedimentation and thus combined particulate matters.

Focusing factor of ²¹⁰Pb (f)

Sediment rates were from Su and Huh [10]

The focusing factor (f), defined as the ratio of interested nuclide inventory within an interval of sediment to the

Table 2 Activities of ²¹⁰Pb and ²²⁶Ra in sediments and fluxes of ²¹⁰Pb calculated from mass balance model in the water column

Station	^{210}Pb (dpm g ⁻¹⁾	²²⁶ Ra	$^{210}\mathrm{Pb}_\mathrm{ex}^\mathrm{ma}$	$^{210}\text{Pb}_{ex}^{0a}$	$M (\mathrm{g \ cm^{-2}})$	$m_v^{\rm b}$ (g cm ⁻² year ⁻¹⁾	F_{sed} F_{dpm} cm ⁻² year ⁻¹).	${ m I}^{-1}$	$F_{boundary}$	f
F0502	1.50 ± 0.14	0.95 ± 0.09	0.5 ± 0.2	0.6 ± 0.2	3.8	0.4	0.23 ± 0.08	0.017 ± 0.001	-1.58 ± 0.08	0.20
F0701	1.77 ± 0.17	1.09 ± 0.10	0.7 ± 0.2	0.7 ± 0.2	3.6	0.9	0.67 ± 0.18	0.007 ± 0.001	-1.13 ± 0.18	0.58
F0703	3.97 ± 0.34	1.04 ± 0.10	2.9 ± 0.4	3.0 ± 0.4	3.6	0.98	3.01 ± 0.39	0.019 ± 0.002	1.20 ± 0.39	2.58
F0802	1.78 ± 0.17	1.00 ± 0.09	0.8 ± 0.2	1.0 ± 0.2	3.6	0.31	0.30 ± 0.06	0.014 ± 0.001	-1.51 ± 0.06	0.26
F0803	5.44 ± 0.47	1.21 ± 0.11	4.2 ± 0.5	6.3 ± 0.8	3.4	0.12	0.76 ± 0.10	0.022 ± 0.001	-1.05 ± 0.10	0.65
F1004	5.66 ± 0.47	1.36 ± 0.12	4.3 ± 0.5	5.0 ± 0.6	3.9	0.39	1.95 ± 0.23	0.020 ± 0.003	0.14 ± 0.23	1.67
FFJ-102	2.18 ± 0.20	1.69 ± 0.14	0.5 ± 0.2	0.6 ± 0.2	3.6	0.25	0.16 ± 0.05	0.026 ± 0.001	-1.66 ± 0.05	0.14
FFJ-103	1.16 ± 0.11	0.74 ± 0.07	0.4 ± 0.1	0.5 ± 0.1	3.4	0.2	0.10 ± 0.02	0.027 ± 0.001	-1.72 ± 0.02	0.08
FFJ-104	1.69 ± 0.17	0.85 ± 0.08	0.8 ± 0.2	1.0 ± 0.2	3.4	0.3	0.29 ± 0.06	0.030 ± 0.002	-1.54 ± 0.06	0.25
C1002	7.17 ± 0.67	2.00 ± 0.19	5.2 ± 0.7	6.0 ± 0.8	3.6	0.4	2.39 ± 0.32	0.022 ± 0.001	0.57 ± 0.32	2.04
FJA	4.23 ± 0.42	1.08 ± 0.11	3.2 ± 0.4	3.7 ± 0.5	3.6	0.4	1.47 ± 0.20	0.010 ± 0.001	-0.33 ± 0.20	1.27

🖄 Springer

production of the interested nuclide in the overlying water column over the time of accumulation [27, 28], was used to quantify the efficiency of ²¹⁰Pb sedimentation from the water column to local sediment [29, 30]. The *f* values of ²¹⁰Pb_{ex} can be described by

$$f = \frac{F_{sed}}{F_{atm} + F_{Ra} - F_{decay}} \tag{6}$$

where F_{atm} and F_{sed} denote the atmospheric flux and sedimentation flux of ²¹⁰Pb (dpm cm⁻² year⁻¹), respectively. F_{Ra} is the production flux of ²¹⁰Pb from ²²⁶Ra in the water column (dpm cm⁻² year⁻¹); F_{decay} is the disintegration term of ²¹⁰Pb in the water column (dpm cm⁻² year⁻¹). Hence, the input and production of ²¹⁰Pb in the overlying water column will completely sink to local sediment when the *f* is equal to unity. In other words, there is no lateral transport of ²¹⁰Pb or the net effect of lateral transport is neglectable. If the *f* value is greater than 1.0, part of ²¹⁰Pb, from other sites through lateral transport, would settle down the studied site. The <1.0 *f* values imply that part of ²¹⁰Pb at the studied site, as a source, is transported to other sites.

