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Abstract:

Distribution of dimethylsulfide (DMS) and/or particulate dimethylsulfoniopropionate (DMSPp)

concentrations in the Jiaozhou Bay, Zhifu Bay and East China Sea were investigated during the period of
1994 - 1998. Both DMS and DMSPp levels showed remarkable temporal and spatial variations. High values
occurred in the coastal or shelf waters and low values in the offshore waters. The highest levels were
observed in spring or summer and fowest in autumn. DMS or DMSPp distribution patterns were associated
with water mass on a large geographical scale, while biclogical and chemical factors were more likely
influential on smaller-scale variations. Diatoms could play an important role in total DMS or DMSPp abun-
dance in coastal waters. Nitrate was found to have a two-phase relationship with DMSPp concentrations:
positive when nitrate concentration was lower than 1 umol/L, and negative when it was above. Anthropogenic
factors such as sewage input and aquaculture also showed influences on DMS or DMSPp concentration.
Key words: dimethylsulfide (DMS); particulate dimethyisulfoniopropionate (DMSPp); nitrogen; diatoms;

Chinese seas

Dimethylsulfide (DMS) is a sulfur-containing trace gas,
whose precursor, dimethylsulfoniopropionate (DMSPp), is
produced principally by marine phytoplankton (Malin et
al, 1992; Zimmer-Faust et al, 1996; Gage ef al, 1997) and
considered to be involved in cell osmotic reguiation (Grone
and Kirst, 1991). DMSPp contributes most of the sulfur
fluxes and substaintial portion of the carbon fluxes (Simé er
al, 2002), and marine DMS emission is an important source
of cloud condensation nuclei and thus may provide a nega-
tive feedback to global warming through the effect of clouds
on the earth’s radiative balance (Turner and Liss, 1983;
Andreae, 1990; Grone and Kirst, 1992; Ganor et al, 2000). It
has drawn much attention from oceanographers over the
past decade, and many studies have addressed the distri-
bution DMS and DMSPp and the processes controlling
their dynamics in the world oceans (Turner et al, 1988; Leck
et al, 1990; Turner et al, 1996; Simé and Pedros- Alio, 1999;
Kiene and Linn, 2000). These literature indicate that the
DMS distribution varies markedly both spatially and
temporally, and that the mechanisms responsible are often
situation-specific. Therefore, field data from a variety of
marine ecosystems are desired for a better understanding
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of DMS production processes and the role of marine DMS
in global climate change.

The East China Sea (ECS), the Yellow Sea (YS) and the
Bohai Sea (BS) are located on the west margin of the North
Pacific. The continental shelf in this region is wide and there
is large freshwater input (9.73 X 10" m%a) from two big
rivers, the Yangtze and the Yellow Rivers (Gao et al, 1992).
Ecological interest has been focused on these seas because
of their diverse environmental conditions. However, there
have been no documentation on DMSPp in these areas, and
field studies on DMS are only two cases in the ECS (Uzuka
et al, 1996; Yang et al, 1996). In terms of the factors control-
ling dynamics of DMS, Uzuka et al (1996) reported some
fairly good correlations between DMS and chlorophyll a
(Chl a) in the ECS, suggesting that nutrients could be an
important factor in controlling DMS dynamics via regulat-
ing biological activities especially in summer. The variations
in DMS concentration have been supposed to be correlated
with the distribution of phytoplankton, light-dependent rates
of photosynthesis , decomposition by bacteria, photochemi-
cal oxidation, the rate of volatilization to the atmosphere and
ocean current (Yang et al, 1996) . However, data supporting
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the theory are still rare, further field investigations are de-
sired especially for the western Pacific marginal seas.

In the present study, we report the results of ecological
surveys in the ECS; the Jiaozhou Bay (JZB), a waterbody
adjacent to the YS; and the Zhifu Bay (ZFB), a neritic area
of the BS. The purpose was to understand the factors con-
trolling the dynamics of dissolved DMS and particulate
DMSPp in these waters characterized by varied water
masses as well as pressures of aquaculture and other an-
thropogenic disturbances. In particular, we examined the
roles of diatoms, the most dominant phytoplankton taxa, in
DMS and DMSPp dynamics in these coastal waters. Previ-
ous studies have proved that the prymnesiophyte Phaeocystis
pouchetii, the coccolithophores Emiliania huxleyi and the
dinoflagellates Gymnodinium and Katodium are important
DMS/DMSPp-producers (Turner et al, 1988; Keller, 1989;
Matrai and Keller, 1993; DiTullio and Smith, 1995; Townsend
and Keller, 1996). Diatoms have not been shown to be
strong producers although they might play an important
role in DMS/DMSPp production in coastal waters (Keller,

