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Abstract

Proteobacteria are thought to have diverged from a phototrophic ancestor, according to the scattered distribution of
phototrophy throughout the proteobacterial clade, and so the occurrence of numerous closely related phototrophic and
chemotrophic microorganisms may be the result of the loss of genes for phototrophy. A widespread form of bacterial
phototrophy is based on the photochemical reaction center, encoded by puf and puh operons that typically are in a
‘photosynthesis gene cluster’ (abbreviated as the PGC) with pigment biosynthesis genes. Comparison of two closely related
Citromicrobial genomes (98.1% sequence identity of complete 16S rRNA genes), Citromicrobium sp. JL354, which contains
two copies of reaction center genes, and Citromicrobium strain JLT1363, which is chemotrophic, revealed evidence for the
loss of phototrophic genes. However, evidence of horizontal gene transfer was found in these two bacterial genomes. An
incomplete PGC (pufLMC-puhCBA) in strain JL354 was located within an integrating conjugative element, which indicates a
potential mechanism for the horizontal transfer of genes for phototrophy.
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Introduction

Anoxygenic phototrophic bacteria were proposed to have

emerged approximately 3 billion years ago and to be the ancestor

of all photosynthetic organisms [1–3]. Aerobic anoxygenic

phototrophic (AAP) bacteria, which probably evolved after the

accumulation of oxygen in the earth’s biosphere, are widely

distributed in the euphotic zone of the ocean, and are thought to

be significant players in marine carbon cycling [4–7]. To date, all

AAP bacteria that have been discovered belong to the Proteobacteria,

and the majority of cultured AAP strains are members of the a-

proteobacteria. Genome sequencing has revealed that AAP bacteria,

like purple photosynthetic bacteria, contain a highly conserved

,40 to 50 kb "photosynthesis gene cluster" (PGC) [8]. The heart

of anoxygenic phototrophy is the reaction center, encoded by the

puf and puh operons. So far, there are two prominent viewpoints

about the evolution of Proteobacteria: the first is that phototrophic

ancestors lost phototrophy genes and thus became chemotrophic

[8,9]; the other is that chemotrophic bacteria acquired photo-

trophy genes via horizontal gene transfer (HGT) and therefore

became phototrophic. For example, the Rubrivivax gelatinosus (b-

proteobacteria) phototrophy genes were suggested to have originated

in the photosynthetic a-proteobacteria [8,10,11]. Although these two

viewpoints are not mutually exclusive, either one could explain the

scattered distribution of phototrophy in phylogenetic trees.

The genus Citromicrobium is in the Alpha IV AAP bacteria

subcluster (Fig. 1A), and it contains only one species, C.

bathyomarinum. The strain JL354, which was isolated from the

upper ocean water of the South China Sea [12], shares 99.6% 16S

rRNA sequence identity with the type strain C. bathyomarinum JF-1

that was isolated from deep-sea hydrothermal vent plume waters

[13]. A previous study proposed the existence of two PGCs in the

Citromicrobium sp. JL354 genome sequence, one complete and the

other incomplete [12]. Subsequently, the Citromicrobium strain

JLT1363 was isolated from the South China Sea, and was found to

have 98.1% and 98.0% 16S rRNA gene sequence identity to

Citromicrobium sp. JL354 and C. bathyomarinum JF-1, respectively

(Fig. 1A). Surprisingly, there is no PGC in the genome of

Citromicrobium strain JLT1363 [14].

Here, by comparing the genomes of the AAP bacterium

Citromicrobium sp. JL354 and the closely-related chemotrophic

bacterium Citromicrobium strain JLT1363, we provide evidence that

JLT1363 evolved from an AAP bacterium by loss of phototrophy

genes to become heterotrophic. In addition, we speculate that the

incomplete PGC of Citromicrobium sp. JL354 was obtained by HGT.

Results and Discussion

Overview of Citromicrobium genomes
The genome of Citromicrobium strain JLT1363 is very similar to

Citromicrobium sp. JL354, in terms of genome size (3,117,324 bps and

3,273,334 bps, respectively), GC content (64.9% and 65.0%,

respectively), and gene composition (Fig. S1). However, strain

JL354 is capable of phototrophic growth (phototrophy) on some
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carbon sources whereas strain JLT1363 is incapable of phototrophy.

