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Abstract.

 

Photosynthetic performance was examined in 

 

Skeletonema costatum

 

 (Greville) Cleve. under 12:12-h
light:dark (LD) cycle at ambient CO

 

2

 

 (350 

 

µ

 

L L

 

–1

 

) and elevated CO

 

2

 

 (1000 

 

µ

 

L L

 

–1

 

). At ambient CO

 

2

 

, the cellular
chlorophyll a content, the light-saturated photosynthetic rate (

 

P

 

m

 

), the initial slope of the light saturation curves (

 

α

 

),
the photochemical efficiency of PSII (

 

F

 

v

 

/

 

F

 

m

 

), the apparent carboxylating efficiency (ACE) and the photosynthetic
affinity for CO

 

2

 

 [1/

 

K

 

m

 

(CO

 

2

 

)] all showed rhythmical changes with different amplitudes during the light period. The

 

P

 

m

 

 had similar changing pattern in the light period with the ACE and 1/

 

K

 

m

 

(CO

 

2

 

) rather than with the 

 

α

 

 and 

 

F

 

v

 

/

 

F

 

m

 

,
indicating that rhythmical changes of photosynthetic capacity may be mainly controlled by the activity of
C-reduction associated with CO

 

2

 

 uptake during the light period. The CO

 

2

 

 enrichment reduced the ACE and the
affinity to CO

 

2

 

, and increased the 

 

α

 

, cellular chlorophyll a content and 

 

P

 

m

 

 based on cell number. By contrast, the
changing patterns of all photosynthetic parameters examined here during the light period had almost the same for
cells grown at ambient CO

 

2

 

 and elevated CO

 

2

 

, suggesting that the photosynthetic rhythms of 

 

S. costatum

 

 are not
affected by CO

 

2

 

 enrichment.
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: apparent carboxylating efficiency, efficiency of the light reaction, photochemical efficiency of PSII,
photosynthetic capacity, photosynthetic CO

 

2

 

 affinity.

 

Introduction

 

Human activities and fossil-fuel burning have led to consid-
erable anthropogenic emissions of carbon dioxide (CO

 

2

 

). It
has been predicted that the atmospheric CO

 

2

 

 concentration
in the end of this century will be 2–3 times that of the
present, which may trigger global warming (Wigley and
Raper 1992). It is important to assess the physiological and
ecological impact of CO

 

2

 

 enrichment on photosynthesis and
growth of aquatic plants (Bowes 1993; Beardall and
Giordano 2002). Impacts of CO

 

2

 

 enrichment on the photo-
synthetic characteristics have been widely studied in algae.
The light-saturated rate of photosynthesis is not affected by
CO

 

2

 

 enrichment in many marine macroalgae (Beer and
Koch 1996; Beardall 

 

et al

 

. 1998) and in some marine
microalgae (Muñoz and Merrett 1989; Raven 1997), but
most marine embryophytes (i.e. seagrasses) benefit from
atmospheric CO

 

2

 

 enrichment (Beer and Koch 1996;
Beardall 

 

et al

 

. 1998). The photosynthetic affinity for CO

 

2

 

and carbonic anhydrase activity in many microalgae
declines with CO

 

2

 

 enrichment (Bowes 1993; Matsuda 

 

et al

 

.
2002; Colman 

 

et al

 

. 2002). The photochemical efficiency of
PSII increases with the increasing CO

 

2

 

 in 

 

Chlamydomonas
reinhardtii

 

 (Spalding 

 

et al

 

. 1984).
Marine diatoms, a group of unicellular photosynthetic

eukaryotes, are responsible for approximately 40% of
marine primary productivity. Considerable research has
been carried out on effect of CO

 

2

 

 enrichment on the growth
and photosynthesis of marine diatoms (Colman and
Rotatore 1995; Raven and Falkowski 1999; Lane and Morel

 

et al

 

. 2000; Burkhardt 

 

et al

 

. 2001; Morel 

 

et al

 

. 2002).