1989; Baummann et al, 1994). We also examined the “nitro-
gen deficiency effect” suggested by previous ecological
and physiological experiments (Tumer et al, 1988; Gréne
and Kirst, 1992; Kiene and Gerard, 1995) using a nutrient
gradient between coastal and oceanic waters.

1 Investigation Sites and Sampling

In the ECS (Fig.1), DMSPp was investigated during the
Chinese Joint Global Ocean Flux Studies (JGOFS) cruise in
April of 1994, along three transects (Transects 2, 4, and 5)
and two additional sites (Station (St.) 3108, 3306). Transect
2 was along a branch of the Kuroshio Current in the north-
eastern region of the sea. Transect 4 was from the Yangtze
River estuary across the shelf water to the southeastern
edge of the ECS in the Kuroshio Current. Transect 5 was in
the southern region of the ECS from the coast to its south-
eastern edge. Three water zones were included in the in-
vestigation areas: the coastal zone, less than 50 m in depth
(St. 403, 404, 501); the shelf zone, 50 to 200 m (St. 406414,
503-510 and 3108); and the offshore zone, 700 to 1 000 m
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Fig.1.

Investigation sites and distribution of dimethylsulfide (DMS) (gray) and dimethylsufoniopropionate (DMSPp) (black)

concentrations. DMSPp in the East China Sea (ECS) are averages within the euphotic zone, April 1994. DMSPp and DMS in the
Jiaozhou Bay (JZB) and the Zhifu Bay (ZFB) are averages of the overall data during 1994—1998. The approximate locations of the
Kuroshio Current (right) and the Taiwan Current (Left) are indicated by shaded arrows. DMS, dimethylsulfide; DMSPp, dimethylsul

foniopropionate.
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(Transect 2 and St. 418, 3306). Samples for DMSPp and
Chl a were taken from all the stations at 3 to 5 depths within
the euphotic zone (defined as 1% of surface irradiation),
which ranged in depth from around 15 m in the estuarine
areas to about 50 m in the Kuroshio area. Samples for nutri-
ents were only taken at Transect 2 and 4 at the same depths.

The JZB is a semi-closed bay adjacent to the YS, with an
area of 39 000 hectares and a mean depth of 7 m. Surrounded
by the cities of Qingdao, Jiaozhou and Jiaonan, it has been
impacted by human activities. Nine stations inside the bay
(St.1-9) and one station outside the mouth of the bay (St.
10) in the western edge of the YS (Fig.2a) were sampled in
February, August and November 1995 for DMS and
DMSPp, and March, May and September 1997 for DMS
only. Parallel samples were also taken for Chl a and nutrients.
Samples were collected at 2 to 3 m depths from the surface
to about 3 m above the seabed (down to 37 m). In addition,
monthly surface water sampling for DMS, DMSPp and
Chl a was done by ships-of-opportunity across the mouth
of the bay from September 1996 to September 1997 (Fig.2a).

The ZFB is located on the southern edge of the BS
along the Yantai City coast. It is a typical neritic aquacul-
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Fig.2. Sampling locations in the Jiaozhou Bay (a) and the Zhifu
Bay (b).

ture area in North China. During the study period, there
was active and widespread cultivation of Clamys farreri,
Mylitus edulis, and Laminaria japonica around St. 4, 6, 8
and 9. Sampling was carried out at 12 stations in May,
August, November 1997 and March 1998 in the surface,
middle and bottom layers (down to 20 m in depth) for DMS,
Chl a and nutrients (Fig.2b).