Comparison of the two genomes revealed that the major differences

are the presence of a ,37 kb PGC, and a Mu-like prophage (about

40 kb in length) and adjacent sequences in Citromicrobium sp. JL354,

which are absent from the genome of JLT1363.

Phenotypic and genetic diversity in the AAP bacteria
AAP bacteria have been thought to be closely related to the

purple non-sulfur bacteria, as exemplified by the presence of AAP

strains in the Roseobacter clade (Alpha III), the Alpha II subcluster,

the b-proteobacteria (which includes the photosynthetic Rubrivivax

Figure 1. Neighbor joining phylogenetic analysis of 16S rRNA gene sequences from all whole genome-sequenced marine AAP
bacteria. (A). Scale bar represents 5% nucleotide substitution percentage. Neighbor joining tree of pufC gene sequences from all whole genome-
sequenced marine AAP bacterial (B). Scale bar represents 10% nucleotide substitution percentage. Bootstrap percentages ($50%) from both
neighbor joining (above) and maximum parsimony (below) are shown.
doi:10.1371/journal.pone.0035790.g001
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gelatinosus), and the NOR5 clade (c-proteobacteria) (Fig. 1A). There

also are AAP bacteria that possess atypical characteristics akin to

the purple non-sulfur bacteria; e.g., Roseobacter denitrificans OCh 114

and Dinoroseobacter shibae DFL 12 are able to grow under anaerobic

conditions, and Congregibacter litoralis KT71 induces the expression

of its photosynthetic apparatus under semi-aerobic conditions [15–

17]. In addition, AAP bacteria in the Roseobacter and NOR5 clades

utilize light harvesting pigments and carotenoid biosynthesis

pathways similar to those used by the purple non-sulfur

(photosynthetic) bacteria [8,18,19].

To date, only AAP bacteria in the Eryth-Citro clade are true

aerobic phototrophs, containing unusual carotenoid biosynthetic

pathways and pigments, compared to the other clades [18,19].

Interestingly, members of the Eryth-Citro clade possess the

shortest and simplest PGC structure of the known AAP [18],

and the light harvesting complex 2 (LH2) genes are absent,

perhaps indicating that the AAP in this clade are younger than

their counterparts in other clades.

Multiple potential mechanisms for HGT
Exchange of genetic information via HGT usually occurs by

three major mechanisms: transformation, transduction or conju-

gation [20]. By these methods microorganisms may gain

exogenous genes allowing adaptation to changing environmental

pressures, for example antibiotic and heavy metal resistance, or to

simply broaden the genetic diversity of the population [21–23].

HGT is thought to be a significant process in the evolution and

plasticity of bacterial genomes [20,22]. Compared to members of

the Roseobacter clade, which have diverse metabolic capabilities

supported by large genomes [24,25], the oligotrophs of the genus

Citromicrobium have small, streamlined genomes and no known

plasmids, potentially making them less adaptable [26].

In order to compete and survive in natural environments,

Citromicrobium species may benefit from alternative strategies to

enhance their genomes by HGT. Citromicrobium species possess at

least four potential mechanisms of HGT, which could result in

adaptation to changing conditions: a gene transfer agent (GTA);

an integrative conjugative element (ICE); a Mu-like prophage; and

a type IV secretion system (T4SS). These mechanisms are

described in the following text.

GTAs are small, phage-like particles that transfer random, short

stretches of genomic DNA (typically, 4 to 14 kb in length) between

closely related bacteria, and which were first discovered in

Rhodobacter capsulatus [27,28]. Control of GTA-mediated genetic

exchange is intimately intertwined with key host cell regulatory

systems and GTA-like gene clusters are conserved in diverse

genera, suggesting that they play an important role in evolution or

adaptation of the bacterium [29]. Analysis of Citromicrobial

genomes showed that there are complete GTA gene clusters

present in both of the genomes examined here (Fig. 2). Overall,

the structure of these clusters is very similar to that of the

archetypal GTA in R. capsulatus (RcGTA) (Fig. 2).

