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Abstract

Chlorophyll-a (Chl) concentration in the Taiwan Strait (TWS) and in the South China Sea (SCS) was estimated using time series of satellite data
collected with the MODIS/Aqua and SeaWiFS instruments, and validated with in situ measurements from three cruises conducted in winter and
summer 2004. For Chl between 0.1 and 10mg m�3, both SeaWiFS and MODIS agreed well with in situ data. Errors for turbid coastal waters were
larger than for offshore waters but the overall RMS (root mean square) error in log scale was within 0.35. The percentage RMS error was much
larger, varying between 60% and 170% for open ocean and most of the shallow (<30 m), coastal regions. However, there was no large systematic
error or significant bias in either satellite data set, and these numbers were comparable to those for other global oceans and not significantly larger
than the algorithm “noise” (0.22 in RMS error in log scale). Further, SeaWiFS and MODIS showed similar spatial and temporal patterns between
July 2002 and October 2004, as well as nearly identical concentrations for Chl between 0.1 and 4mg m�3. RMS difference between the two data
sets of monthly mean Chl for several sub-regions was generally <11% and <0.05 (after logarithmic transformation). For each individual month, the
statistics (mean, mode, median) of the two data sets for the entire study region (6–9×105 satellite pixels at ∼1km resolution) were very similar,
with RMS differences typically between 30% and 40% and between 0.10 and 0.15 (after logarithmic transformation), where no significant bias was
found. Therefore, it would be possible to continue the time series using only one sensor such as MODIS, in the eventual absence of SeaWiFS.
Further research is needed to improve the remote sensing algorithms for application in turbid coastal waters.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Assessment of environmental change over long periods of
time requires a time-series of consistent observations.
Phytoplankton pigment concentrations such as chlorophyll-a
(Chl) provide a measure of the biological state of the surface
ocean. Satellite sensors designed to observe the Visible Sea
Spectral Reflectance (VSSR, traditionally called ocean color)
provide estimates of short-term (seasonal and inter-annual) to
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long-term (decadal) changes in the global ocean Chl (e.g.,
Behrenfeld et al., 2001; Gregg & Conkright, 2002; Gregg et
al., 2003). However, for a particular region, especially a
coastal region, the accuracy of the long-term trend is often
unknown due to uncertainties associated with satellite data
products.

Of particular interest are observations from the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) that has operated since
1997 (McClain et al., 1998) and from the two Moderate
Resolution Imaging Spectroradiometers (MODIS), including
Terra MODIS (since 1999) and Aqua MODIS (since 2002)
(Esaias et al., 1998). These satellite sensors provide near-daily
coverage of the global ocean. Continuity in coverage is
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expected with the future National Polar-Orbiting Operational
Environmental Satellite System (NPOESS) and the NPOESS
Preparatory Mission (NPP; expected launch in 2008), which
will carry the Visible/Infrared Imager/Radiometer Suite (VIIRS)
instruments, which are similar in capability to SeaWiFS and
MODIS.

Some efforts have been made to merge global time series
from different VSSR (i.e., ocean color) sensors, primarily the
Coastal Zone Color Scanner and SeaWiFS (Gregg & Conkright,
2001; Siegel & Maritorena, 2000; Yoder et al., 2001). But little
has been done on merging global-scale SeaWiFS and MODIS
series. SeaWiFS is a well-calibrated and stable sensor (McClain
et al., 2004). In comparison, there is a general perception that
MODIS data are of lower quality due to the publicity that
several artifacts in sensor design have received (for example
stray light, polarization, and data striping). The future
availability of SeaWiFS data is not clear, since the mission
has exceeded its 5-year life design. However, MODIS is
expected to continue into the future and provide a bridge to
VIIRS. To enable a smooth transition from SeaWiFS to
MODIS, it is necessary to assess differences between these
sensors. Such comparison is particularly useful to regional
investigators, given that some limited regional comparisons
have shown large variations (Blondeau-Patissier et al., 2004;
Darecki & Stramski, 2004). Here we present the first validation
and comparison results for observations of Chl in the Taiwan
Strait (TWS) and the northern South China Sea (SCS) to assess
the utility of MODIS in case that SeaWiFS data may not be
available in the future.
Fig. 1. Map showing the study area, with the Taiwan Strait as used here defined by so
cross-shelf transect lines where chlorophyll from MODIS and SeaWiFS were extrac
The TWS and the northern SCS are located along the
southeast coast of China (Fig. 1). The region is characterized by
marked seasonal changes in physical (Jan et al., 2002; Su, 2004)
and biological properties (Liu et al., 2002; Ning et al., 2004).
The near-shore, shallow (<200m) waters of the northern SCS
receive significant inputs of coastal runoff with high loads of
nutrients and other terrestrial substances, including contribu-
tions from the Pearl River. Further, coastal upwelling occurs
regularly in this region (Hong et al., 1991), affecting primary
production and fisheries. Over half of the area of the TWS is
<50m deep. These shallow regions are optically complex
compared to the adjacent deep SCS.