2 Materials and Methods

Ten L Niskin bottles were used for field sampling. For
DMS measurements, aliquots of 60 mL seawater were col-
lected in polyethylene bottles without headspace and stored
at =30 °C. Samples were analyzed as soon as possible
(within the sampling day) to reduce storage artifacts. No
prior filtration was applied for DMS analysis to avoid er-
rors by DMS release via cell lysis during filtration (Turner
et al, 1988). DMS and DMSPp were measured following the
“Headspace-GC” procedures described by Wang and Jiao
(1996). For seawater DMS measurement, a modified 50 mL
syringe sealed with a silicon rubber lid padded with Teflon
membrane was employed as a gas-liquid equalizer. Ten mL
seawater sample added with 4 g NaCl (to reduce the solu-
bility of DMS in water), and 10 mL clean air (1:1, liquid:gas
ratio) were taken into the equalizer and kept at 40 “C (water
bath) for 15 min to enable dissolved DMS into the
headspace and subsequent equilibration. One to three mL
headspace gas from the equalizer was injected into a gas
chromatograph (GC-9A Shimadzu) equipped with a flame
photometric detector and analyzed ina 1.6 m X 3.2 mm
glass column filled with 60- to 80-mesh chromosorb under
the following conditions: column temperature, 80 °C; injec-
tor temperature and detector temperature, 150 °C; carrier
gas (N,) flow rate, 60 mL/min; and air and hydrogen flow
rates, 60 mL/min. The detection limit was 0.3 nmol/L DMS.
Relative error and relative standard deviation were below
6%.

For DMSPp, immediately after sampling, water samples
(500 mL) were filtered (Whatman GF/F) under a vacuum of
less than 0.03 MPa, and stored at —30 ‘C until laboratory
analysis. Filtered samples were then suspended in 12 mL
vials containing 2 mL 10 mol/L NaOH and screw-capped
with a silicon-teflon septum. The vials were kept in the dark
with rotation at 50 C for more than 6 h to allow breakdown
of DMSPp and its product DMS to be trapped in the
headspace. One to three mL of the headspace gas was taken
for measurement. Accuracy was tested by analyzing six
replicate filtration samples from the same water sample.
Relative standard deviation was 5%.

Phytoplankton samples for taxonomic examination were
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preserved with Lugol’s solution. Identification and enu-
meration of net-sized phytoplankton (> 20 um) were done
by microscopy.

Water samples (100—500 mL) were filtered (Whatman
GF/F) for Chl a analysis. Chl a was determined using a
Turner Design Model 10 fluorometer according to the
method of Parsons et al (1984).

Nitrate, ammonia, and phosphate were analyzed using a
Skalar San and Plus Auto-Analyzer following the JGOFS
protocols (SCOR,1996).

3 Results

3.1 Distribution of DMS and DMSPp

DMSPp concentration showed a remarkable geographic
variation with the highest value of 94.12 nmol/L in the
coastal water of the JZB and the lowest, 0.45 nmol/L, in the
oceanic water of the Kuroshio Current in the ECS (Fig.1).

Within the ECS, however, the highest DMSPp values
were not in the estuary and coastal waters (e.g. St. 404—
501), but in the shelf waters (e.g. St. 410—503) and the eddy

Table 1
and offshore waters of the East China Sea

area (St. 3108). There was an increasing trend from south to
north in DMSPp along the Kuroshio Current direction (St.
414/418 — St. 3306 — St. 205 — St. 203 — St. 201) and a
decreasing trend from the central shelf water (St. 410) in
both inshore and offshore directions along Transect 4. With
respect to water depth, DMSPp concentration was in the
following order: shelf water > offshore water > coastal wa-
ter (Table 1). When classified by trophic level, the me-
sotrophic shelf waters (St. 406 to 411) ranked No.1 in terms
of DMSPp concentration, followed by the mesotrophic
offshore waters (St. 201 to 205). The eutrophic coastal wa-
ters (St. 403, 404) with abundant nutrients (nitrate in the
surface water was up to 25 pumol/L) ranked the third in
DMSPp concentration, slightly higher than that in olig-
otrophic oceanic waters (St. 414, 418) where nitrate con-
centration was less than 0.1 pmol/L (Table 2). (Transect 5
was not counted due to lack of nutrient data).