The atmospheric deposition of ²¹⁰Pb over the ECS has been little investigated. Thus, the depositional fluxes of ²¹⁰Pb at near shore stations around the ECS were adopted. From the northern city (Qingdao) to the southern site (Xiamen), the atmospheric fluxes of ²¹⁰Pb varied from 0.7 to 1.15 dpm cm⁻² year⁻¹ in the past 15 years [10, 26, 31, 32]. To conservatively estimate the lateral transport of ²¹⁰Pb over the ECS Shelf, 1.15 dpm cm⁻² year⁻¹ was adopted as the upper limit of the ²¹⁰Pb depositional flux in this study. On the basis of the inventory of ²¹⁰Pb in the water column at four stations and the upper limit residence time of ²¹⁰Pb, F_{decay} was estimated to be <3 % of the F_{atm} term and thus it was neglected. The values of F_{Ra} can be calculated by the ²²⁶Ra activities of the same cruise [33]. The term of F_{sed} can be acquired by Eq. (7)

$$F_{\rm sed} = A_0 m_v = A_m \frac{\lambda M m_v}{m_v (1 - e^{-\lambda M/m_v})} \tag{7}$$

The F_{sed} values varied from 0.10 to 3.01 dpm cm⁻² year⁻¹ with the mean of 1.03 dpm cm⁻² year⁻¹ (Table 2). In comparison, it ranged from 0.29 to 1.26 dpm cm⁻² year⁻¹, averaging 0.68 dpm cm⁻² year⁻¹ [5] if ²¹⁰Pb preserved for five halves (111.5 years) in sediments. Our higher results were ascribed to the more coastal stations which received much more riverine ²¹⁰Pb than the inner and mid-shelf regions mainly covered by [5]. The values of *f* ranged between 0.08 and 2.58 with an average of 0.88 (Table 2, Fig. 3). In general, the *f* values increased southwards along the inner shelf, indicating that sedimentation efficiencies of ²¹⁰Pb were comparatively higher in the southern area.

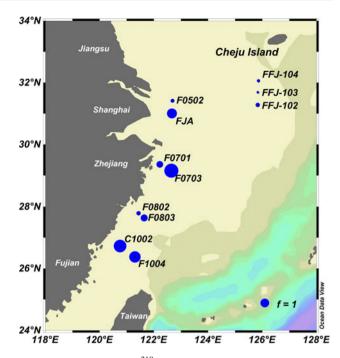


Fig. 3 Focusing factors of ²¹⁰Pb on the ECS Shelf, the size of *circles* represent the value of focusing factor

However, the *f* value at F0703 station (2.56) was exceptionally higher than the southern stations such as C1002 and F1004 with the *f* values of 2.04 and 1.67, respectively. Therefore, lateral transport contribution of ²¹⁰Pb to the F0703 station was much more evident. In contrast, the *f* values were much less than unity at stations of FFJ-102, FFJ-103 and FFJ-104 (0.14, 0.08 and 0.25 for three stations, respectively), revealing that only part of the atmospheric deposition of ²¹⁰Pb settled into local sediment, the majority of ²¹⁰Pb was transported to other area probably resulted from sediment resuspension and strong current (i.e. Yellow Sea Warm Current).

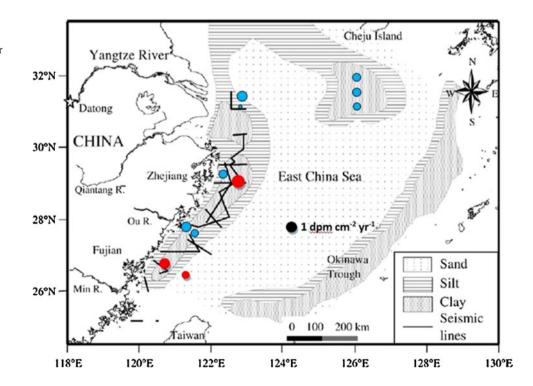
Lateral transport of ²¹⁰Pb over the ECS shelf