Preliminary studies used SeaWiFS data to examine the
variability of surface chlorophyll-a (Chl) and driving factors in
the SCS and TWS regions (e.g., Lin et al., 2003; Shang et al.,
2004a; Tang et al., 2002). However, validation of the
SeaWiFS products has been sparse because extensive and
reliable in situ measurements have not been available. Further,
no comparison has been made between SeaWiFS and MODIS
for this region.

This study addresses two major questions:

1) How accurate are Chl estimates derived from SeaWiFS and
MODIS?

2) How do MODIS data products compare with those from
SeaWiFS?

Answering these questions will help develop a consistent,
long-term Chl time-series off southeastern China, which is the
lid lines. Overlaid on the map are the bathymetry contours (unit: meter) and two
ted and analyzed.
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first step leading to a better understanding on temporal patterns
of Chl in response to physical fluctuations and their relationship
with local and remote forcing.

2. Data and methods

2.1. Cruise survey

In situ data were collected from three cruises (Fig. 1) in
2004. Two cruises were conducted in the northern SCS from 9
February to 6 March 2004 (identified below as February
2004) and from 6 to 23 July 2004 (identified below as July
2004). A third cruise was conducted in the southern TWS
from 26 July to 7 August 2004 (identified below as August
2004). Water samples were collected with 1.7L Niskin bottles
mounted on a rosette equipped with a SBE19 CTD. Sampling
Fig. 2. Composite Chl images from the MODIS (upper panels) and SeaWiFS (middle
July, and 26 July–7 August. White crosses (+) on the MODIS images mark in situ sa
ship transect lines from which SeaWiFS and MODIS data were available for compari
and MODIS data were available within ±2h (red), ±24h (blue), and ±48h (black) o
cruise periods.
locations are shown in Fig. 2. Samples were filtered with
Whatman GF/F glass fiber filters, and chlorophyll-a concen-
tration (Chl) was determined by extracting pigments in
acetone and measuring fluorescence emission on a fluorometer
(Parsons et al., 1984). During the summer cruises, surface
temperature, salinity, and chlorophyll fluorescence were
measured along the ship track using a SeaBird SBE21
thermosalinograph and a WETLabs WETStar fluorometer.
The mean and standard deviation for the Chl data from the
discrete water samples in July 2004 were 0.49 and 1.05, and
in August 2004 cruises were 0.59 and 0.46. They were used to
calibrate/convert the flow-through fluorescence as follows:
Chl=7.840(±0.296)⁎fluorescence�0.561(±0.055), 0.05<Chl<
5.14, r=0.98, n=34 for July 2004 cruise; and Chl=4.029
(±1.009)⁎fluorescence�0.157(±0.204), 0.08 <Chl < 1.73,
r=0.73, n=16 for August 2004 cruise.
panels) sensors for the three cruise periods in 2004: 9 February–6 March, 6–23
mpling locations. The white line shown on the SeaWiFS images (S1–S4) show
son within 24h of each other. The bottom panels show locations where SeaWiFS
f in situ flow-through Chl observations during the July 2004 and August 2004
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Fig. 3. Comparison of Chl obtained from in situ sampling, SeaWiFS (▴), and MODIS (▵) for the three cruise periods in February 2004 (a), July 2004 (b), and August
2004 (c). The satellite data were extracted from the composite images and therefore may not be strictly concurrent with the in situ measurements.
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2.2. Satellite (SeaWiFS and MODIS) data