DMS concentration in the study areas also showed re-
markable spatial and temporal variations. In the JZB, it
ranged from less than 0.5 nmol/L in November 1995 to more

Concentrations of dimethylsufoniopropionate (DMSPp) and Chlorophyll a (Chl a) and their ratios (Mean + SD) for coastal, shelf

Water types in terms of depth DMSPp (nmol/L) Chl a (pg/L) DMSPp/Chl a
Coastal water (<50 m) 1.26 £ 0.28 0.55 = 0.28 2.69 = 1.28
Shelf water (50-200 m) 2.06 = 1.37 0.98 £ 0.76 3.29 + 3.49
Offshore water (700—1 100 m) 1.66 + 0.86 0.30 = 0.19 5.61 = 3.33

Table 2 Concentrations of dimethylsufoniopropionate (DMSPp) and Chlorophyll a (Chl a) and their ratios (Mean +SD) in different water

masses of the East China Sea in terms of trophic level*

Water types in terms

. DMSPp (nmol/L) Chi a (ug/L) DMSPp/Chl a NO/ N (pmol/L) DIN (umol/L)
of trophic level ’

Eutrophic coastal water 1.12 + 0.44 0.45 + 0.20 2.91 + 1.40 16.1 £ 6.1 16.4 £ 7.0
(St. 403, 404)

Eu-Mesotrophic shelf water 2.05 = 1.58 1.13 £ 0.85 2.25 £2.20 32+24 3725
(St. 406-411)

Mesotrophic offshore water 1.98 + 0.56 0.40 £ 0.23 6.69 + 3.31 0.38 = 0.08 0.45 £ 0.11
(St. 201-205)

Oligotrophic oceanic water 0.58 = 0.26 0.16 = 0.06 4.17 £ 3.16 0.09 + 0.06 0.18 + 0.07

(St. 414, 418)

* Transect 5 was not included because of lack of nutrient data; DIN, total inorganic nitrogen (INO, ] + [NO,7] + [NH,']).

Table 3 Concentrations of dimethylsulfide (DMS), dimethylsufoniopropionate (DMSPp), Chlorophylla a (Chl a) (Mean + SD) and the

most abundant netphytoplankton species in the Jiaozhou Bay*

Sampling

The most abundant

period DMS (nmol/L) DMSPp (nmol/L) Chl a (pg/L) DMS/ Chl a DMSPp/ Chl a species of netplankon
Feb. 1995 9.1 5.7
Aug. 1995 16.5 £ 174 232+£9.2
Nov. 1995 0602 220+ 5.5
Mar. 1997 3.6+ 1.6 54+28 1.5+2.0 8.1 +20.1 16.3 + 46.2 Chaetoceros compressus
C. densus
May 1997 16.7 + 3.1 549 = 11.7 2.1+09 10.2 + 8.0 33.1 £ 22.0 Nitzschia pungens
Sept. 1997 1.3+ 1.8 14 +£0.5 1.5+ 0.6 Rhizosolenia fragilissima

* data averaged over all sampling stations
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Table 4 Dimethylsulfide (DMS), Chlorophylla (Chl a) and the most dominant species of netphytoplankton (Mean + SD) in Zhifu Bay*

Most abundant

Sampling period DMS (nmol/L) Chl a (ug/L) DMS/Chl a species of
netplankton

May 1997 14.4 + 12.4 3426 39+ 1.7 Chaetoceros compressus

Aug. 1997 8.2 %38 1.5+ 1.0 7.1+64 Skeletonema costatum

Nov. 1997 4.8 = 20.2 0.67 = 0.43 6.7+79 S. costatum

Mar. 1998 6.7 £3.2 0.74 £ 0.75 12.5+99 S. costatum

*  data averaged over all sampling stations

than 52.6 nmol/L in August 1995, with an overall average
value of 6.0 nmol/L (overall surface average 6.6 nmol/L)
during the study period (Table 3). In the ZFB, DMS con-
centration varied from 1.4 nmol/L in November 1997 to
more than 40 nmol/L in May 1997, the overall average of
8.4 nmol/L (overall surface average 8.7 nmol/L) (Table 4).
The annual mean level of surface DMS in the aguaculture
bay ZFB ((8.7110.52) nmol/L) was little higher than that
in the JZB ((7.58 % 6.68) nmol/L). The dramatic fluctua-
tions of DMS concentration showed a clear seasonal
pattern. In both coastal waters, it was lowest in autumn and
highest in either spring or summer.

