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Abstract In order to explore the responses of the
bacterioplankton community to different types of
aquaculture environments, three mariculture ponds
comprised of groupers (Epinephelus diacanthus, ED),
prawns (Penaeus vannamei, PV), and abalone (Hal-
iotis diversicolor supertexta, HDS) in southeast,
coastal China were investigated. The free-living
bacterial diversity was analyzed through the con-
struction of 16S rDNA clone library. A total of 203
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16S rDNA sequences from three clone libraries were
classified into 118 operational taxonomic units
(OTUs), of which 51, 31, and 42 OTUs were
distributed in the ED, PV, and HDS pond, respec-
tively, with Bacteroidetes (30.6%), Actinobacteria
(55.2%), and Cyanobacteria (32.8%) as the dominant
division in the respective ponds. Meanwhile, each
pond occupied some unique OTUs that were affiliated
with uncommon (sub-)phyla, such as candidate OP11
division, Acidobacteria, Deltaproteobacteria, Plan-
ctomycetes, and Verrucomicrobia. Bacterial diversity
in the ED pond was the richest, followed by the HDS
and the PV pond. OTUs of 61.9% and 94.9% have
less than 90% and 97% similarity to their nearest
neighbors in public databases, respectively. All
OTUs were grouped into 67 clusters, covering 11
(sub-)phyla. The OTUs only from single pond
distributed in 53 clusters (79.1%), the OTUs shared
by two ponds were affiliated with 14 clusters (20.9%),
and none of clusters was formed by the OTUs which
commonly originated from the three pond libraries,
suggesting that the composition of bacterial popula-
tions in these ponds were significantly different.
These results indicate that the aquatic environment
created by different mariculture animals may foster
very special and complex bacterial communities.
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Introduction

With the rapid expansion of mariculture in coastal
areas throughout the world, various ponds and
enclosures used in mariculture are changing the
coastal environments. The ecological consequences
of mariculture have become an important research
area (La Rosa et al., 2002; Feng et al., 2004). Due to
increased nutrient loads, especially organic and
inorganic phosphorus and nitrogen that sometimes
induce eutrophication, mariculture has a profound
impact on the biogeochemistry of the water column
and sediment in mariculture zones (Qian et al., 2001;
Souchu et al., 2001; La Rosa et al., 2002; Mantza-
vrakos et al., 2007; Sara, 2007). However, up to now,
information on the impact of mariculture on the
bacterial community composition in the water col-
umn is scant, except for studies concerned with the
effects on bacterial physiological characteristics
(Caruso et al., 2003) and density (Pitta et al., 20006).

Bacterial communities play a significant role in
carbon and nutrient cycling of aquatic ecosystems.
Aquatic bacteria redistribute dissolved organic mat-
ter, increase nutrient availability, and affect many
other ecological processes (Gonzalez et al., 2000;
Cotner & Biddanda, 2002). At the same time, these
bacteria are sensitive to changes in environmental
conditions. Their community structure and diversity
vary with food sources, substrate availability, and
other biochemical parameters. Based on previous
comparative analysis focusing on bacterial commu-
nities in lakes (Haukka et al., 2006) and controlled
mesocosm experiments in seawater (Schifer et al.,
2001; Carlson et al., 2002; @vreas et al., 2003),
certain taxa of bacteria out-compete other species
under the prevailing specific physical and environ-
mental conditions. The factors that determine bacte-
rial composition in aquaculture are likely to include
cultured animal species, culture methods, feed com-
position, fecal excretion habits, and feeding tech-
niques. Amongst other factors, fish, shrimp, and
shellfish culture lead to different bacterial co-habi-
tants. For example, a comparative study of fish
farming and non-farming environments demonstrated
that the bacteria in fish-farm sediments are predom-
inantly Gram-negative, while the bacteria in the non-
farming reference site of the same study are largely
Gram-positive (Vezzulli et al., 2002). It is known that
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there are specific bacterial populations associated
with cultured shrimps, scallop larvae, and halibut
(Lau et al., 2002; Sandaa et al., 2003; Jensen et al.,
2004). Therefore it is likely that there will be
differences in bacterial community structure for
ponds farming with different mariculture animal
species. In addition, previous reports selected culture
ponds from different locations, thus, the bacterial
communities investigated are under the influence of
both culture and environmental conditions. Investi-
gations of bacterial communities in the same geolog-
ical locations but with different aquaculture species
have not previously been carried out. This informa-
tion is important to understand the establishment of a
bacterial community and its environmental impacts,
and to shed light on the consequences of mariculture
on ecosystems, and the intricate interactions between
the bacteria and cultured animals.