SeaWiFS daily Level-1A data between September 1997 and
October 2004 were obtained from the NASA Distributed Active
Archive Center (DAAC). They were processed to Level 2 Chl
data products using the SeaWiFS Data Analysis System
(SeaDAS4.6) software, and then mapped to a cylindrical
equidistant projection at ∼1km/pixel resolution. Atmospheric
effects were removed with the Gordon and Wang (1994)
algorithm to obtain the normalized spectral water-leaving
radiance (nLw(λ)), which were then used in the OC4v4 band-
ratio algorithm (O'Reilly et al., 2000) to estimate Chl. The daily
data were used to generate monthly composite (arithmetic
mean) images while discarding suspicious pixels associated
Table 1
Comparison between satellite and in situ Chl (discrete samples, Fig. 3)

Cruises SeaWiFS (swf) vs. in situ Chl (chl)

Slope Intercept R n RMS (%) Bias (%) log_RMS log

February 2004 1.10 0.30 0.92 19 203 136 0.395 0.2
July 2004 0.81 �0.03 0.81 26 159 69 0.335 0.11
August 2004 0.57 0.02 0.50 32 171 94 0.392 0.1

Note that the satellite data are from the composite data set covering the entire cruise
with various flags (e.g., cloud/stray light, large solar/sensor
angle, high aerosol optical thickness).

Daily MODIS/Aqua data covering the study region (July
2002 to October 2004) were processed by the NASA Goddard
Space Flight Center (GSFC) using similar atmospheric
correction algorithms as for SeaWiFS (Collection 4) but with
the OC3 (O'Reilly et al., 2000) bio-optical algorithm. These
data were mapped and averaged in a manner similar to that used
for SeaWiFS.

2.3. Comparison between in situ and satellite data

A rigorous comparison requires that in situ data be collected
within ±2–3h of the satellite overpass (Bailey et al., 2000).
MODIS (mod) vs. in situ Chl (chl)

_bias Slope Intercept R n RMS (%) Bias (%) log_RMS log_bias

90 0.92 0.19 0.88 29 151 91 0.350 0.192
9 0.85 0.08 0.85 42 112 78 0.313 0.192
64 0.43 0.06 0.40 32 249 146 0.444 0.243

period, therefore are not strictly concurrent with the in situ measurements.



Fig. 4. Comparison of in situ flow-through, SeaWiFS, and MODIS Chl during the July 2004 and August 2004 cruise periods. Colors indicate the time difference
between in situ measurements and satellite overpass: ±2h (red), ±24h (blue), and ±48h (black). Solid lines are 1:1 lines.
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However, due to frequent cloud cover in the study region, the
matching data pairs are often limited. Thus, two methods were
used in the comparison.

The first method compared in situ Chl data from discrete
water samples with those derived from the composite satellite
images at the corresponding cruise survey locations. The second
method compared calibrated flow-through data with satellite
Table 2
Comparison between satellite and in situ Chl (calibrated flow-through data, Fig. 4)

Cruises July 2004

Time
difference

Slope Intercept R n RMS
(%)

Bias
(%)

log_RMS l

SeaWiFS 2h – a – – 3 – – –
24h 1.05 0.05 0.92 827 106 28 0.249
48h 1.04 0.03 0.91 894 104 25 0.259

MODIS 2h 1.58 0.49 0.96 81 105 79 0.295
24h 1.08 �0.05 0.83 1265 66 �1.2 0.279 �
48h 1.01 �0.06 0.87 2470 61 �1.8 0.256 �

The time difference is between satellite and in situ measurements.
a “–”: too few matching pairs to derive meaningful statistics.
estimates, where the matching pairs had the time differences of:
(A) ±2h; (B) ±24h; and (C) ±48h.