3.2 Factors affecting DMS and DMSPp levels

3.2.1 Biological factors In general, there was a positive
relationship between the concentrations of Chl a and DMS
or DMSPp. For instance, the Chl a level in the two bays
was higher than that in the ECS. Within the ECS, Chl a was
higher in the shelf waters than in the Kuroshio areas. Lev-
els of DMSPp followed the same distribution pattern.
Seasonally, DMS and Chl a followed the same trend as in
the ZFB (Table 4). There were also similar but weaker trends
for DMS, DMSPp and Chl a on an annual cycle at a fixed
observation site in the JZB (Fig.3a). Moreover, there was a
correlation between DMSPp and Chl a (= 0.368 7) in the
ECS (Fig.3b), which became more significant ("= 0.605 8)
when only the data associated with nitrate level lower than
1 umol/L. were employed (Fig.3c).

DMS or DMSPp concentration as a function of Chl a
varied temporally (JZB and ZFB, Tables 3, 4) and spatially
(ECS, Tables 1, 2). Differences in species composition could
be one of the factors responsible for such variations. For
instance, in the JZB, although there was no significant cor-
relation between DMS or DMSPp and Chl a for the overall
data (Fig.4a), some significant correlations were found
between DMS and Chl a when particular species were con-
sidered (Fig.4, b, ¢). It appeared that Chaetoceros
compressus and Rhizosolenia fragilissima contributed re-
markably to the DMS concentration of the time, while
Chaetoceros densus and Pseudo ~Nitzschia. pungens were
not (Fig.4, d, e). This can also be seen from the horizontal

distribution in March 1997 when there were two most abun-
dant species, C. compressus and C. census prevailing in
the northeast and southwest of the bay. Higher DMS con-
centrations were associated with the abundancy of C.
compressus compared with C. densus (Fig.5a). In September
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Fig.3. Relationships between DMS or DMSPp and Chl a. a.
Annual variations in DMS, DMSPp and Chl a at the fixed inves-
tigation site of the JZB. b. DMSPp as a function of Chl a for all
data from the ECS. e¢. DMSPp as a function of Chl a for data
where nitrate was less than 1 ym in the ECS. Abbreviations are
the same as in Fig.1.
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was most abundant (32.0%-53.8%). Abbreviations are the same as in Fig.1.

1997, R. fragilissima and Skeletonema costatum were the
most abundant species in the bay. Higher DMS concentra-
tions were linked to R. fragilissima rather than S. costatum
(Fig.5b).

In the ZFB May 1997, there was a spring bloom where
C. compressus was the most abundant species. During the
bloom, DMS and Chl a concentrations reached their peaks
of (14.4 + 12.4) nmoVl/L (surface mean (14.03 £ 13.12)) and
(3.4 + 2.6) pg/L., respectively (Table 4). There was also a
close correlation between DMS and Chl a in the bloom
period (Fig.6a). Furthermore, their horizontal distributions
also followed the same pattern (Fig.6, b, ¢). It can be seen
that DMS concentration could be very high during an algal
bloom, even though the DMSPp/Chl a ratio was lower than
the other seasons (Table 4).

3.2.2 Chemical factors

DMS and DMSPp were not found to be related to physi-
cal parameters such as temperature or salinity in our study
areas (data not shown). Statistical analysis also showed no
significant correlation between DMS or DMSPp and total
nitrogen, ammonia and phosphate. For nitrate, the major
component of nitrogen here, however, we found some in-
teresting relationships with DMSPp. In the ECS, nitrate was
not correlated with DMSPp when all data were considered.
However, a significant positive correlation between nitrate
and DMSPp was observed when nitrate concentration was
lower than 1 umol/L (Fig.7a). Also, there was roughly an
inverse trend between the two when nitrate concentration
was higher than 1 pmol/L (Fig.7b). There were close cor-
relations between nitrate and Chl a (Fig.7c) and between
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Fig.5. Distribution of dimethylsulfide (DMS) (nmol) and domi-
nant phytoplankton species in surface waters of the Jiazhou Bay
(JZB). a. March 1997, hatched area with low DMS concentration
was dominated by Chaetoceros densus; crossed area with higher
DMS concentration was dominated by Chaetoceros compressus.
b. September 1997, hatched area with low DMS concentration
was dominated by Skeletonema costatum, crossed area with higher
DMS concentration was dominated by Rhizosolenia fragilissima.

Chl a and DMSPp (Fig.3c) when nitrate levels were lower
than 1 pmol/L.