Integrative and conjugative elements (ICEs) are self-transmissi-

ble mobile genetic elements that mediate HGT among prokary-

otes, driving macro-evolutionary events [30,31]. ICEs possess

characteristics of both conjugative plasmids and temperate

Figure 2. Organization of GTA structural genes in R. capsulatus and two Citromicrobium genomes (Acc No., JLT1363:
NZ_AEUE01000002; JL354: NZ_ADAE01000023). Cyan, conserved genes upstream and downstream of the GTA structural gene cluster in
Rhodobacter and Citro-Eryth clades; green, a putative transposase; red, terminase; purple, structural genes; yellow, protease and peptidase; white,
hypothetical genes; gray, conserved hypothetical genes belonging to GTA.
doi:10.1371/journal.pone.0035790.g002

Figure 3. Genomic organization of core genes of a putative ICE found in the genome of Citomcirobium strain JLT1363. The two regions
suggested to carry exogenous DNA are predicted to be involved in phage repression (10.5 kb) and heavy metal transport (43.5 kb) (Acc No.:
NZ_AEUE01000004). The ICE in JL354 is in different contigs, but all the core genes after and including ‘single-strand binding protein’ are present (Acc
No.: NZ_ADAE01000017). The incomplete PGC (pufLMC-puhCBA) only found in ICE of strain JL354. Red, yellow and pink: coding for phage-related
genes; green and cyan: coding for plasmid-related genes.
doi:10.1371/journal.pone.0035790.g003
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bacteriophages-ICEs transfer via conjugation like plasmids, but

they cannot replicate autonomously and so integrate into the host

chromosome like temperate bacteriophages [31–33]. Further-

more, ICEs have been reported to contain five intergenic hotspots

where exogenous genes can be held [34]. Both of the Citromicrobium

genomes examined here contain ICE-like gene clusters, and within

the ICE of strain JLT1363 there are two putative hotspot regions

One region (predicted to be involved in phage repression,

NZ_AEUE01000004: (339285-349725)) is located between the

trwC and traG genes, the other (heavy metal transport,

NZ_AEUE01000004: (367759-410917)) is located adjacent to

the traBKEL gene cluster (Fig. 3).

An inducible Mu-like prophage was identified in Citromicrobium

sp. JL354 (NZ_ADAE01000018: complement (530353–567404),

unpublished data). The complete prophage sequence is ,37 kb in

length with a GC content of 66.1%, and comprises of 57 predicted

ORFs. Characterized Mu-like phages package host DNA from the

regions immediately flanking the integrated prophage during prior

to lytic release [35,36]. The almost random replicative transpo-

sition characteristic of Mu-like phages results in the packaging of

heterologous host DNA segments, which could conceivably play a

role in the exchange of genetic information between hosts [35].

The virB-encoded T4SSs mediate interbacterial conjugative

DNA transfer, and secretion of virulence factors into target cells

[37–40]. The complete virB operon (virB1-virB11) and the virD4

gene are required to form the macromolecular transfer apparatus

and for a strain to serve as a donor [41,42], but only a subset are

required for recipient activity [43]. Seven genes (virB2B3B4–virB6–

virB9B10B11) were found in the two Citromicrobial genomes studied,

and these incomplete virB operons may play a role in importing

DNA in Citromicrobium.

Loss of phototrophy genes
The AAP may be considered as a transitional group between

photosynthetic and chemotrophic bacteria, because phototrophy

supports no more than 20% of cellular energy requirements under

illuminated aerobic conditions [7]. The AAP bacteria mainly

utilize organic matter for growth. In oligotrophic oceanic regions,

AAP bacteria may have some advantages over chemotrophs, but

in a eutrophic oceanic area or rich organic medium, they do not

express phototrophy genes [44], and so prolonged growth in a

eutrophic environment could allow for loss of phototrophy genes.