This study was designed to investigate the effects
of different mariculture species on the composition of
bacterial communities in three adjacent ponds where
grouper, prawn, and abalone, respectively, have been
farmed for over 5 years. We aim to reveal whether
there are differences in marine planktonic bacterial
composition after their long-time adaptation in these
ponds. Various physicochemical parameters, e.g.,
nutrients, chlorophyll a, and bacterial abundance
were measured to examine relationships between
bacterial composition and environmental variables in
each mariculture pond.

Materials and methods
Sample collection

All the three mariculture ponds are located in the
Dongshan mariculture zone, north of Dongshan Island
in the southeast coastal region of China (23°45’ N,
117°22' E; southwest of the Taiwan Strait) (Fig. 1).
Each pond is approximately 100 m long, 85 m wide
with a mean depth of 1.5 m. The dominant ocean
current around the ponds is via Dongshan Bay which
belongs to the southeast coastal water system of China.
This region has over 5 years of commercial marine
culture history, including groupers (Epinephelus
diacanthus, ED), prawns (Penaeus vannamel, PV),
and abalones (Haliotis diversicolor supertexta, HDS).
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Fig. 1 Location of study area and sampling site

Food for groupers is composed of fish powder (60%),
corn powder (15%), fish oil (5%), and the other
remaining fraction is made up of vitamins, ash, and
pigments. The feed for prawns and abalone are dry fish
and streptomycin (final concentration 2 ppm), and
phytoplankton (Gracilaria), respectively.

Triplicate samples of surface water were collected
from an approximate depth of 30 cm at each pond on
October 12, 2004. Samples were collected in poly-
carbonate bottles which had been rinsed in acid once,
in distilled water three times, and autoclaved. Sam-
ples were returned immediately to the lab and kept in
the dark until analysis.

Bacterial counts and water quality parameters

Water for microscopic counts of bacterial abundance
was preserved with buffered formaldehyde (2%).
Cells were stained with 4',6'-diamidino-2-phenylin-
dole (DAPI, 1 pg ml~' final concentration) for
10 min, and filtered onto black 0.2 pm-pore-size
polycarbonate membrane filters, then analyzed by
epifluorescence microscopy. At least 200 cells or a
minimum of ten fields of view were counted.

Water quality parameters that were measured
include pH, salinity, chlorophyll @, and nutrients’
concentrations (ammonium, inorganic nitrogen, and
inorganic phosphorus). The pH and salinity of the

water samples were measured in situ with portable
meters during sampling. Samples for chlorophyll a
analysis were filtered onto 0.7-pum pore-size duplicate
glass fiber filters (GF/F, Whatman) and frozen.
Chlorophyll a was extracted with 96% ethanol and
quantified spectrophotometrically following a pub-
lished protocol (Jespersen & Christoffersen, 1987).
Ammonium, inorganic nitrogen, and inorganic phos-
phorus concentrations, and chemical oxygen demand
(COD) were measured using standard methods
(National Oceanographic Bureau in China, 1999).

DNA extraction

Approximately 31 of water samples for DNA
extraction were pre-filtered through a nylon mesh
(100-um pore size). Samples were subsequently
filtered onto a 0.22-pum pore size nylon filter (Gelman
Sciences Inc). Filter samples were immediately
frozen in liquid nitrogen and stored at —80°C until
extraction. DNA extraction was performed according
to the methods of Fuhrman et al. (1988) and Massana
et al. (1997) with minor modifications. In brief, the
filters were cut into pieces by a sterilized scissors, and
put into a 15-ml centrifuge tube, vortexed with 2.0 ml
of lysis buffer (40 mM EDTA, 50 mM Tris—HCI,
0.75 M sucrose), and incubated at —80°C for 15 min,
and transferred to a 37°C incubation bath for 6 min.
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Then, an additional 2.0 ml of lysis buffer with
lysozyme (1.0 mg ml~") was added. Samples were
then incubated at 37°C for 30 min. Proteinase K
(02 mgml™") and 1% of sodium dodecyl sulfate
were added, followed by incubation at 55°C for 2 h.
The lysate recovered by centrifugation was poured
into a sterile 15-ml centrifuge tube, and 1.5 ml of
10.5 M ammonium acetate plus 10 ml of ice-cold
100% ethanol on ice were added to precipitate the
DNA at —20°C for 2 h. The DNA pellets were rinsed
once with phenol-chloroform—isoamyl alcohol
(25:24:1), once with chloroform—isoamyl alcohol
(24:1), and twice with pre-chilled 70% ethanol. The
pellets were dried under vacuum, gently suspended in
40 pl of TE buffer (10 mM Tris, 1 mM EDTA, pH
7.4), and stored at —20°C. DNA quality was checked
by electrophoresis on 1% agarose gel.