To test the effects of nitrate on cellular DMSPp
production, we employed the ratio of DMSPp to Chl a and
found a decreasing trend in this ratio with increasing ni-
trate concentrations for all the data from the ECS. When
the data from the estuarine area (St. 403, 404), where
nitrogen was very abundant (up to > 25 umol/L), and those
from the rest of the sea were analyzed separately, sig-
nificant inverse correlations were found between
DMSPp/Chl a and nitrate for both groups ( y =4.33-0.11 x,
r’=0.698 0 and y=4.5lexp (-0.27 x), »=0.4519,
respectively. There y is the DMSPp/Chl a and x is the
NO,-N).

3.2.3 Anthropogenic factors
Some general trends in the distribution of DMS or

DMSPp appeared to be associated with human activities.
The DMSPp/Chl a ratio in the JZB was far higher than that
in the ECS. Although this can, to some extent, be attributed
to temporal and species-composition differences, many ef-
fects from the land surrounding this semi-closed bay could
also play a role in controlling DMSPp production. In the
JZB, the harbor areas (St. 6—8; with mean DMS of
10.17 nmol/L, 11.79 nmoV/L, 13.92 nmoV/L, respectively), as
well as the major sewage outlet of Qingdao City and the
aquaculture area (St.3, mean DMS was 7.17 nmol/L) often
ranked the first to third in terms of surface DMS concentra-
tion among the 10 investigation stations. In contrast, St. 9,
situated at the mouth of the JZB and with the deepest water
(39 m) and high current velocity, had the lowest DMS lev-
els on almost all occasions. Other stations, including St. 5
at the center of the JZB and St.10 located outside the bay
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Fig.6. Relationship between dimethylsulfide (DMS) and Chl a
during a bloom dominated by Chaetoceros compressus and
Chaetoceros densus in the Zhifu Bay (ZFB), May 1997. a. Cor-
relation between DMS and Chl a. b, ¢. Surface distribution of
DMS (nmol/L) and Chl a (ug/L), respectively.
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had a high frequency to have moderate DMS concentra-
tions (Fig.8a). A similar situation was observed in the ZFB,
where St.1 near the sewage outlet of Yantai City was al-
ways ranked No.1 in terms of DMS level (14.38 nmol/L), the
aquaculture areas (St. 4, 6 and 9) also associated with high
DMS abundance, except for St. 8 which is the nearest to the
inlet of the gulf current from offshore (Fig.8b).

4 Discussion

4.1 Distribution pattern
There have been two previous studies on DMS
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Fig.8. Frequency distribution of the investigation stations ranked
in descending order in terms of dimethylsulfide (DMS)
concentration. a. Jiazhou Bay (JZB). b. Zhifu Bay.

distribution in the ECS by Yang et al (1996) and Uzuka et al
(1996). Compared with the DMS distribution pattern by
Uzuka et al (1996) at their only transect, PN transect, which
is almost identical to our Transect 4, the locations of the
maximum DMSPp site (St.410) and the lowest DMSPp site
(St.414) in the present study were almost identical to those
(St.7 and St.4 of PN transect respectively) of DMS concen-
tration in their February cruise 1993 (which is closest to our
investigation time). The geographical distribution pattern
of DMSPp by present study was partially agreed with that
of DMS by Yang et al (1996) in October 1993 and 1994, both
DMS and DMSPp concentrations were high in the shelf
water, and relative low in the Kuroshio area. But the DMS
was lowest in the northeastern sea by Yang et al (1996)
where DMSPp was relatively high in this study. This
inconsistency could be due to spatial (sampling locations)
and temporal differences between the two investigations.
Yet, the differences in the nature of dynamics of DMS and
DMSPp could be one of the primary reasons. First, biologi-
cal factors affect both DMSP and DMS pools in two oppo-
site directions: phytoplankton production adds to the
DMSPp pool (Vairavamurthy et al, 1985); bacterial and phy-
toplanktonic DMSPp-lyase cleave DMSPp into DMS de-
creasing the DMSPp pool and increasing the DMS pool
(Laroche et al, 1999); zooplankton grazing accelerates the
exudation of DMSPp from phytoplankton cells increasing
the production of DMS (Dacey and Wakeham, 1986; Cantin
et al, 1996); bacteria can also take up DMS/DMSPp as
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carbon and sulfur resource reducing the DMS/DMSPp pool
(s) (Kiene et al, 2000). Secondly, physical activities such as
mixing, volatilization may also cause uncoupling of DMSPp
and DMS in the field.