To minimize errors associated with the satellite sensor/
algorithm noise, a 3×3 median filter was used according to Hu
et al. (2001). Similarly, a median value from the multiple in situ
flow-through data points collected within an image pixel
(∼1×1km2) was used.
August 2004

og_bias Slope Intercept R n RMS
(%)

Bias
(%)

log_RMS log_bias

– 0.66 0.21 0.44 97 134 111 0.341 0.292
0.0272 0.94 0.23 0.63 917 142 100 0.333 0.245
0.0121 1.04 0.26 0.70 1472 141 100 0.333 0.249
0.2130 0.61 0.10 0.59 42 86 72 0.251 0.218
0.0876 1.58 0.38 0.84 603 175 95 0.330 0.212
0.0619 1.38 0.34 0.84 1296 171 110 0.349 0.259



Table 3
Time difference (local time) between in situ, SeaWiFS, and MODIS
measurements for transects S1, S2, S3, and S4 (Fig. 2e and f)

Section Time range of flow-through data MODIS SeaWiFS

S1 July 19 1:22–July 19 7:35 July 18 13:55 July 18 13:02
S2 July 19 7:35–July 19 11:53 July 18 13:55 July 18 13:02
S3 July 22 23:15–July 23 04:15 July 22 13:30 July 22 12:27
S4 August 6 19:33–August 7 02:19 August 7 13:30 August 6 12:46
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In comparing satellite and in situ data, several different
methods have been used in the literature to estimate the errors.
Two methods were used in this study to put our results in the
context of the published literature. First, following Darecki and
Stramski (2004), we used the root mean square (RMS) and
mean difference (bias) as measures to describe the similarity/
difference between the two different data sets. These errors (in
percentage) are defined as follows:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

xið Þ2
s

� 100

bias ¼ x̄ ¼ 1
n

Xn
i¼1

xi

 !
� 100

x ¼ S � I
I

ð1Þ

where S stands for satellite data, I for in situ data, and n is the
number of matching pairs. For a normally distributed data set
(i.e., x) RMS should equal to standard deviation. Further,
because the natural distribution of Chl is lognormal (Campbell,
1995), error estimates were also made on the logarithmically
transformed (base 10) data:

log RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP½ðlogðSÞ � logðIÞ�2

n

s

log bias ¼
P½logðSÞ � logðIÞ�

n
ð2Þ

These errors estimates have been used in recent literature to
describe the performance of the ocean color algorithms
(O'Reilly et al., 2000) and to validate SeaWiFS global estimates
of Chl (Gregg & Casey, 2004). Note that after logarithmic
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Fig. 5. Chl from in situ flow-through (solid line), SeaWiFS (+), and MODIS (▵) alon
Most of the S3 and S4 data were collected from waters of <30m depth.
transformation, these errors cannot be expressed as percentage
(Campbell & Feng, 2005).

3. Results and discussion

3.1. Comparison between in situ and satellite data

Fig. 3 and Table 1 show the comparison between in situ Chl
based on discrete sample measurements (locations shown in
Fig. 2a–c) and satellite Chl derived from the composite data/
image for each cruise survey. Overall, both SeaWiFS and
MODIS overestimated Chl by 0.119 to 0.290 in terms of
log_bias, while log_RMS errors were within 0.30–0.45. The
errors are considerably larger before logarithmic transforma-
tion, with RMS errors ranging between 112% and 249% and
bias errors between 69% and 146%. Moreover, Table 1 shows
different regression slopes for the relationship between satellite
and in situ Chl among three cruises, especially between the
slopes in the TWS and in the northern SCS. This implies
dynamic and complex oceanographic conditions at different
time and space scales, as well as some uncertainties in both the
satellite and in situ data sets.

Fig. 4 and Table 2 show that the agreement between in situ
flow-through Chl (locations shown in Fig. 2g–j) and satellite
estimates is better than between the satellite and discrete sample
data (see Fig. 3). Log_RMS errors are within 0.35 under all
circumstances (Table 2). The July 2004 satellite data showed the
highest accuracy, with log_bias<±0.10 except within the 2-
h window. Less bias errors were found for comparisons within
<24h and 48h, where more matching pairs led to more
statistically meaningful results. Similar to the comparison
results from the discrete samples, the percentage RMS errors
are significantly larger, varying between 61% and 106% for the
July cruise. However, except for the 2-h window where large
errors were found because a significant portion of the data
points are from coastal waters (Figs. 2h and 4), the slopes are
close to 1.0, and the intercepts are nearly zero, suggesting that
these RMS errors will not cause significant bias in large-scale
studies.