PCR amplification

The 16S rDNA gene fragments for the clone library
were amplified using the following primers: 27F
(5-AGAGTTTGATCCTGGCTCAG-3') and 1492R
(5-GGTTACCTTGTTACGACTT-3"). The PCR
conditions included an initial denaturation at 94°C
for 3 min, followed by 20 cycles of 94°C for 1 min,
annealing at 55°C for 1 min, and extension at 72°C for
3 min, a final extension at 72°C for 7 min. PCR
products were separated in a 1.2% agarose gel, purified
by Agarose Gel DNA Purification Kit Ver.2.0.
(TaKaRa Inc., Dalian, China), and quantified using
a Biophotometer spectrophotometer (Eppendorf,
Germany) at 260 nm.

Construction and sequencing of 16S rDNA clone
library

The purified PCR products were ligated into the
pMD-18T vector (TaKaRa Inc., Dalian, China)
according to the manufacturer’s protocol. The ligated
mixtures were transformed into Escherichia coli
DHS5a competent cells (TaKaRa Inc., Dalian, China),
and plated onto LB agar plates containing ampicillin.
White colonies were picked randomly. Positive
clones were identified based on expected sizes (ca.
1400 bp) on 1.2% agarose gel.

A total of 226 clones were sequenced with an ABI
3700 sequencer (Applied Biosystems, USA) using the
27F primer. These clones generated 600-900 bp
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readable sequences. Nine of the sequences were
ambiguous, and six of the sequences belonged to
chloroplasts and were discarded. The remaining
sequences were analyzed by the CHIMERA_CHECK
program (version 2.7) from the Ribosomal Database
Project IT (RDP II; http://rdp.cme.msu.edu/). Eight of
these clones were identified as likely chimeric
sequences and were removed from subsequent anal-
ysis. For phylogenetic analyses, the remaining 203
cloned sequences were grouped into different OTUs
in each library based on similarity of more than 97%.
In order to assess the clone libraries, several
statistical indexes are calculated. Coverage, derived
from the equation Coverage = 1 — (N/Individuals),
where N is the number of clones that occurred only
once and Individuals is the number of total positive
clones screened out in each library; the Chaol richness
estimator (Chao, 1984); the reciprocal Simpson index
(S) was calculated to take both the abundance and the
richness of OTUs into account (Hill et al., 2003):
S=1DandD = > [n;(n; — 1)/N(N — 1)], where n;
is the number of clones in the ith OTU and N is the total
number of clones in the sample; Shannon index, is a
measure of the structural diversity of the microbial
community and was calculated from the number and
relative abundance of OTUs in the libraries (Odum,
1971). In order to determine if these libraries are
significantly different from one another, LIBSHUFF
analysis was performed (http://schloss.micro.umass.
edu/software/slibshuff; Schloss et al., 2004).

Phylogenetic analysis

The processed sequences identified as above were
used to estimate the degree of similarity to other 16S
rDNA sequences in GenBank and to select reference
sequences using BLASTN. Alignments of the
sequences, together with the most similar references
were calculated using CLUSTAL_X 1.8 (Thompson
et al., 1997). The multiple alignments were inspected
manually to remove the regions containing many
gaps before phylogenetic analysis. Phylogenetic
relationships were inferred by a neighbour-joining
method with a Jukes-Cantor distance correction
(Kuhner & Felsenstein, 1994). The trees were
constructed using the MEGA4.0 package (Molecular
Evolutionary Genetics Analysis, Version 4.0, avail-
able at http://www.megasoftware.net), with bootstrap
analysis (500 replicates) (Tamura et al., 2007).
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Nucleotide sequence accession numbers

The 16S rDNA sequences described in this study
were deposited into GenBank under the accession
numbers EU283111-EU283317.