Previous studies have shown remarkable spatial and
temporal variations in the distribution of DMSPp and DMS
(Leck et al, 1990; DiTullio and Smith, 1995). DMS concen-
trations underwent dramatic seasonal variations in both
the JZB and the ZFB, with the lowest levels in November
and the highest either in spring or summer. This seasonal
pattern was consistent with those of other temperate areas
(Leck er al, 1990; Turner et al, 1996). The recorded concen-
trations in the JZB and the ZFB were within the reported
range in non-oceanic waters (Leck et al, 1990; Turner et al,
1996; Uzuka et al, 1996) and higher than those in oceanic
waters (Dacey et al, 1998; Jones et al,1998) .

4.2 Factors affecting DMS/DMSPp levels

Although DMS and DMSPp are ultimately from algae
(mainly phytoplankton, except for some shallow coastal
waters where macroalgae might also be important), it is

uncommon to obtain a significant correlation between the
concentration of DMS or DMSPp and a biomass indicator
such as Chl a (Leck et al, 1990; Wolfe er al, 1994; Kwint
and Kramer, 1996; Townsend and Keller, 1996; Simé et al,
1997; Kettle et al, 1999) because DMSPp production is spe-
cies-specific and DMS production is controlled by extra-
cellular processes involving the entire planktonic commu-
nity (Simé et al, 1997), such as zooplankton grazing (Leck
et al, 1990; Christaki et al, 1996; Wolfe et al, 1997; Jones et
al,1998) , microbial activity (Kiene and Bates, 1990; Kiene,
1992; Wolfe et al, 1994; Zimmer-Faust et al, 1996; Jones et
al, 1998), and the release of algal lysis upon senescence or
cell breakage (Wolfe et al, 1994). We also realized, in the
present study, that DMS and DMSPp concentrations can
be very uncoupled. There was a big gap between concen-
trations of DMSPp ((22.0+5.5) nmol/L) and DMS ((0.6 £
0.2) nmol/L) in the JZB in November of 1995 (Table 3). In
addition to the above reasons raised by previous
investigators, the very low concentration of DMS in this
study could be due to high rate of volatilization to the
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atmosphere by strong wind in this season as well as the
time lag between DMSPp and DMS peaks (Schultes et al,
2000). Whereas, when species composition was taken into
account, significant correlations were found between DMS
concentration and Chl a. Nevertheless, the taxa well known
to produce high levels of DMS, prymnesiophytes (especially
Phaeocystis pouchetii) (DiTullio and Smith, 1995; Stefels
etal, 1995; Turner et al, 1995; Kwint and Kramer, 1996) and
dinoflagellates (Townsend and Keller, 1996; Jones et al,
1998) were not dominant species in the study areas. On the
other hand, the typical coastal diatom taxa were dominat-
ing in biomass basin-wide and year-round. The DMS/Chl a
ratios in the JZB and the ZFB were lower than that for
Phaeocystis pounchetii, which produces high levels of
DMS (58-78 nmol/L/ug), and were similar to that of other
diatom-dominated environments (2—12 nmol/L/ug)
(DiTullio and Smith, 1995). Although diatoms are usually
considered to be poor DMS producers (Keller 1989; Stefels
et al, 1995; Jones et al, 1998), there have been a few studies
suggesting that the contribution of diatoms to the DMS
budget in the water column could not be overlooked
(DiTullio and Smith 1995; Levasseur et al, 1996). The sig-
nificant correlations between DMS and Chl a in the ZFB
and the JZB indicated that although diatoms are not rich in
terms of cellular DMSPp content, they may play an impor-
tant role in total DMS production in coastal waters.

The DMS/Chl a ratio together with species composition
analysis may indicate the source of DMS from different
species. In the present study, when diatoms are the main
contributors of DMS, as indicated by the significant corre-
lation between DMS and Chl a in samples dominated by a
diatom species (Figs.4, b, c, 6), relative low DMS/Chl a ra-
tios were found (Tables 3, 4) being consistent with the re-
sults of previous studies (DiTullio and Smith, 1995). On the
contrary, in the JZB, May of 1997, when both Chl a and
DMS reached their annual peaks (Table 3), and there was
no significant correlation between DMS and Chl a (Fig.4d),
the relatively high DMS/Chl a ratio compared to other sea-
sons (Table 3) indicates the existence of some potential
species that might be low in biomass density but very
productive in terms of DMS.