Evident lateral transport of ²¹⁰Pb has been observed in the ECS as approved by the focusing factors. Theoretically, two potential sources might contribute ²¹⁰Pb through lateral transport. One is the Yangtze River plume, which carries amount of terrestrial material including ²¹⁰Pb. The other is the boundary scavenging induced by the horizontal advection and diffusion of higher ²¹⁰Pb water masses from the western Pacific Ocean and the South China Sea. Thus, a mass balance model was adopted to quantify this lateral transport of ²¹⁰Pb including river contribution and boundary scavenging terms [10],

$$\frac{\partial I_{Pb}}{\partial t} = F_{atm} + F_{river} + F_{Ra} + F_{boundary} - F_{sed} - F_{decay} \quad (8)$$

where I_{Pb} is the inventory of ²¹⁰Pb in the water column, F_{river} and $F_{boundary}$ represent the input flux of ²¹⁰Pb from the Yangtze River and the boundary scavenging flux of ²¹⁰Pb (dpm cm⁻² year⁻¹). With the steady state assumption,

$$F_{boundary} = F_{sed} + F_{decay} - F_{atm} - F_{river} - \lambda_{Pb} I_{Ra}$$
(9)


where λ_{Pb} is the decay constant of ²¹⁰Pb (0.031 year⁻¹) and I_{Ra} represents the inventory of ²²⁶Ra in the water column (dpm m⁻²). ²¹⁰Pb derived from the Yangtze River was 0.64 dpm cm⁻² year⁻¹ [12]. The boundary scavenging flux of ²¹⁰Pb, then, was evaluated by Eq. (9).

The F_{boundary} values at F0502 and FJA stations were -1.58 and -0.33 dpm cm⁻² year⁻¹ respectively (Table 2), indicating net lateral export of ²¹⁰Pb from the two stations to other sites. Notably, although locating near the mouth of the Yangtze River the F_{boundary} value of F0502 was fourfold lower than FJA. The difference was ascribed to the topography and different sediment types between F0502 and FJA. On one hand, there is a submarine canyon between the mouth of the Yangtze River and F0502 [10]. The northwest branch of the Taiwan Warm Current (TWC) induces an upwelling system all the year round when it reaches the canyon [34-36], which is stronger than the Yangtze River plume and impedes the Yangtze river derived sediments to cross over the submarine canyon [10, 36]. On the other hand, FJA is located at the rim of Qiantang mud patch where sediment is mainly composited of silt/clay (Fig. 4), which is characterized by small size, large surface area and thus more adsorbed ²¹⁰Pb [37, 38].

For the costal stations close to Zhejiang Province, the highest $F_{boundary}$ of 1.20 dpm cm⁻² year⁻¹ was observed at F0703 station (Table 2), followed by F0701 and F0803 with values of -1.13 and -1.05 dpm cm⁻² year⁻¹, respectively. F0802 represents the minimum boundary scavenging of ²¹⁰Pb. The $F_{boundary}$ of ²¹⁰Pb at F0703 (> 0) indicated that this station acquired a large amount of boundary scavenged ²¹⁰Pb from open water. On the contrary, other three stations, as source sites, exported amounts of ²¹⁰Pb to the outer shelf. This contrasting scenario was attributed to the upwelling at F0703. Men et al. [39], based on ²²⁴Ra isotope, stated that the vertical eddy diffusion coefficients at F0703 (163 and 84.6 cm² s⁻¹ in winter and summer respectively) were several-fold higher than the average of this area $(35.9 \text{ cm}^2 \text{ s}^{-1})$, supporting the upwelling at F0703. The upwelling carries abundant nutrients to the surface water and consequently more biogenic particulate matter. Due to the strong particle reactivity of ²¹⁰Pb, the upwelling would result in efficient sedimentation of ²¹⁰Pb at F0703. At the same time, the upwelling also caused the convergence of fine-grained sediments as revealed by the mud type of sediment [40, 41], which also favor to enrich ²¹⁰Pb.

The values of $F_{boundary}$ were 0.57 and 0.14 dpm cm⁻² year⁻¹ at C1002 and F1004 respectively, which accounted for 31 and 8 % of the total ²¹⁰Pb input to the overlying water column at the two stations. These values were actually underestimated because the two stations are in the far south of the Yangtze River Estuary, the river contribution should be less than the input of 0.64 dpm cm⁻² year⁻¹ from

Fig. 4 The boundary scavenge flux of ²¹⁰Pb ($F_{boundary}$) on the ECS Shelf (sediment types refer to [9]). *Red* and *blue* circles represent positive and negative values respectively, while the size of *circle* represents the value of $F_{boundary}$

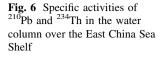
the river mouth as was adopted in this study. Geographically, the boundary scavenged ²¹⁰Pb at C1002 and F1004 most likely came either from the South China Sea water through the Taiwan Strait, or from the western Pacific Ocean water via a branch of Kuroshio into the ECS. Overall, the southern area of the ECS was a sink of ²¹⁰Pb, acquiring a considerable amount of boundary scavenged ²¹⁰Pb.