Results

Chlorophyll a, nutrient concentrations,
and bacterial abundance in the three ponds

The general indicators of water quality were analyzed
from all the three ponds. Chlorophyll a, COD, nutrients
(ammonium, inorganic nitrogen, and inorganic phos-
phorus), pH, and salinity are shown in Table 1. The
chlorophyll a concentration in the PV pond was the
highest (9.14 pg 17') and the lowest in the HDS pond
(1.22 pug 171). Similarly, the PV pond had the highest
COD concentration and the HDS pond had the lowest;
however, the difference in COD between the ED and
the PV pond was less significant than that of chloro-
phyll a. The maximum concentrations of ammonium
and inorganic nitrogen were in the HDS pond. The
maximum concentrations of inorganic nitrogen and
inorganic phosphorus were in the ED pond, while the
minimum concentrations of ammonium, inorganic
nitrogen, and inorganic phosphorus occurred in the
PV pond (Table 1). These data suggested that the
trophic level was the highest in the PV pond, followed
by the ED and HDS ponds. Abalones in the HDS pond

Table 1 Water chemical and biological parameters in the
three mariculture ponds

ED PV HDS

pond pond pond
Chlorophyll a (ug 17" 6.38 9.14 1.22
COD (mg 17" 2.37 248 0.25
NH;3-N (mg 17") 0.024 0.021 0.049
Inorganic nitrogen (mg 17" 0.077 0.050 0.208
Inorganic phosphorus (mg 17" 0.068 0.004 0.024
Salinity (%o) 28.7 28.4 29.6
pH 8.42 8.40 8.2
Temperature (°C) 24.7 24.6 24.5
Bacterial abundance 1.11 2.0 2.89

(x107 cells ml™1)

were fed with big algae, such as Gracilaria verrucosa.
Other algae in the pond can also be consumed by
abalones and, therefore, chlorophyll a concentration in
this pond is much lower than the other two ponds
though there were more available nitrate and phos-
phates. Since the HDS pond was not added with
artificial feed, the organic matter in this pond is low
relative to the other two ponds and therefore, COD was
accordingly low (Table 1). As expected, the salinity,
pH, and temperature did not display significant differ-
ences among the three ponds (Table 1). Total numbers
of bacteria in the three ponds were obtained by
counting DAPI-stained cells. The bacterial abundance
varied with 2.86 x 107 cells ml~" in the HDS pond,
2.0 x 10" ml™"in the PV pond, and 1.11 x 10" m]1™"
in the ED pond (Table 1). No significant differences
were observed on the bacterial abundance among the
three ponds.

Bacterial community composition
and distribution

In order to reveal the detailed distribution and
composition of the bacterial communities, the 16S
rDNA was amplified by PCR with a set of bacterial
general primers, and the PCR products were cloned
into a sequencing vector. A total of 226 clones (81
from the grouper pond, 74 from the prawn pond, and
71 from the abalone pond) were randomly selected
and sequenced. After sequence alignment and
BLAST search, a total of 203 valid sequences (72
from the ED pond, 67 from the PV pond, and 64 from
the HDS pond) (Table 2) were identified and grouped
into 118 OTUs. Three common OTUs appeared in the
ED and PV ponds, two in the ED and HDS ponds,
and one in the PV and HDS ponds. None was present
in all three ponds. The remaining 118 OTUs were
unique to a single pond, suggesting that large
differences in bacterial community composition
existed among the three ponds.