High DMS concentration is usually closely linked to
the presence of phytoplankton blooms (Turner e af, 1995;
Ciglenecki and Cosovic,1996; Kwint and Kramer, 1996) .
Even if DMSPp/Chl a ratio is relatively low, total DMS pro-
duction can be very high due to the huge biomass and the
consequences of biological activities like bacterial consump-
tion (Kwint and Kramer,1996; Kiene et al, 2000) and zoop-
lankton grazing (Leck et af, 1990; Wolfe et af, 1997; Jones

et al, 1998). The bloom in the ZFB, May of 1997 was such
a case: when DMS concentration reached its peak of the
year, DMS/Ch] a ratio was lower than the other seasons
(Table 4).

We only identified phytoplankton in the netplankton-
size category. However, in some cases, nanoplankton and
even picoplankton may be the major contributors to the
total biomass.

Physical factors, such as temperature, salinity and wa-
ter masses have previously been reported to affect DMSPp
or DMS production (Baummann et al, 1994; Jones et al,
1998; Sim6 and Pedros-Alio, 1999). In the ECS, the distribu-
tion of DMSPp showed distinct ecological features associ-
ated with water masses. Except for the effects of nitrogen
on DMSPp production (see below), the unexpectedly high
DMSPp concentration in shelf waters rather than in the
coastal waters seemed to be controlled ultimately by physi-
cal oceanographic factors. For instance, the St. 410, with
the highest DMSPp level and the second highest Chl a
concentration (average Chl a =1.18 pg/L), has been recog-
nized as a highly productive area (Jiao et al, 1998) that is
most likely associated with the interaction of the shelf wa-
ter and the Kuroshio Current (Fig.9). There is a similar situ-
ation at the other site with high DMSPp levels and the
highest Chl a (average Chl a = 1.42 pg/L), St.503, where the
coastal water interacted with the Taiwan Strait Current and
biomass is very high (Xu et al, 1990). The site of lowest
DMSPp concentrations with lowest Chl a, St. 414, was as-
sociated with oceanic conditions of the Kuroshio Current
as seen from the temperature and salinity distribution (Fig.
9). Therefore, it is most likely that DMSPp concentration
was controlled by the physical oceanographic conditions
of the water masses.

The effects of salinity on DMS production have been
observed in laboratory experiments (Vairavamurthy et al,
1985) but not always in the field (Iverson et al, 1989). We
previously showed pronounced influences of salinity on
production of DMSPp of some common coastal species,
Tetraselmis spp., Dunaliella spp. and Chaetoceros
muelleri, in cultures (Li and Jiao, 1999). However, no sig-
nificant correlation between DMS or DMSPp and salinity
was recorded in the field of the present study areas. In
contrast, nitrate seemed to be a factor associated with
DMSPp production, which has been suggested to affect
DMSPp production because DMSPp can be substituted
by glycine betaine as an osmoregulatory substance when
nitrate is relatively abundant (Turner et al, 1988; Grone and
Kirst, 1992; Kiene and Gerard, 1995) though uncertainties
still remain (Keller et al, 1999). Our field data showed
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two-phased relationships between nitrate availability and
DMSPp: positive when nitrate is inadequate (as limiting
nutrient) and negative when nitrate is abundant. In the case
of the ECS, the threshold of nitrate concentration between
the two states was around 1 pmol/L at the study time. Al-
though there could be time lag between nitrate availability
and DMSPp abundance in the field, the two-phased rela-
tionship was distinct across the large geographical scale
and large nutrient gradient.

Anthropogenic eutrophication has been suggested to
enhance DMS production (Berg et al, 1996). Although it is
difficult to obtain any definite relationship between human
activities and DMS production, we frequently found high
DMS concentrations in the sewage outlets, harbor areas
and aquaculture areas. Since the sea has been proven to be
an important source of DMS emission to the atmosphere,
anthropogenic eutrophication in the coastal area may re-
sult in increase of sulfur flux to the air from the sea.
Acknowledgements: We thank Prof. WU Yu-Lin and Prof.
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