The complete PGC in the Citromicrobium sp. JL354 genome

consists of two conserved subclusters, crtCDF-bchCXYZ-pufBALM

and bchFNBHLM-lhaA-puhABC (Fig. 4), flanked by putative genes

involved in cell division, transmembrane transport and signal

transduction. Interestingly, in the JLT1363 genome we found

exactly the same flanking gene organization but with a single

hypothetical gene in place of the PGC (Fig. 4). It appears that

either HGT (i.e., JL354 obtained the PGC) or gene cluster loss (i.e.,

JLT1363 lost the PGC) occurred in Citromicrobium. To address

these possibilities, phylogenetic analyses of strain JL354 PGC and

16S rRNA genes were carried out, and the trees were evaluated

for congruency. The general topology of these phylogenetic trees

was similar (Fig. 1A, Fig. S2), indicating co-evolution of the PGC

with the 16S rRNA gene. These results indicate that Citromicrobium

sp. JL354 acquired the complete PGC long before 16S rRNA

phylogenetic divergence, and that relatively recent HGT does not

account for the complete PGC in strain JL354. Therefore, the data

suggest that Citromicrobium strain JLT1363 lost its PGC after

divergence from a common ancestor shared with strain JL354.

HGT could not only increase the host genetic information but

could also trigger chromosome recombination resulting in gene

loss or duplication. For example, Mu-like phage lysogen formation

involves transposition into almost random locations within the host

genome, and if this were to occur within a gene or operon it would

be likely to cause complete or partial loss of function at the

insertion site [45]. Furthermore, transposing phages and other

insertion sequences are known to be key factors in the

reorganization and evolution of bacterial genomes [46–48]. The

disruption of a single bacteriochlorophyll biosynthesis or reaction

center gene in the PGC would lead to loss of phototrophy, and

thus there are many potential sites for gene disruption that would

lead to the absence of a selective advantage for the PGC as a

whole. Subsequently, a non-functional PGC would be an energy

drain during genome replication, conferring a selective advantage

on progeny for the loss of this non-functional PGC in an

environment allowing chemotrophic growth. Although further

investigation is needed to elucidate the exact mechanism of this

proposed PGC loss, our study could provide an explanation for the

Figure 4. The difference between the PGC chromosomal region in Citromicrobium sp. JL354 (Acc No.: NZ_ADAE01000008) and the
corresponding region in Citromicrobium strain JLT1363 (Acc No.: NZ_AEUE01000008). A, Citromicrobium sp. JL354; B, Citromicrobium
strain JLT1363. As described in the text, this difference is attributed to the loss of the PGC in Citromicrobium strain JLT1363. Key to general classes of
gene annotations: Green, bch genes; red, puf and regulator genes; pink, puh genes; orange, crt genes; blue, hem and cyc genes; yellow, lhaA gene;
blank, uncertain or unrelated genes; grey, hypothetical protein. The horizontal arrows represent putative transcripts. Key to specific gene annotations:
1, zinc finger/thioredoxin putative; 2, cell division ATP-binding protein FtsE; 3, cell division transport system permease protein; 4, hypothetical protein
ELI_11430; 5, 1-acyl-sn-glycerol-3-phosphate acyltransferase; 6, histidinol-phosphate aminotransferase; 7, homoserine O-acetyltransferase; 8,
succinate-semialdehyde dehydrogenase (NAD(P)+); 9, hypothetical protein ED21_17902; 10, glutathione S-transferase family protein; 11, protein-
methionine-S-oxide reductase; 12, membrane carboxypeptidase; 13, trypsin-like serine protease; 14, HflC protein; 15, integral membrane proteinase;
16, ATPase; 17, aldehyde oxidase and xanthine dehydrogenase molybdopterin binding; 18, ferrochelatase; 19, cytochrome P450. A, acetyltransferase,
GNAT family protein; B, methionine biosynthesis protein MetW; C, glyoxalase/bleomycin resistance protein/dioxygenase; D, membrane anchored
protein.
doi:10.1371/journal.pone.0035790.g004
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scattered evolutionary lineage for the presence and absence of

phototrophy throughout the Proteobacteria clade, and may also

explain the numerous closely-related phototrophic and chemo-

trophic strains [8].

Gain of phototrophy genes
Coexistence of two different PGCs in one phototrophic

bacterium has been found only in Citromicrobium sp. JL354 [12].