 

Skeletonema costatum

 

 is a unicellular marine diatom that is
widely distributed in coastal waters all over the world and
constitutes a major component of natural assemblages of
most marine phytoplankton. The effects of CO

 

2

 

 enrichment
on diel variation of their growth and photosynthesis have
rarely been studied. In this paper, response of diel variation

 

Abbreviations used: ACE, apparent carboxylating efficiency; CCM, inorganic carbon concentrating mechanisms; DIC, dissolved inorganic carbon;
LD, light:dark; 

 

P

 

m

 

, light-saturated photosynthetic rate.
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of photosynthesis during the cell cycle of 

 

S. costatum

 

 to CO

 

2

 

enrichment is investigated, which is beneficial to improving
our capacity to estimate its gross daily productivity under
elevated CO

 

2

 

.
Diurnal periodicity in photosynthesis has been widely

documented to existence in many algae (Senger and Bishop
1967; Sournia 1974; Winter and Brandt 1986; Garczarek

 

et al

 

. 2001). The photosynthetic capacity of synchronously
grown cells of algae is strongly modulated during the cell
cycle, the observed results show the presence of various
mechanisms of controlling the photosynthetic capacity
during the cell cycle. For example, the C-reduction system
has been shown to be the rate-limited step in synchronized
cultures of 

 

Euglena gracilis

 

 (Walther and Edmunds 1973).
Mishkind 

 

et al

 

. (1979) showed that the rhythmical variations
in photosynthetic activity during the cell cycle of 

 

Ulva

 

 may
be modulated by the reoxidation of the plastoquinone pool
by the donor for PSI. In addition, the phosphorylation of
thylakoid membrane proteins in green algae 

 

Scenedesmus
obliquas

 

 (Heil and Senger 1986) and 

 

Chlamydomonas
reinhardtii

 

 (Marcus 

 

et al

 

. 1986) was considered to be
correlated with variations of their photosynthetic activity.
The experiments presented here also examine the possible
mechanism of controlling photosynthetic capacity during
the cell cycle of 

 

S. costatum

 

.

 

Materials and methods

 

Skeletonema costatum

 

 (Greville) Cleve. (strain 2042) was obtained from
the Institute of Oceangraphy, the Chinese Academy of Sciences. Cultures
were grown at 20°C and 200 

 

µ

 

mol m

 

–2

 

 s

 

–1

 

 with a12 h light/12 hours dark
cycle (12:12 LD cycle) in filtered seawater, which was enriched with
3.0 m

 

M

 

 KNO

 

3

 

, 0.1 m

 

M

 

 Na

 

2

 

HPO

 

4

 

, 70 

 

µ

 

M

 

 NaSiO

 

3

 

, 1.0 

 

µ

 

M

 

 FeSO

 

4

 

 and
25 

 

µ

 

M

 

 EDTANa. Cultures were aerated with air containing approxi-
mately 350 or 1000 

 

µ

 

L L

 

–1

 

ppm CO

 

2

 

. The medium pH ranged from 8.1 to
8.4 and from 7.7 to 7.9 at 350 and 1000 

 

µ

 

L L

 

–1

 

 CO

 

2

 

, respectively. Cell
density was controlled within a range of 0.5 

 

×

 

 10

 

8

 

–3 

 

×

 

 10

 

8

 

 cells L

 

–1

 

 by
dilution every day at the beginning and the end of illumination. Cells at
the mid-exponential phase were harvested for the experiments.

Photosynthetic oxygen evolution was measured with a Clark-type
oxygen electrode (YSI 5300, YSI incorporated, Yellow Springs, OH).
Cells were harvested at the defined time, and were washed and re-
suspended in filtered seawater buffered with 20 m

 

M

 

 Tris–HCl at pH 8.2
and transferred to electrode chamber and incubated in 5 mL buffer at
20°C.

Photosynthetic parameters for light saturation curves were analysed
according to Jassby and Platt (1976):

where 

 

I

 

 is for irradiance; 

 

P

 

, for net photosynthetic rate at a given
irradiance; 

 

P

 

m

 

, for light-saturated photosynthesis rate; 

 

α

 

, for the initial
slope of light saturation curve; 

 

R

 

d

 

, for dark respiration. The hyperbolic
tangent equation has been shown to give the best fit to field data for
coastal assemblages among the various formulations of the light
saturation curves (Jassby and Platt 1976; Platt and Jassby 1976), our
results showed that it has also good fit to our data.

To determine the dissolved inorganic carbon (DIC)-dependent
oxygen evolution, ‘CO

 

2

 

’-free seawater (pH 8.2) was prepared
according to Gao 

 

et al

 

. (1993). Cells were allowed to photosynthesize

to deplete possible intracellular pool of ‘CO

 

2

 

’ until no net O

 

2

 

 evolution
was observed. Following the addition of NaHCO

 

3

 

 solutions, the rates
of oxygen evolution were measured at 400 

 

µ

 

mol m

 

–2

 

 s

 

–1

 

 at 20°C. The

 

K

 

m

 

 DIC or CO

 

2

 

 values (the DIC or CO

 

2

 

 concentration required to
produce half-maximal photosynthetic rate) were determined according
to Michaelis–Menten formula. The apparent carboxylating efficiency
(ACE) of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase)
was estimated from the initial slope of the DIC-dependent
photosynthetic oxygen evolution curves.