To quantitatively examine whether the region, influenced by the Yangtze River plume (called the Yangtze River Estuary Zone, i.e. YREZ), is an overall source/sink of ²¹⁰Pb, eight coastal stations, situated in the plume zone, were selected (Fig. 1) based on the distribution of ²²⁸Ra [41]. The $F_{boundary}$ values of eight stations varied from -1.58 to 1.20 dpm cm⁻² year⁻¹ with an average of $-0.46 \text{ dpm cm}^{-2} \text{ year}^{-1}$ (Table 2). By introducing the discharge of the Yangtze River [12], the budget of ²¹⁰Pb in the YREZ suggested that about 25 % of the total ²¹⁰Pb was exported to the outer shelf (Fig. 5), revealing the YREZ as a source area of ²¹⁰Pb. Du et al. [12] reported that 35 % of the total ²¹⁰Pb was transported to outer shelf, which was slightly higher than our result. This difference was ascribed to the defined different zone. In our study, the YREZ extended to 26°N whereas the southern borderline was 27°N in the research conducted by Du et al. [12]. The southmost stations (i.e. C1002 and F1004) actually acquired boundary scavenged ²¹⁰Pb; in consequence, they resulted in a low value in our study compared with Du et al. [12]. Because ²¹⁰Pb is a strong particle reactive nuclide, the lateral export of ²¹⁰Pb from the YREZ revealed that amounts of suspended particulate matter transported from the coastal area to outer shelf. In fact, several investigations provided evidence for this scenario. For example, McKee et al. [42] proposed that terrestrial sediment deposited near the Yangtze River mouth in summer could be eroded and transported southwards in winter with frequent storms. Fan et al. [43] found that the Yangtze River derived sediment on the ECS Shelf decreased towards outer shelf which confirmed the transport of particle materials from the Yangtze River mouth.

Fig. 5 The budget of ²¹⁰Pb constrained by mass balance model in the Yangtze River plume zone

In addition, the sedimentation of 210 Pb has a close relation with the sediment type. Stations in the mud zone (i.e. FJA, F0703, F0803 and C1002) showed a higher average 210 Pb $_{xs}^{0}$ activity of 4.76 dpm g $^{-1}$, while low 210 Pb $_{xs}^{0}$ values were observed at stations situated in non-mud zone (Fig. 4). Thus, the mud sediment zone in the coastal region [8, 9, 44] was probably the main 210 Pb sedimentation area in the YREZ.

The $F_{boundary}$ values were -1.66, -1.72 and -1.54 dpm cm⁻² year⁻¹ for FFJ-102, FFJ-103 and FFJ-104, respectively (Table 2), indicating that <20 % of input ²¹⁰Pb settled into local sediment. The majority of ²¹⁰Pb was exported to other area through lateral transport, which may be caused by the resuspension of sediment. Previous researches suggested that the sediments at these stations were easily re-suspended by the Yellow Sea Warm Current [45] and finally reached the coast of the Korea peninsula [46].


Lateral transport of 210 Pb constrained by 234 Th and 210 Pb in seawater

Because ²¹⁰Pb_{ex} in sediment was from the overlying seawater, the vertical export of ²¹⁰Pb from the water column, theoretically, can also reveal the lateral transport of ²¹⁰Pb, along with its source terms. At four stations (Fig. 6), ²³⁴Th, ²¹⁰Pb and ²³⁸U (via salinity [47]) were determined to quantify the export of ²¹⁰Pb from the water column. Overall, ²³⁴Th was deficit to its grandparent of ²³⁸U, hence the disequilibria between ²³⁴Th and ²³⁸U can be used to trace the export of ²¹⁰Pb. The export fluxes of ²³⁴Th were evaluated by the model

$$\frac{\partial I_{Th}}{\partial t} = \lambda_{Th} I_U - \lambda_{Th} I_{Th} - F_{Th}$$
(10)

where I_{Th} and I_U were the inventories of ²³⁴Th and ²³⁸U in the water column, respectively. F_{Th} is the vertical export flux of ²³⁴Th. The residence time of ²³⁴Th then can be calculated by I_{Th} and F_{Th} under a steady state (I_{Th}/F_{Th}) . ²³⁴Th and ²¹⁰Pb were assumed to have the same residence