The taxonomic grouping and the relative abun-
dances of the above libraries for each pond are given
in Table 2. Most clones identified belonged to the
divisions of Bacteroidetes, Proteobacteria, Actino-
bacteria, Cyanobacteria, or Firmicutes. However, the
libraries differed markedly at the phylum and
subphylum levels. The clones representing the high-
est number or percentage of the ED, PV, and HDS
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Table 2 Statistical analysis of clones distribution

Phylum No. of clones Frequencies (%)

ED pond PV pond HDS pond ED pond PV pond HDS pond
Actinobacteria 10 37 2 13.9 55.2 3.0
Bacteroidetes 22 1 6 30.6 1.5 9.4
Alphaproteobacteria 20 7 19 27.8 10.4 29.7
Gammaproteobacteria 2 4 8 2.8 6.0 12.5
Cyanobacteria 15 17 21 20.8 254 32.8
Firmicutes 0 0 6 0 0 9.4
Planctomycetes 2 0 0 2.8 0 0
Deltaproteobacteria 1 0 0 1.4 0 0
Verrucomicrobia 0 1 0 0 1.5 0
Candidate division OP11 0 0 1 0 0 1.6
Acidobacteria 0 0 1 0 0 1.6
Total 72 67 64

pond library were affiliated with Bacteroidetes
(30.6%), Actinobacteria (55.2%), and Cyanobacteria
(32.8%), respectively. In comparison to the high
percentage of Bacterioidetes in the ED pond, only
1.5% and 9.4% of the clones in the PV and HDS
ponds, respectively, were Bacteroidetes. Similarly,
only 13.9% and 12.5% of the clones from ED and
HDS ponds, respectively were Actinobacteria,
whereas only 20.8% and 25.4% of the clones
obtained from ED pond and PV pond, respectively,
were Cyanobacteria.

Clones affiliated with Alphaproteobacteria were
least abundant in the PV pond and clones affiliated
with Gammaproteobacteria were least abundant in
the ED pond. In addition, several clones were found
exclusively in one of the ponds. For example, clones
affiliated with Deltaproteobacteria and Planctomy-
cetes were found only in the ED pond, Verrucomi-
crobia only in the PV pond; and OP11, Firmicutes
and Acidobacteria were only found in the HDS pond
(Table 2).

Table 3 Statistical analysis of the clone libraries

Richness, evenness, and diversity of bacterial
communities

The richness and diversity of the bacterial commu-
nities were calculated using Chaol estimate and
reciprocal Simpson index. The Chaol estimate, used
to predict the total number of OTUs (richness)
showed that the richness of species was the highest
in the ED pond and the lowest in the PV pond
(Table 3). The reciprocal Simpson index ranged from
8.6 to 69.1 (Table 3). Once again, the PV pond had
the lowest value. Also, compared to other aquatic
systems, the reciprocal Simpson index was high in
the ED and HDS ponds (Table 3), suggesting an even
distribution of species in these two ponds. The
bacterial diversities within the main divisions were
different among the three mariculture ponds. The
greatest diversity was found in Bacteroidetes and
Alphaproteobacteria of the ED pond, Actinobacteria
and Gammaproteobacteria of the PV pond, and
Cyanobacteria of the HDS pond (Table 4).

Chaol OTUs Total clones Reciprocal Shannon Coverage
estimate detected analyzed Simpson index index
ED pond 141.2 51 72 69.1 3.78 0.57
PV pond 86.2 31 67 8.6 2.81 0.79
HDS 110.7 41 64 53.0 3.57 0.60

pond
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Table 4 Comparison of the diversity of bacterial sequences
from the three ponds based on sequence divergence

ED pond PV pond HDS pond
Actinobacteria 0.0721 0.0793 0.0011
Bacteroidetes 0.1793 - 0.1435
Alphaproteobacteria 0.2775 0.1437 0.1318
Gammaproteobacteria ~ 0.1716 0.1943 0.1789
Cyanobacteria 0.1315 0.0724 0.2525

Clone library analysis

Different patterns of diversity in clone libraries were
displayed using coverage curves (Fig. 2). Based on
the coverage curves, the ED and HDS libraries were
similar but more diverse than the PV library, similar
to the results of the Shannon index based on the
analyses of clone libraries (Table 3). Based on the
LIBSHUFF analysis, these libraries were signifi-
cantly different from each other (P-values < 0.001).
In addition, in a pair-wise comparison, the Delta-C
values along the evolutionary distance (<0.3) were
much higher than the values predicted for coverage
curves (P = 0.05) (Fig. 3), indicating a low overlap
between any two libraries.