Photochemical efficiency of PSII (

 

F

 

v

 

/

 

F

 

m

 

) was measured by using a
Plant Efficiency Analyzer (PEA, Hansatech instruments Ltd, Pentney,
UK). Cells were sampled at defining time intervals, and after
acclimation to dark for 10 min tested for 

 

F

 

v /Fm.
Chlorophyll a concentration was determined by the spectro-

photometric method according to Jeffrey and Humphrey (1975). Cells
were counted microscopically by using a haemocytometer.

Results

When S. costatum cells were grown in the 12 h light/12 h
dark cycles, the cell numbers of the alga grown at the two CO2

levels in the bulk increased steadily throughout the light
period and they were 1.6 and 2.1 times higher after the 12 h
light period for the alga grown at 350 and 1000 µL L–1 CO2,
respectively (Fig. 1A). The chlorophyll a concentrations in the
bulk of the two CO2 culture both remained almost constant
during the first and the last 2 h of the light period, but they
increased 4.4- and 5.4-fold during the middle 8 h of the light
period for the alga grown at 350 and 1000 µL L–1 CO2,
respectively (Fig. 1B). The chlorophyll a contents of the two
CO2-grown cells were nearly constant during the first 4 h light
period, increased steadily and reached a maximum at 10 h of
light period (Fig. 1C). The contents of cellular chlorophyll a
were higher for the alga grown at 1000 µL L–1 CO2 than that
at 350 µL L–1 CO2 (Fig. 1C).

Changes of the light-saturated photosynthetic rate, Pm,
for the alga grown at the two CO2 levels during the light
period are shown in Fig. 2. The Pm based on chlorophyll a
content showed clear rhythmical change during the light
period, exhibiting a maximal rate at 6 h in the light phase
and a minimum at the end of light phase, and there was little
difference between Pm of alga grown at low and high CO2

(Fig. 2A). By contrast, Pm based on cell number showed a
maximal rate at 8 to 10 h in the light period and a minimum
at the beginning of the light period and the rate was higher at
high CO2 than at low CO2 (Fig. 2B).

Variations of the initial slope of the light saturation curve,
α, of the alga grown at the two CO2 levels during the light
period were shown in Fig. 3. The values of α reached a
maximum and a minimum at the beginning and at the end of
the light period, respectively, and the α on average during
the light period was lower at the low CO2 than at the high
CO2 (Fig. 3). The photochemical efficiency of PSII, Fv/Fm,
of the alga decreased slightly over the light period, and was
slightly higher in the high-CO2-grown cells than that in the
low-CO2-grown cells (Fig. 4).

P = Pm × tanh�     � + Rd,
α × I

Pm
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The photosynthetic CO2 affinities, 1/Km(CO2), of the
alga were highest at 6 h of the light period and the CO2
affinity was markedly higher in cells grown at the low CO2
than that at the high CO2 (Fig. 5). Figure 6 showed that the
apparent carboxylating efficiencies (ACE) of the alga rhyth-
mically changed and reached a maximum at 3 h of the light
period, and the ACE was markedly higher at the low CO2
than at the high CO2.

Discussion

Prézelin et al. (1977) reported that the photosynthetic
pigment (chlorophyll a and c2) contents in marine dino-
flagellates Glenodinium sp. and Ceratium furca were constant
over circadian cycles, but Jacquet et al. (2001) showed that
the chlorophyll contents for three marine Prochlorococcus

spp. and five marine picoeukaryotes increased throughout the
light period and decreased during the dark period. Our results
here showed that the chlorophyll a contents of S. costatum
remained almost constant during the first 4 h and increased
during the subsequent 6 h culture and then fell in the last 2 h
during the light period. The data in Fig. 1 showed that the rate
of cell division was relatively constant during the light period
(Fig. 1A), but the rate of chlorophyll a synthesis fluctuated
(Fig. 1B) and the rate was, on average, higher than that of cell
division during the light period. Thus, the variation of the
chlorophyll a content during the light period largely resulted
from the fluctuating ratio of the rate of the chlorophyll a
synthesis v. the cell division in S. costatum. The variation of
the chlorophyll a content resulted in a difference in the
pattern of Pm between that based on chlorophyll a content
and that based on cell number during the light period.