The complete PGC is typical, whereas the incomplete PGC

consists of just the pufLMC and puhABC genes, which are

contiguous (Fig. 3). However, in most other PGCs, including

the complete PGC of the same strain, pufLM and puhABC are

separated [18], and pufC is not present in Alpha IV AAP

containing complete PCGs (e.g., Citromicrobium sp. JL354 and

Erythrobacter sp. NAP1). Furthermore the GC content of the pufLM

and puhABC sequences in the incomplete PGC (0.62 and 0.66,

respectively) is lower than that of the complete PGC (0.63 and

0.69, respectively). The nucleotide identity is less than 80% for all

shared genes between the two PGCs, and the difference is higher

than the genera level (15%) [49]. On the basis of the foregoing

observations, we speculate that the incomplete PGC in Citromicro-

bium sp. JL354 was obtained via HGT. This hypothesis is

strengthened substantially by further genomic analysis which

revealed that the incomplete PGC in Citromicrobium sp. JL354 is

located within one of the putative ICE intergenic hotspots (Fig. 3).
Further phylogenetic analysis showed that the pufC gene sequence

belonging to the incomplete PGC is closest to Fulvimarina pelagi

HTCC2506 (Fig. 1B), which indicates that the incomplete PGC

genes may have been acquired from a Fulvimarina-related species

(Table 1).

It has previously been suggested that purple photosynthetic

bacteria were ancestral to the AAP [4]. Here, by comparison of

two Citromicrobial genomes, we have shed light on how an AAP

species may have lost phototrophic competence to become

chemotrophic. In addition, we have also identified multiple

potential HGT mechanisms and provided evidence for gain as

well as loss of phototrophy genes. Therefore, it appears that

influence of HGT on the presence of phototrophy genes has

contributed to the genotypes and phenotypes of extant species of

Proteobacteria. With the increasing scope and depth of genome and

metagenome databases, future detailed analysis should further

clarify the evolutionary history of phototrophy.

Materials and Methods
All the genome information was obtained from the GenBank

genome database. The GenBank accession numbers are: Citromi-

crobium sp. JL354 (ADAE00000000), Citromicrobiom strain JL1363

(AEUE01000000), Loktanella vestfoldensis SKA53

(NZ_AAMS00000000), Dinoroseobacter shibae DFL 12

(NC_009952), Roseobacter denitrificans OCh 114 (NC_008209),

Jannaschia sp. CCS1 (NC_007802), Roseobacter litoralis Och 149

(NZ_ABIG00000000), Roseovarius sp. 217 (NZ_AAMV00000000),

Roseobacter sp. CCS2 (NZ_AAYB00000000), Roseobacter sp. AzwK-

3b (NZ_ABCR00000000), Erythrobacter sp. NAP1

(NZ_AAMW00000000), Congregibacter litoralis KT71

(NZ_AAOA00000000), Marine gammaproteobacterium HTCC2080

(NZ_AAVV00000000), Rhodobacter sphaeroides strain 2.4.1

(NC_007493), Rhodobacter capsulatus SB 1003 (NC_014034), Chloro-

flexus aggregans DSM 9485 (NC_011831), and Chloroflexus aurantiacus

J-10-fl (NC_010175).

All the sequences collected from NCBI database were aligned

using Clustal X and phylogenetic trees were constructed using the

neighbour-joining and maximum-parsimony algorithms of MEGA

software 3.0 [50]. The phylogenetic trees were supported by

bootstrap for resampling test with 1000 replicates.

Supporting Information

Figure S1 Pie chart of protein categorization of predict-
ed coding sequences in the strains JL354 (outer) and
JLT1363 (inner) genomes respectively.
(PPT)

Figure S2 Maximum parsimony phylogenetic analysis
of 27 core proteins (,10 kb aa) in PGCs from GenBank
database. The core proteins are BchBCDFGHILMNOPXYZ-

CrtCF-PufBALM-LhaA-PuhABCE-AscF. Bootstrap percentages

from both maximum parsimony (above) and neighbor joining

(below) are shown. Bar, 0.1 substitutions per amino acids position.

(PPT)
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