Phylogenetic analysis
The distribution of the bacteria in the three ponds was

analyzed by phylogenetic analysis. Thirty-two OTUs
affiliated with the Alphaproteobacteria could be

60

—0— ED pond
sol [—&— PVpond
—$— HDS pond

Number of OTUs observed

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Mumber of sequences sampled

Fig. 2 Rarefaction curves generated for 16S rDNA gene
sequences in clone libraries

assigned to 18 clusters (Fig. 4A). Out of these 32,
the alpha-a, c, h, and k clusters were the only groups
containing OTUs from the ED pond. The three
clusters contained sequences from seawater or coastal
water. Interestingly, a relative of Loktanella isolate
(Rhodobacteraceae) was found in the alpha-h cluster
which has been shown previously to be able to grow
on marine agar (Ivanova et al., 2005). Alpha-b, e, f,
and m-r clusters contained OTUs retrieved only from
the HDS pond. In the alpha-q cluster, a sequence
(GenBank accession no. FJ203135) originating from
black band diseased coral tissues was found. Alpha-j
cluster with OTUs from the ED and PV ponds
contained a sequence affiliated with Roseobactera-
ceae; whereas another cluster alpha-g containing
clones from the ED and PV pond clustered with a
sequence affiliated with Erythrobacteraceae. The
majority of clusters, including OTUs shared by each
two ponds (ED and HDS, ED and PV, or PV and
HDS ponds), consisted of sequences from different
environments (seawater, salt marsh, and coastal
sediment).

Thirteen OTUs associated with the Gammaprote-
obacteria fell into seven clusters (Fig. 4B). Gamma-c
and -a clusters with OTUs only from the HDS pond
contained sequences retrieved from seawater and
asphalt, respectively. A cloned sequence in gamma-c
cluster was distantly related (91% identity) to the
sequence of a clone obtained from gills of Bankia
setacea (Sipe et al., 2000), whereas gamma-d cluster
containing OTUs only from the PV pond included a
sequence from soil.

The OTUs belonging to the Actinobacteria were
grouped into seven clusters in this study (Fig. 4C),
with the exception of act-a cluster containing one
OTU from the HDS pond and act-b and d containing
one OTU from the PV pond, all other clusters
consisted of the OTUs shared by the ED and PV
pond. OTUs from the PV pond occurred mainly in
these clusters. However, none of the clusters con-
sisted of OTUs from all the three ponds. The cluster
containing OTUs from only the ED pond was not
found. In addition, some clusters included species
from a wide range of environments. For example,
clusters act-c and act-f, and act-g included sequences
from seawater and coastal water; act-e contained a
sequence from brackish pond; act-b contained a
sequence from sponge tissue, and act-a contained a
sequence from grassland soil.
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A total of 23 OTUs (mainly from the ED pond)
affiliated with Bacteroidetes were grouped into 18
clusters (Fig. 4D). Fourteen of them (bac-a to e and k
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to m, bac-h, i, and o) contained the OTUs only from
the ED pond. Bac-o cluster was characterized by
sequences affiliated with one Flexibacteraceae
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bacterium obtained from a marine dinoflagellate (H.
circularisquama) and from coastal waters. Bac-m
cluster was represented by a sequence affiliated with
the family Flavobacteriaceae, from an isolate iden-
tified as UST030701-295, which was first isolated
from the surface of a sponge and is able to grow on
marine agar (Lau et al., 2005). Bac-o had a sequence
from the same family but was isolated from marine
sediment (Khan et al., 2007). Bac-h and -i clusters
contained sequences closely related to the environ-
mental clones retrieved from mangrove soil, coastal
water, and coral tissues. In addition, bac-f and j, and
bac-n clusters contained OTUs only from the HDS

ﬁ- ‘Uncullured bacterium clone SHFGS537 (FJ203135) q o
L Uncultured aFg_lha protecbactenium clone BBD_216 07 (DQ446102)
Unculluled odobacteraceae bacterium clone MD2.45 (FJ403094)

Uncutture bacterium clone SGUSE56 (FJ202127)

and PV pond, respectively. They harbored sequences
from bacteria of seawaters. The OTUs shared by the
ED and HDS pond formed one cluster, bac-g,
characterized by sequences found in coastal water
bacteria.