During the August 2004 cruise in the southern TWS, errors
in both SeaWiFS and MODIS estimates are larger than those
found in July 2004, with log_RMS errors >0.3 and log_bias
errors >0.20, This is likely due to the extensive turbid coastal
waters (depth <30m) encountered (Fig. 2i and j) where most of
300 400

umber

S3 S4

g the ship transect lines S1–S4 during the July and August 2004 cruises (Fig. 2).



Fig. 6. Monthly average Chl from MODIS and SeaWiFS for 2003, and their corresponding differences.
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Fig. 7. SeaWiFS versus MODIS Chl for the whole study area (Fig. 6) for 2003. Color scale indicates the density function (histogram).
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the Chl values are >0.3mg m�3 (Fig. 4). Consequently, Chl was
overestimated (positive bias).

To determine whether the different sensors showed different
spatial features, data extracted along the four cruise transects
(S1 to S4 in Fig. 2; Table 3) were examined (Fig. 5).
Synoptically, SeaWiFS and MODIS Chl data detected nearly
identical patterns along the transect lines. These also agreed
well with in situ measurements. For transects S3 and S4,
satellite Chl estimates were higher than the in situ values
because S3 and S4 are in the southern TWS coastal region
where enhanced colored dissolved organic matter, suspended
sediments loads, and shallow bottom interfered with the satellite
algorithms. This result is consistent with those shown in Fig. 4
and Table 2, i.e., errors in coastal waters are generally larger.

MODIS and SeaWiFS Chl estimates are subject to errors
from atmospheric correction and bio-optical models, which may
partially explain the discrepancies found between satellite and
in situ data. The atmosphere over the TWS is often hazy,
resulting in larger errors than in regions with clearer
atmosphere. The annual mean aerosol optical thickness at
865nm for the entire TWS, derived from SeaWiFS, is about
0.17 (±0.05, n=213days), compared with a typical value of
0.08 for the North Atlantic. Furthermore, the turbid coastal
waters invalidate the near-IR “black pixel” assumption in the
atmospheric correction (Hu et al., 2000; Ruddick et al., 2000;
Siegel et al., 2000). Although an iterative approach is used to
circumvent this difficulty (Arnone et al., 1998; Stumpf et al.,
2003), residual errors are likely due to the deviation of the
particle backscattering spectral shape (a function of particle size
distribution) from that assumed in the model. These errors,
combined with those from the imperfect bio-optical inversion
model for Chl (i.e., blue/green band ratios), propagate and are
magnified in the derived Chl data products. Clearly, more
research is needed to improve algorithms in such areas of turbid
atmosphere and water.

A second source of error is the discrepancy in time and space
between the satellite and in situ sampling coverage. Specifically,
the error is due to (1) time difference and (2) sample size. As we
pointed out earlier, the time difference between satellite and in
situ measurements was relaxed from two hours to several days
to obtain enough matching pairs for statistically meaningful
Table 4
Statistical results of the monthly Chl data from SeaWiFS and MODIS for the entire

Month MODIS (mod) vs. SeaWiFS (swf) [range: 0.05–60mg m�3]

Slope Intercept R n (×105) RMS (%) Bias (%)

January 0.93 �0.03 0.95 7.0 32 3.7
February 0.95 �0.01 0.96 8.4 25 6.0
March 0.96 �0.01 0.95 7.9 40 8.0
April 0.98 �0.03 0.97 8.2 35 �0.7
May 0.85 �0.09 0.94 6.2 41 12
June 0.85 �0.10 0.89 6.0 86 15
July 0.90 �0.04 0.97 8.6 54 13
August 0.92 �0.03 0.96 7.9 40 11
September 0.89 �0.07 0.95 8.3 36 6.5
October 0.94 �0.08 0.96 8.3 29 �5.7
November 0.92 �0.05 0.96 7.5 41 5.9
December 0.90 �0.05 0.93 6.6 40 2.2
comparison. This can create uncertainties in dynamic waters
(Balch et al., 1989; Doerffer & Fischer, 1994; Hu et al., 2003).
In addition, a satellite pixel is about 1km2, while the in situ
sample represents a much smaller distance or a point at the
ship's water intake. Unless the water mass within the 1km2 is
homogeneous, this results in additional uncertainty (Hu et al.,
2004). Indeed, one of the reasons why the errors between
satellite and flow-through data are smaller than between satellite
and discrete-samples is that the time difference is smaller in the
former where a median value of all flow-through data covering
the same pixel was used to compare with the satellite estimate.