Atmospheric Input $1.15 \text{ dpm cm}^{-2} \text{ yr}^{-1}$ $0.64 \text{ dpm cm}^{-2} \text{ yr}^{-1}$ $0.016 \text{ dpm cm}^{-2} \text{ yr}^{-1}$ $0.46 \text{ dpm cm}^{-2} \text{ yr}^{-1}$ $0.46 \text{ dpm cm}^{-2} \text{ yr}^{-1}$ $0.46 \text{ dpm cm}^{-2} \text{ yr}^{-1}$ $1.35 \text{ dpm cm}^{-2} \text{ yr}^{-1}$ $1.35 \text{ dpm cm}^{-2} \text{ yr}^{-1}$ $1.35 \text{ dpm cm}^{-2} \text{ yr}^{-1}$

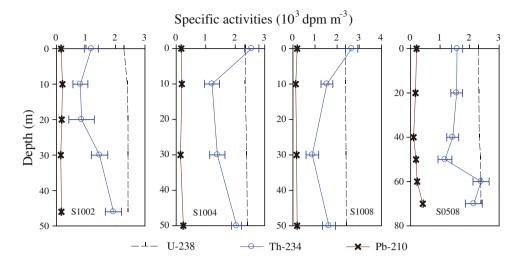


Table 3 Vertical export fluxes and lateral transport of ²¹⁰Pb quantified by ²³⁴Th-²¹⁰Pb approach

Station	Export interface (m)	$I_{Th} (10^4 \text{ dpm m}^{-2})$	$I_{Pb} (10^3 \text{ dpm m}^{-2})$	$F_{Th} (10^3 \text{ dpm m}^{-2} \text{ d}^{-1})$	F_{Pb} (dpm cm ⁻² ye	F_{adv} ar ⁻¹)
S1002	46	5.39 ± 0.49	7.62 ± 0.19	1.46 ± 0.14	7.54 ± 1.07	6.39 ± 1.07
S1004	50	7.93 ± 0.51	9.04 ± 0.28	1.08 ± 0.14	4.49 ± 0.69	3.34 ± 0.69
S1008	50	7.03 ± 0.60	8.20 ± 0.24	1.39 ± 0.17	5.91 ± 0.91	4.76 ± 0.91
S0508	70	8.68 ± 0.80	10.08 ± 0.54	2.12 ± 0.23	8.98 ± 1.20	7.83 ± 1.20

time due to their similar particle reactivity. Therefore, the lateral transport of ²¹⁰Pb (F_{adv}) can be estimated by the inventory of ²¹⁰Pb in seawater and its residence time,

$$F_{adv} = F_{Pb} - F_{atm} = \frac{I_{Pb}}{I_{Th}/F_{Th}} - F_{atm}$$
(11)

where F_{Pb} represent the vertical export flux of ²¹⁰Pb in dpm cm⁻² year⁻¹ (Table 3).

The lateral transport of ²¹⁰Pb, including river input and boundary scavenging, varied from 3.34 to 6.39 dpm cm^{-2} $year^{-1}$ for stations to the north of the Taiwan Strait (i.e. S1002, S1004 and S1008). By subtracting the overestimated river contribution of 0.64 dpm cm⁻² year⁻¹, the boundary scavenging of ²¹⁰Pb ranged between 2.70 and 5.75 dpm cm⁻² $vear^{-1}$ with an average of 4.19 dpm cm⁻² vear⁻¹. The Taiwan Warm Current may be the main carrier of boundary scavenged ²¹⁰Pb. There is a net water transport of 1.0-2.1 Sv $(1 \text{ Sv} = 10^6 \text{ m}^3 \text{ s}^{-1})$ through the Taiwan Strait to the ECS [48–50]. In addition, the specific activity of 210 Pb in the surface water increased offshore (Fig. 6), ²¹⁰Pb activity in the northwestern Pacific Ocean were 3-5 times higher than the values in the ECS [51]. These comparisons also supported ²¹⁰Pb may diffuse into the ECS directly from the western Pacific Ocean.

The vertical export fluxes of ²¹⁰Pb (i.e. F_{Pb}), derived from the ²³⁴Th-²¹⁰Pb approach, varied from 4.49 to 7.54 dpm cm⁻² year⁻¹ with the mean of 5.98 dpm cm⁻² year⁻¹ for the stations to the north of the Taiwan Strait (Table 3). Comparing with ²¹⁰Pb mass-balance method in sediment, F_{Pb} was higher than the averaged F_{sed} of 2.17 dpm cm⁻² year⁻¹. The exported ²¹⁰Pb must experience remineralization and resuspension before buried in sediment [52], consequently resulting in lower sedimentation fluxes contrasting with the export fluxes from the overlying water column. Thus, the difference between F_{Pb} and F_{sed} can be used to quantify the remineralization of settling particles or/and resuspension of sediment. About 47–74 % of vertically exported ²¹⁰Pb from the water column did not settle to local sediment at stations to the north of the Taiwan Strait. In spite of the difference between the two methods, they both indicated evident boundary scavenging to the north of the Taiwan Strait.