Twenty-eight OTUs belonging to Cyanobacteria
fell into 11 clusters. The OTUs shared by the HDS
and PV ponds formed two clusters, cya-a and cya-b.
The former contained a sequence clustered with
strain RS9916 that belonged to the family Chroo-
coccales from seawater; the latter included some
sequences of the same family but from lakes and
estuaries. Four OTUs from the ED pond and four
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from the HDS pond formed the cya-k cluster, which
included clones closely related to the environmental
sequences from salt marsh sediment. The OTUs
originating only from the ED pond were grouped into
three clusters (cya-e, h, and i) which were character-
ized by sequences of uncultured organisms from lake
water, soils, and salt marsh. The OTUs only from the
HDS pond grouped into clusters cya-f, g, and j, which
were characterized by the environmental sequences
from aquatic systems (Fig. 4E).
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Finally, phylogenetic analysis showed that one of
the three remaining OTUs only from the ED pond
was affiliated with Deltaproteobactera; the other two
were assigned to Planctomycetes whose representa-
tive clones matched Schlesner 664 from compost
heap and Schlesner 130 from seawater. Two OTUs
that were distantly related (86% to 91% identity) to
Acidobacteria and OP11, respectively, and one OTU
belonging to Firmicutes was retrieved only from the
HDS pond. However, one OTU that was ascribed to
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Fig. 4 continued
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Verrucomicrobia was only found in the PV pond
(Fig. 4F).

Discussion

Previous studies have demonstrated that different
cultured animals in mariculture have significant
impact on aquatic environments (Qian et al., 2001;
La Rosa et al., 2002; Vezzulli et al., 2002). It is well
known that microbial communities may respond to
the changes in substrate supply by either physiolog-
ical adaptation or alterations in the community
composition. Our results show that there are large
differences in bacterial compositions in the three
mariculture ponds, and the differences in the water
samples were primarily associated with the distribu-
tions of the different phylotypes.
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EDP-6 (2

*Uncultured Bacteroidetes bacterium clone T32 67 (DQ436738)
Uncultured CFB group bacterium clone AEGEAN_179 (AF406541)
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EDP-128 (2

Gilvbacter sp. MOLA 433 (AMS30700)

In this study, the clone libraries from the ED, PV,
and HDS pond were dominated by the heterotrophic
bacterial sequences affiliated with Bacteroidetes,
Actinobacteria, and Alphaproteobacteria, respec-
tively (Table 2). The difference in the distribution
of dominant phyla might be explained by the
differences in animal feed for the three mariculture
animals. The leftover feed for ED was mainly
comprised of fish and corn powders, which could
be decomposed to complex organic polymers and
high molecular weight dissolved organic matter
(DOM). Some members of Bacteroidetes are known
to play an important role in the degradation and
consumption of this material (Cottrell & Kirchman,
2000; Kirchman, 2002). The phyla Bacteroidetes is
dominated by anaerobes which are commonly mem-
bers of gut microflora (Humayoun et al., 2003). In
contrast, HDS pond was fed with Gracilaria, which
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Fig. 5 Statistical analysis of OTUs distribution based on their

similarity values (C) of their nearest neighbors in GenBank

was predominantly converted to low molecular
weight DOM. As a result, Alphaproteobacteria which
utilize DOM could more efficiently dominate the
bacterial population (Kirchman, 2002). It should be
noted that the feed for PV contained antibiotics,
which may have a major impact on the microbes and
might select against some specific bacteria. It was
reported that there are bacteria resistant to antibiotics
present in large quantities in maricultures (Smith
et al., 1994). When all the 118 OTUs from the three
ponds are pooled for analysis, the dominant phyla are
Alphaproteobacteria (27.1%), Bacteroidetes (18.6%),

taxonomic affiliation (A), and the source environments (B), or

Actinobacteria (14.4%), and Gammaproteobacteria
(11%) (Fig. 5A), indicating that they are likely the
most successful bacterial groups in mariculture
environments.

It is very interesting to note that certain OTUs
were associated with specific animals (see Table 5).
In the ED pond library, one OTU (EDP-58) affiliated
with the Alphaproteobacteria was 94% identical to a
clone retrieved from the gut of gnotobiotic zebrafish
(Rawls et al., 2004); another OTU (EDP-95) affiliated
with Alphaproteobacteria shared 96% identity to a
clone retrieved from abdominal setal tuft of
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Table 5 continued

1

%

Cultured type strain

Affiliation The closest neighbors in GenBank
Uncultured

OTU Clone

Springer

97

97 Rhizobium undicola (DQ648579)

94 ND
97 ND
91 ND
93 ND
94 ND

Lake water

(EU980287)

Clone mdc61a08 (AY537800)

Clone TH_h39

Clone TH_h39

Alp.