The uncertainty of the in situ measurements may be an
additional source of error, especially the uncertainties in the
calibrated flow-through Chl data. The flow-through in vivo
fluorescence was calibrated to Chl using a uniform conversion
factor for the entire region under study. Because of the unknown
yet possible variations in fluorescence efficiency, the conver-
sion factor may differ in different waters (Shang et al., 2004b).
However, variations appeared to be random in space and time
(i.e., there was no systematic error), and thus would unlikely
cause bias errors in large-scale comparisons.

The RMS error specified by the SeaWiFS mission goal was
<35% in Chl estimates for open ocean waters where the optical
properties are dominated by phytoplankton and its direct
degradation products (CDOM and detritus) (Hooker et al.,
1992; McClain et al., 1998), equivalent to about 0.13 after
logarithmic transformation (i.e., log_RMS defined in Eq. (2)).
Despite the findings in Gregg and Casey (2004) where log_RMS
was incorrectly expressed in percentage to lead to the conclusion
that such a goal for the global ocean was generallymet, we found
that such a claim is still premature because log_RMS errors are
much less than the relative (or percentage) RMS errors. Indeed,
most of our log_RMS errors are comparable to those reported in
Gregg and Casey (2004) for most ocean basins, and much less
than those for the Baltic Sea (Darecki & Stramski, 2004), yet our
percentage RMS errors are generally between 60% and 100%
(July 2004 flow-through data). However, considering the
inherent uncertainties in the OC4v4 algorithm itself
(log_RMS∼0.22, O'Reilly et al., 2000), the large dynamic
range (Chl∼0.1–10mg m�3), a large portion of coastal waters
in our study region, and the nearly 1:1 slope and small bias, the
study region for 2003

Median Mean Mode

log_RMS log_bias swf mod swf mod swf mod

0.122 �0.001 0.333 0.352 0.656 0.648 0.143 0.162
0.099 0.014 0.275 0.301 0.474 0.464 0.125 0.121
0.118 0.017 0.193 0.201 0.380 0.397 0.103 0.101
0.102 �0.016 0.137 0.129 0.364 0.368 0.137 0.129
0.138 0.029 0.100 0.110 0.289 0.284 0.080 0.100
0.190 0.014 0.115 0.105 0.354 0.348 0.095 0.095
0.127 0.037 0.100 0.103 0.512 0.480 0.080 0.093
0.125 0.029 0.120 0.130 0.456 0.465 0.110 0.110
0.127 0.009 0.111 0.116 0.384 0.351 0.101 0.106
0.134 �0.043 0.150 0.131 0.513 0.449 0.120 0.111
0.122 0.008 0.140 0.145 0.476 0.456 0.130 0.135
0.153 �0.015 0.340 0.333 0.730 0.668 0.120 0.103
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performance of SeaWiFS and MODIS observations in the study
region may be regarded as satisfactory.

3.2. Comparison between MODIS and SeaWiFS data

MODIS and SeaWiFS Chl data were nearly identical for the
three periods examined along specific transects (Figs. 2 and 5).
A time-series of monthly mean Chl from July 2002 to October
2004 was also examined. During May and June 2003 the gap in
SeaWiFS data is significantly larger than that in MODIS data,
probably due to more cloud cover, and also due to changes in
SeaWiFS tilt angles with time.