The F_{Pb} value was 8.98 dpm cm⁻² year⁻¹ for S0508 station. Assuming S0508 had the same F_{sed} as its adjacent stations (FFJ-102, FFJ-103 and FFJ-104), only <4 % of the vertical exported ²¹⁰Pb from the overlying water was finally buried in local sediment. The majority of the vertical exported ²¹⁰Pb was transported to other sites, coinciding with our conclusion drawn from sediment that strong hydrodynamic conditions led amounts of settled ²¹⁰Pb to be re-suspended and subsequently relocated.

Conclusions

(1) Excess ²¹⁰Pb in sediments showed significantly heterogeneous spatial pattern over the East China Sea Shelf. Overall, the north to the Taiwan Strait is a sink area of ²¹⁰Pb, whereas the coastal area covered by the Yangtze River plume and the south to the Cheju Island are source regions of ²¹⁰Pb.

- (2) To identify the provenance of lead isotopes in the East China Sea, boundary scavenging of Pb must be considered due to its significant contribution.
- (3) It may be efficient way to quantify the remineralization and resuspension effect over the shelf using the flux difference of ²¹⁰Pb between its vertical export from the overlying water column and sedimentation.

Acknowledgments We appreciate Professor Tibor Braun and tow anonymous reviewers for their constructive suggestions, which greatly improved the presentation of this manuscript. This work is supported jointly by a Chinese COMRA program (No. DY125-13-E-01) and the Chinese National Science Foundation (41076043 and 41125020).

References

- Gao S, Jia JJ (2003) Modeling suspended sediment distribution in continental shelf upwelling/down welling settings. Geo Mar Lett 22:218–226
- 2. Milliman JD, Meade RH (1983) World-wide delivery of sediment to the oceans. J Geology 91(3):1–21
- Xu KH, Milliman JD (2009) Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorph 104:276–283
- Xu KH, Milliman JD, Li AC, Liu JP, Kao SJ, Wan SM (2009) Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea. Cont Shelf Res 29:2240–2256
- Huh CA, Su CC (1999) Sedimentation dynamics in the East China Sea elucidated from ²¹⁰Pb, ¹³⁷Cs and ^{239,240}Pu. Mar Geol 160:183–196
- Guo ZG, Yang ZS, Lei K, Qu YH, Fan DJ (1999) Seasonal variation of the sedimentary dynamic processes for the mud area in the northern East China Sea. J Ocean Univ Qingdao 29(3): 507–513 (in Chinese)
- Lei K, Yang ZS, Guo ZG (2001) Sedimentation with aggregation of suspended sediment in a mud area of the northern East China Sea. Oceanol Limnol Sin 32(3):288–295 (in Chinese)
- Liu JP, Li AC, Xu KH, Velozzi DM, Yang ZS, Milliman JD, DeMaster DJ (2006) Sedimentary features of the Yangtze Riverderived along-shelf clinoform deposit in the East China Sea. Cont Shelf Res 26:2141–2156
- Liu JP, Xu KH, Li AC, Milliman JD, Velozzi DM, Xiao SB, Yang ZS (2007) Flux and fate of Yangtze River sediment delivered to the East China Sea. Geomorph 85:208–224
- Su CC, Huh CA (2002) ²¹⁰Pb, ¹³⁷Cs and ^{239,240}Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Mar Geol 183:163–178
- 11. Jiao N, Zhang Y, Zeng Y, Gardner WD, Mishonov AV, Richardson MJ, Hong N, Pan D, Yan X-H, Jo Y-H, Chen C-TA, Wang P, Chen Y, Hong H, Bai Y, Chen X, Huang B, Deng H, Shi Y, Yang D (2007) Ecological anomalies in the East China Sea: impacts of the Three Gorges Dam? Water Res 41:1287–1293
- 12. Du JZ, Wu YF, Huang YF, Zhang J (2010) Use of ⁷Be, ²¹⁰Pb and ¹³⁷Cs tracers to the transport of surface sediments of the Changjing Estuary, China. J Mar Sys 82:286–294