EDP-15, EDP-86

EDP-58

113.

Zebrafish gut
Lake water

Alp.

114.

(EU980287)

Clone B30 (EU360295)

Alp.

EDP-121
EDP-24

115.

Deep sea sediment

Pla.

116.

Permafrost

Clone EurlBac48 (DQ445012)

Clone 2_D12

Pla.

EDP-127

117.

Spain coast

(EU600679)

Ver.

PVP-136

118.

EDP, Epinephelus diacanthus pond; PVP, Penaeus vannamei pond; HDSP, Haliotis diversicolor supertexta pond; Act., Actinobacteria; Cya., Cyanobacteria; Fir., Firmicutes;

Bac., Bacteroidetes; OP11, a candidate division; Del., Deltaproteobacteria; Aci., Acidobacteria; Gam., Gammaproteobacteria; Alp., Alphaproteobacteria; Pla., Planctomycetes;

Ver., Verrucomicrobia

ND no significant results obtained (similarity <90), NA not available

Thalassinidea (described in GenBank, accession No.
DQ890445). In the HDS pond library, one OTU
(HDSP-79) was distantly related to a Gammaprote-
obacteria that came from the gills of Bankia setacea
(Sipe et al., 2000); another OTU (HDSP-28) affiliated
with Cyanobacteria was 99% identical to a clone
from coral diseased tissues. The nearest neighbor of
both the OTU EDP-19 from the ED pond and the
OTU PVP-146 from the PV pond was an uncultured
bacterium associated with Decapoda. These findings
indicate that some unique bacterial compositions
might be created by different mariculture animals but
no definite identifications have been made. In total,
21% of the OTUs in this study have closest neighbors
from marine animals, slightly less than those from
coastal seas (22%) and more than those from open
seas (19.5%) (Table 5; Fig. 5B).

Dramatic differences in diversity existed in the
three ponds. Relative to other reported aquatic
environments, e.g., a shallow hypertrophic freshwater
lake in China (Wu et al., 2007), the diversities of
species in the ED and HDS pond library were quite
high, while the diversity in the PV libraries was much
lower, as indicated by the Chaol estimate (Table 3).
Within the three ponds, taxa divergence was exten-
sive. The ED and HDS pond library contained 34 and
28 clusters, respectively; in contrast, the PV pond
library contained only 19 clusters. This discrepancy
was also reflected in rarefaction analysis. A likely
explanation for this discrepancy was that water
environments of the ED and HDS pond were more
complex than that of the PV pond, and the complexity
of environmental conditions may determine the
microbial composition (Horner-Devine et al., 2004).

Phylogenetic analysis showed that most clusters
from the three pond libraries, except for EDP-51,
EDP-65, and EDP-110 which are affiliated with
Bacteroidetes, have previously been found in other
environments, suggesting that the bacterial composi-
tion in mariculture ponds of this study has few novel
bacterial groups. It also differed significantly from
marine coastal waters that had been studied previ-
ously (Hollibaugh et al., 2000), which confirms the
great impact by mariculture on planktonic bacterial
communities. However, in general, bacteria in mari-
culture ponds are diverse, covering 11 phyla or
subphyla (Fig. 5A). OTUs of 61.9% and 94.9% have
less than 90% and 97% similarity to their nearest
neighbors in public databases, respectively (Fig. 5C),



Hydrobiologia (2009) 632:107-126

125

indicating that most species in these mariculture
ponds are novel and remain to be identified.

Conclusion

The comparative analysis of the three mariculture
ponds revealed that the structures and diversity of the
bacterial communities in these ponds were signifi-
cantly different. The bacterial population in a mari-
culture pond might be characterized by abiotic and
biotic features of the aquatic ecosystems, which are
influenced by stock feed, faecal excretion of the
mariculture animals, and a range of other factors. Our
study might provide a useful indicator and new
information for environmental assessment of mari-
culture ponds, and help to better understand microbial
ecology in them.
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