Fig. 6 shows that the monthly spatial patterns of SeaWiFS
and MODIS are very similar. Similar spatial patterns occurred
also in 2002 and 2004 (not shown here), and the log differences
appear to be small (within ±0.1) and random in all nearshore
and offshore regions. A quantitative comparison between
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Fig. 8. Monthly average Chl from SeaWiFS (▴) and MODIS (▵) for (a) the TWS (da
1), (c) offshore region (>200m water depth), and (d) the shallow Taiwan bank (<30
used in calculating the monthly mean is also shown in vertical bars for SeaWiFS (d
MODIS and SeaWiFS Chl for the entire study region for
2003 is presented in Fig. 7 and Table 4. On average, about 89%
of pixels have relative differences (in log scale) <0.2, and 65%
of pixels have relative differences (in log scale) <0.1. These are
all smaller than the algorithm “noise” (∼0.22, O'Reilly et al.,
2000). The relative RMS differences are between 25% and 40%
(Table 4) except for a few months where the large difference is
apparently due to different cloud coverage (Fig. 6). More
importantly, there is not significant bias, as indicated in the
slope and intercept values between the two data sets.

Four sub-regions were chosen for further time series
analyses: (a) the TWS, with waters <30m depth excluded; (b)
coastal waters (30–200m); (c) offshore waters (>200m); d) the
Taiwan bank with depths <30m (Fig. 1).

Monthly mean Chl values and the number of valid pixels
used in the mean for these four regions (2002 to 2004) are
shown in Fig. 8. Relative difference (i.e., the x term in Eq. (1))
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between MODIS and SeaWiFS for most months is <±10%. For
the 28 months from July 2002 to October 2004, RMS
differences of the mean Chl are 9.8% (TWS, Fig. 8a), 10.7%
(20–200m coastal region, Fig. 8b), 8.4% (>200m offshore
region, Fig. 8c), and 23.4% (Taiwan bank, Fig. 8d), respec-
tively. The corresponding log_RMS differences are 0.044,
0.049, 0.035, and 0.084, respectively. The large difference for
January 2003 and January 2004 over the Taiwan bank may
simply be due to differences in data gaps between the two
sensors (see gaps in Fig. 6).

Other than in January, the seasonal patterns from MODIS
and SeaWiFS are very similar for all four regions. The offshore
region experiences winter blooms and summer minima.
Interannual variation was observed in the TWS and in the
30–200m coastal waters with more complex hydrological
dynamics. In the TWS, the satellite Chl patterns agreed well
with the in situ observations, except for the high satellite Chl
values seen in winter (e.g., January). Previous studies suggest
that low temperatures in winter may limit phytoplankton growth
in the TWS (Zhang et al., 1997).

While an in-depth, detailed study of the physical forcing
behind these observed patterns is outside the scope of this paper,
the spatial and temporal patterns are consistent with existing
knowledge based on limited historical oceanographic studies.
The summer Chl peak in the TWS is primarily a response to
monsoon-driven upwelling, and its magnitude likely depends
on the monsoon strength. For example, satellite scatterometer
data showed much stronger wind in the TWS in summer 2003
than in summer 2004 (data not shown here), consistent with the
higher Chl peak in summer 2003 than in summer 2004. Overall,
the seasonal patterns observed between MODIS and SeaWiFS
are consistent between sensors.

For most of the months, the number of valid pixels is
comparable between MODIS and SeaWiFS. Further, the
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Fig. 9. Average percentage cloud cover in the Taiwan Strait (a) and number of days us
July 2002 to October 2004.
average percentage cloud cover and the number of satellite
overpasses for the TWS are also comparable between the two
sensors (Fig. 9), indicating that there is no significant aliasing in
calculating the mean (IOCCG, 2004).

To further assess consistency between MODIS and Sea-
WiFS, two arbitrary transect lines were selected in the north and
south of the TWS (Fig. 1), to extract time-series data (Fig. 10).
Even when turbid coastal waters are included (satellite-derived
Chl>4mg m�3) the contour plots suggest similar synoptic and
temporal variability between MODIS and SeaWiFS.

The slight differences between MODIS and SeaWiFS data
(Figs. 6 and 7) are likely due to differences in sensor design,
polarization, band position, overpass time, and band choice in
algorithms. For example, one of the atmospheric correction
bands (750nm) for MODIS avoids the oxygen absorption in
the atmosphere, while the corresponding SeaWiFS band is
centered at 765nm, covering the entire oxygen absorption and
therefore requires more correction. For productive waters,
MODIS uses the 488/551 band ratio in the bio-optical
inversion while SeaWiFS uses the 510/555 band ratio
(O'Reilly et al., 2000).