- Yang W, Chen M, Li G, Cao J, Guo Z, Ma Q, Liu J, Yang J (2009) Relocation of the Yellow River as revealed by sedimentary isotopic and elemental signals in the East China Sea. Mar Pollut Bull 58:923–927
- Yang W (2005) Marine biogeochemistry of ²¹⁰Po and ²¹⁰Pb and their implications regarding the cycling and export of particles. Ph.D. dissertation, Xiamen University, 176–211 (in Chinese)
- 15. Yang W, Huang Y, Chen M, Zhang L, Li H, Liu G, Qiu Y (2006) Disequilibria between ²¹⁰Po and ²¹⁰Pb in surface waters of the southern South China Sea and their implications. Sci China Ser D 49:103–114
- Wei CL, Chou LH, Tsai JR, Wen LS, Pai SC (2009) Comparative Geochemistry of 234Th, 210Pb and 210Po: a case study in the Hung-Tsai Trough off Southwestern Taiwan. Terr Atmos Ocean Sci 20(2):411–423
- Yao SC, Li SJ, Zhang HC (2008) ²¹⁰Pb and ¹³⁷Cs dating of sediments from Zigetang lake, Tibetan Plateau. J Radioanal Nucl Chem 278:55–58
- Gelen A, Soto J, Gómez J, Díaz O (2004) Sediment dating of Santander Bay, Spain. J Radioanal Nucl Chem 261:437–441
- Liu GS, Huang YP (1998) Simultaneous measurement of ²³⁸U, ²³⁵U, ²¹⁰Pb, ²²⁸Th, ²²⁸Ra, ²²⁶Ra, ⁶⁰Co and ¹³⁷Cs in sediment samples using HP Ge γ spectrometer. J Oceanogr Taiwan Strait 17(4):359–363 (in Chinese)
- 20. Ma Q, Chen M, Qiu YS, Huang YP (2005) MnO₂ precipitation and direct beta counting technique for determining ²³⁴Th in small volume seawater. Acta Oceanol Sin 27(4):68–75 (in Chinese)
- Benitez-Nelson CR, Buesseler KO, Rutgers van der Loeff M, Andrews J, Ball L, Crossin G, Charette MA (2001) Testing a new small-volume technique for determining ²³⁴Th in seawater. J Radioanal Nucl Chem 248:795–799
- 22. Yang W, Guo L, Chuang C-Y, Schumann D, Ayranov M, Santschi PH (2013) Adsorption characteristics of ²¹⁰Pb, ²¹⁰Po and ⁷Be onto micro-particle surfaces and the effects of macromolecular organic compounds. Geochim Cosmchim Acta 107:47–64
- Pan SM, Xu YH, Wang A, Povinec PP (2012) The ¹³⁷Cs distribution in sediment profiles from the Yangtze River estuary: a comparison of modeling and experimental results. J Radioanal Nucl Chem 292:1207–1214
- 24. Mahmood ZUW, Mohamed CAR, Ishak AK, Bakar NSA, Ishak K (2011) Vertical distribution of ²¹⁰Pb and ²²⁶Ra and their activity ratio in marine sediment core of the East Malaysia coastal waters. J Radioanal Nucl Chem 289:953–959
- Li DM, Xu MQ, Liu GS, Li C (2007) Distribution of radioisotopes in sediment cores from nearshore off Xinghua Bay mouth, Fujian, China. J Radioanal Nucl Chem 273:151–155
- 26. Yi Y, Zhou P, Liu GS (2007) Atmospheric deposition fluxes of ⁷Be, ²¹⁰Pb and ²¹⁰Po at Xiamen, China. J Radioanal Nucl Chem 273:157–162
- Singh AK, Marcantonio F, Lyle M (2011) Sediment focusing in the Panama Basin, Eastern Equatorial Pacific Ocean. Earth Planet Sci Lett 309:33–44
- Suman DO, Bacon MP (1989) Variations in Holocene sedimentation in the North-American basin determined from Th-230 measurements. Deep-Sea Res I 36(6):869–878
- Chen M, Ma Q, Guo LD, Qiu YS, Huang YP, Yang WF (2012) Importance of lateral transport processes to ²¹⁰Pb budget in the eastern Chukchi Sea during summer 2003. Deep-Sea Res II 81–84:53–62
- Cochran JK, McKibbin-Vaughan T, Dornblaser MM, Hirschberg D, Livingston H, Buesseler KO (1990) ²¹⁰Pb scavenging in the North Atlantic and North Pacific Oceans. Earth Planet Sci Lett 97:332–352
- 31. Yi Y, Bai J, Liu G, Yang W, Yi Q, Huang Y, Chen H (2005) Measurements of atmospheric deposition fluxes of ⁷Be, ²¹⁰Pb and ²¹⁰Po. Mar Sci 29:20–24 (in Chinese)