Rhythmical change of photosynthetic capacity, Pm,
during the cell cycle has been documented for several
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Fig. 1. Changes of (A) cell number and (B) chlorophyll a
concentration in the bulk and (C) chlorophyll a content of cell for
Skeletonema costatum cells grown at 200 µmol m–2 s–1 and 350 (�) or
1000 (�) µL L–1 CO2 during the light period. Values are mean ± s.e. of
three separate experiments.
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Fig. 2. Changes of light-saturated photosynthetic rate, Pm, of
Skeletonema costatum cultured at 200 µmol m–2 s–1 and 350 (�) or
1000 (�) µL L–1 CO2 during the light period, (A) based on cellular
chlorophyll a content, (B) based on cell number. Values are mean ± s.e.
of three separate experiments.
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groups of alga and mixed populations of phytoplankton
(MacCaull and Platt 1977; Prézelin et al. 1977; Mishkind
et al. 1979; Kaftan et al. 1999), the time at which Pm is
maximal varies but is most often in the morning or midday.
Our data showed that the Pm of S. costatum varied
rhythmically during the light period; the maximal Pm peaked
in the midday when expressed on chlorophyll a but in the
afternoon when expressed on the basis of cell number. The
differences may be due to the diel variation of chlorophyll a
content.

The factors that control photosynthetic activity during the
cell cycle have not been identified. Some studies indicate

that PSII activity and phosphorylation of thylakoid protein
may play a role in controlling the change of the photo-
synthetic activity (Marcus et al. 1986; Allen 1992; Kaftan
et al. 1999), and that the diel pattern of photosynthetic
activity is directly correlated with the initial slope of the
light-saturation curve (Harding et al. 1987; Erga and
Skjoldal 1990), whereas other studies point out that C-
reduction may be the rate-limiting factor (Walther and
Edmunds 1973; Myers and Graham 1975). In the present
study, the changing pattern of the Pm of S. costatum during
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Fig. 3. Changes of the initial slope of the light saturation curve, α, of
Skeletonema costatum cultured at 200 µmol m–2 s–1 and 350 (�) or
1000 (�) µL L–1 CO2 during the light period. Values are mean ± s.e. of
three separate experiments.
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three separate experiments, n = 9.
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the light period was proportional to that of apparent
carboxylating efficiency and that of photosynthetic CO2
affinity, but was not correlated with that of the initial slop of
the light saturation curve (α), which is indicative of the
efficiency of the light reaction, and that of the photosyn-
thetic chemistry efficiency of PSII (Fv/Fm). These results
indicated that the changing pattern of the photosynthetic
capacity during the light period might be controlled by the
activity of C-reduction associated with C-uptake in
S. costatum in dark reaction. Skeletonema costatum has
been reported to have the capacity to actively take up both
CO2 and HCO3

– (Korb et al. 1997). Our experiments showed
that the alga mainly use free CO2 from the medium
(unpublished data), suggesting that the daily changes in the
photosynthetic CO2 affinity may be attributed to the diurnal
alterations of photosynthetic capacity during the light
period.

The results presented in this paper showed that the Pm
based on chlorophyll a was not significantly different
between ambient CO2 and enriched CO2, whereas the Pm
based on cell number increased with CO2 enrichment
(because of the increased chlorophyll a content per cell
under enriched CO2). The result indicated that the esti-
mation on effect of CO2 enrichment on photosynthetic
capacity was related to the normalized units, and implied
that S. costatum benefited from CO2 enrichment. The α and
Fv/Fm increased with increasing CO2, indicating that the
efficiency of light-harvesting and energy conversion in
photosynthesis were increased. Down-regulation of Rubisco
and inorganic carbon concentrating mechanisms (CCM)
activities has been reported in many species (Wong 1979;
Vu et al. 1983; Bowes 1993; Colman 2002; Matsuda et al.
2002). The present study indicated that the apparent
carboxylating efficiency and the photosynthetic affinity for
CO2 markedly decreased under elevated CO2 in S. costatum,
suggesting that the similar down-regulation of Rubisco and
CCM activities may also exist in this alga.

The effects of elevated CO2 on photosynthetic rhythms
during the cell cycle have been studied. Nara et al. (1989)
reported that the changing patterns of the photosynthetic
activity and the CA activity and the affinity of cell for CO2
of Chlorella ellipsoidea C-27 were almost the same for cells
synchronized at high (700 µM) and low (11 µM) levels of
CO2. Our data showed that the Pm based on cell number, the
chlorophyll a content, the photosynthetic chemistry of PSII
and the efficiency of the light reaction all increased to
various degrees with elevated CO2 and that the apparent
carboxylating efficiency and the photosynthetic affinity for
CO2 markedly decreased under high CO2 concentration in
S. costatum. However, the changing patterns of all these
photosynthetic parameters during the light period were
almost the same for S. costatum cells grown at high and low
levels of CO2, suggesting that the photosynthetic rhythms
was insensitive to CO2 enrichment.
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