We recognize that a more rigorous comparison should be
performed on the normalized water-leaving radiance data (nLw)
fromMODIS and SeaWiFS, because Chl is a secondary product
based on nLw, and is derived using a bio-optical inversion
model. However, because most oceanographic researchers are
interested in the Chl data and because Chl is a critical parameter
for biogeochemical studies as well as for characterizing coastal
eutrophication, we focused on comparison of this parameter
between the two sensors. Although other bio-optical models
exist to estimate Chl (e.g., Carder et al., 1999; Maritorena et al.,
2002), the Chl used in this study was derived from a band-ratio
algorithm (OC4V4 for SeaWiFS, OC3M for MODIS, see
O'Reilly et al., 2000) because it is the default data product
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recommended by NASA and also widely available to the
research community.

4. Summary and conclusion

The accuracy and consistency of MODIS and SeaWiFS Chl
(mg m�3) estimates for the Taiwan Strait (TWS) and the northern
South China Sea (SCS) were assessed using in situ measurements
from three cruises during winter and summer 2004. Chl estimates
from SeaWiFS and MODIS were then compared for the time
frame spanning July 2002 to October 2004.

Both SeaWiFS and MODIS Chl data agreed with in situ
measurements, with log_RMS errors (i.e., data transformed in
log space) of 0.35 or less for the range of 0.1–10mg m�3. Slight
log_bias errors (up to 0.20) were noted in observations from
both sensors for most regions. For coastal regions, where Chl
values were >1mg m�3 (July and August 2004 cruises), the
log_RMS errors were within 0.35, but log_bias was 0.20–0.30.
The corresponding relative RMS and bias errors are much
larger, ranging between 60% and 170% and between 0% and
100%, respectively, with errors in coastal waters generally
larger than those in the open ocean. These errors may be due to
artifacts in satellite data processing algorithms, uncertainties in
the in situ measurements, differences in satellite and in situ
sampling size and time. However, no significant systematic
error was found in the satellite-derived Chl products, as
indicated by the nearly 1:1 slope and near-zero intercept
between the satellite and in situ data sets for most regions.
Further, similar major spatial and temporal distribution patterns
were observed by both sensors.
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The difference between MODIS and SeaWiFS Chl data is
smaller than between satellite and in situ data. The relative
differences between the two data sets are generally <±10%
for most months. The log_RMS differences in the monthly
means between July 2002 and October 2004 from both these
sensors for several sub-regions within the study area are less
than 0.05 except for the shallow (<30m) Taiwan bank
(∼0.08). The corresponding percentage RMS differences are
slightly larger, but are <11% for most sub-regions and <24%
for the Taiwan bank. The seasonal patterns observed by the
two sensors (as well as the statistical results of median, mean,
mode) are very similar. In addition, the seasonal patterns of
Chl variation for the TWS, for example high Chl in summer
owing to upwelling, agree well with those from historical in
situ measurements.

Time-series analysis from two arbitrarily selected cross-shelf
transect lines showed similar results between the MODIS and
SeaWiFS data sets. The slight differences are likely due to
different sensor design and processing algorithms, and also
possibly due to the time differences between the satellite
overpasses (∼2h). On average, cloud-free coverage is compa-
rable between the two sensors, therefore will not create biases
during data composition.

In conclusion, except in most shallow (<30m), coastal
waters, both MODIS and SeaWiFS retrieved Chl to within
0.35 uncertainty (in log-transformed Chl). Although the
relative RMS errors are significantly larger (∼60% for open
ocean waters to 170% for coastal waters), these estimates are
comparable to those found for other global regions and are
not significantly larger than the uncertainties in the algorithm
used to derive the satellite data product. Further, there is no
large systematic error or significant bias in either satellite data
set, and MODIS and SeaWiFS Chl are very similar in their
absolute values as well as in the spatial patterns. It is
therefore possible to use MODIS Chl data in the TWS and its
adjacent waters with confidence in the absence of SeaWiFS
data.
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