- 32. Su C-A, Huh C-A, Lin F-J (2003) Factors controlling atmospheric fluxes of ⁷Be and ²¹⁰Pb in northern Taiwan. Geophys Res Lett 30(19):2018. doi:10.1029/2003GL018221
- 33. Men W (2008) The study on the oceanography of the Yellow Sea and the East China Sea traced by radium isotopes. Ph.D. dissertation, Xiamen University, 71–123 (in Chinese)
- Jacobs GA, Hur HB, Riedlinger SK (2000) Yellow and East China Seas response to winds and currents. J Geophys Res 105:21947–21968
- 35. Zhao BR (1993) Upwelling off the Changjiang river mouth. Acta Oceanol Sin 15(2):108–114 (in Chinese)
- 36. Guo ZG, Yang ZS, Zhang DQ, Fan DJ, Lei K (2002) Seasonal distribution of suspended matter in the northern East China Sea and barrier effect of current circulation on its transport. Acta Oceanol Sin 24(5):71–80 (in Chinese)
- 37. Chung Y, Chang HC, Hung GW (2004) Particulate flux and ²¹⁰Pb determined on the sediment trap and core samples from the northern South China Sea. Cont Shelf Res 24:672–691
- Ye YG, He J, Diao SB, Cai SQ, Song SQ (1992) Standardization of ²¹⁰Pb profile in the modern Huanghe river delta-the correlation method of grain size. Sci Geograph Sin 12(4):279–286 (in Chinese)
- 39. Men W, Wang FF, Liu GS (2011) ²²⁴Ra and its implications in the East China Sea. J Radioanal Nucl Chem 288:189–197
- Qu TD, Hu DX (1993) Upwelling and sedimentary dynamics II. A simple model. Chinese J Oceanol Limol 11(2): 289–295
- Men W, Liu GS, Huang YP (2010) Measurement of ²²⁸Ra in the Yellow Sea and East China Sea using the radon emanation method. J Radioanal Nucl Chem 284:65–72
- 42. Mckee BA, Nittrouer CA, DeMaster DJ (1983) Concepts of sediment deposition and accumulation applied to the continental shelf near the mouth of the Yangtze River. Geology 11:631–633

- Fan DJ, Yang ZS, Sun XG, Zhang DQ, Guo ZG (2002) Quantitative evaluation of sediment provenance on the north area of the East China Sea shelf. J Ocean Univ Qingdao 32(5):748–756 (in Chinese)
- 44. Qin YS (1979) A study on sediment and mineral compositions of the floor of the East China Sea. Ocean Sel 2(2):130–142
- 45. Lei K, Yang ZS, Guo ZG, Bai H (2001) Suspended sediment flux in spring on the East China Sea shelf with different surface sediment types. Oceanol Limnol Sin 32(1):50–57 (in Chinese)
- 46. Lim DI, Choi JY, Jung HS, Rho KC, Ahn KS (2007) Recent sediment accumulation and origin of shelf mud deposits in the Yellow and East China Seas. Prog Oceanogr 73:145–159
- 47. Chen JH, Edwards RL, Wasserburg GJ (1986) ²³⁸U, ²³⁴U and ²³²Th in sea water. Earth Planet Sci Lett 80:241–251
- Wang YH, Jan S, Wang DP (2003) Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999–2001). Est Coast Shelf Sci 57:193–199
- Wu CR, Chao SY, Hsu C (2007) Transient, seasonal and interannual variability of the Taiwan Strait Current. J Oceanogr 63: 821–833
- Zhao BR, Fang GH (1991) Estimation of water fluxes of major waterways in East China Sea. Acta Oceanol Sin 13(2):169–178 (in Chinese)
- 51. Kawakami H, Yang YL, Kusakabe M (2009) Distribution of ²¹⁰Po and ²¹⁰Pb radioactivity in the intermediate layer of the northwestern North Pacific. J Radioanal Nucl Chem 279:561–566
- 52. Huh CA, Chen WF, Hsu FH, Su CC, Chiu JK, Lin S, Liu CS, Huang BJ (2010) Modern (<100 years) sedimentation in the Taiwan Strait: rates and source-to-sink pathways elucidated from radionuclides and particle size distribution. Cont Shelf Res 31:47–63