Effects of doubled atmospheric CO₂ concentration on the photosynthesis and growth of *Chlorella pyrenoidosa* cultured at varied levels of light

JIANRONG XIA¹ AND KUNSHAN GAO^{1,2*}

¹Marine Biology Institute, Shantou University, Shantou, Guangdong 515063 and ²Institute of Hydrobiology, The Chinese Academy of Sciences, Wuchang, Wuhan, Hubei 430072, China

ABSTRACT: Chlorella pyrenoidosa was cultured with 350 and 700 p.p.m.v. CO_2 at varied levels of light to see the impacts of doubled atmospheric CO_2 concentration on its growth and photosynthesis. The CO_2 enrichment did not affect the growth rate (μ), but significantly increased the cell density when light was sufficiently supplied. The CO_2 enrichment significantly depressed light-saturated photosynthesis and dark respiration in the cells grown under a high-light regime, but not those under a low-light regime. The light-saturating point for photosynthesis and photosynthetic efficiency was not affected by the CO_2 enrichment under either the high-light or low-light conditions.

KEY WORDS: Chlorella pyrenoidosa, CO₂, light, photosynthesis.

INTRODUCTION

Atmospheric CO₂ concentration is expected to be doubled during 21st century because of the industrial combustion of fossil fuels.¹ Such an increase in atmospheric CO_2 is supposed to result in a change of pH and dissolved inorganic carbon (DIC) in aquatic environments. An increase in atmospheric CO₂ from 35 to 50 Pa would increase sea-surface DIC by 3.1%, decrease pH by 0.14 units at 15°C with an alkalinity of 2.47 mol/m³.² Riebesell et al. reported that the supply of CO_2 in seawater limited the growth of marine phytoplankton under optimal light and nutrient conditions³ and Hein and Sand-Jensen demonstrated that doubled atmospheric CO₂ concentration stimulated marine productivity.⁴ In contrast to oceanic environments, freshwater is more sensitive to atmospheric CO₂ increase because of its lower buffering capacity. The pH and DIC would be affected to a larger extent than in seawater. Therefore, ecological and physiological impacts of increased atmospheric CO_2 on freshwater algae are of general concern.

Chlorella, a common microalga in freshwater, which is used for aquaculture, has been extensively studied for its mechanism of acquisition and accumulation of CO_2 or bicarbonate. *Chlorella vulgaris* 11h was shown to take up CO_2 only, whereas *Chlo*-

rella ellipsoidea and Chlorella pyrenoidosa took up HCO₃⁻ in addition to CO₂.⁵ When the cells were cultured at 1.5–5% CO₂, photosynthetic characteristics of some green algae were significantly affected, with CO₂ affinity being lowered, the CO₂ compensation point increased and carbonic anhydrase (CA) activity decreased.^{6,7} Low CO₂-grown cells of Chlamydomonas possessed a CO₂ concentration mechanism,8 which involved active bicarbonate transport and increased energy (ATP) input. The energetic requirement was estimated to be 1 mol of ATP per mol inorganic carbon transported.9 It was reported that the DIC pump formation and operation required light energy in air-grown Scenedesmus obliquus.¹⁰ Although these findings are fundamental in understanding the photosynthetic physiology of these freshwater algae, they can hardly lead to any ecological implications in terms of the impacts of the atmospheric CO₂ rise, because CO₂ concentrations used in the previous studies are hundreds of times higher than the present atmospheric CO₂ concentration.

The present study aimed to investigate the effects of doubled CO₂ concentration of the atmosphere on the growth and photosynthesis of *Chlorella pyrenoidosa* when cultured at varied levels of light.

MATERIALS AND METHODS

Chlorella pyrenoidosa was obtained from the Freshwater Algae Culture Collection of the Institute of Hydrobiology, the Chinese Academy of Sciences,

^{*}Corresponding author: Tel: 86-754-290-3280.

Fax: 86-754-290-3977. Email: ksgao@stu.edu.cn

Received 2 May 2002. Accepted 25 February 2003.

China. The cells were cultured in fresh Bristol's solution¹¹ at 50 or 200 μ mol/m² per s (12 : 12 LD) to examine the effect of CO₂ enrichment under different light levels. All the above cultures were maintained in a CO₂ chamber (Conviron 2175; Controlled Environments Limited, Winnipeg, Manitoba, Canada) at 25°C, aerated with air of 350 (ambient) or 700 p.p.m.v. CO₂ (enriched) at a flow rate of 0.4 L/min.

Cells were harvested in the exponential growth phase, resuspended at a density of $2-5 \times 10^7$ /mL in fresh Bristol's solution containing 2 mM NaHCO₃ $(CO_2 \text{ concentration } 44 \,\mu\text{M})$ and buffered at pH 8.0 with HEPES. Photosynthetic O₂ evolution was measured by using an oxygen monitor (YSI 5300; Yellow Springs Instrument Co, Yellows Springs, OH, USA) with a Clark-type oxygen electrode. Water temperature within the assimilation chamber was controlled at 25°C by circulating water in a water jacket around the chamber with a cooling circulator (Cole Parmer Instruments Co, Chicago, IL, USA). A halogen lamp was used as a light source. Different light intensities were achieved by adjusting distances between the light source and the chamber. Parameters for P-E curves were analyzed according to Jassby and Platt¹² and Henley.¹³

$$P = P_{\max} \cdot \tanh(\alpha \cdot E/P_{\max}) + R_d, E_k = (P_{\max} + R_d)/\alpha$$

where *E* is irradiance; *P*, net photosynthetic rate at a given irradiance; P_{max} , light-saturated photosynthetic rate; α , the initial slope at limiting irradiances (photosynthetic efficiency); and E_k , saturating irradiance for photosynthesis. Photosynthetically active radiation (PAR, 400–700 µm) was measured with a quantum sensor (SKP200; ELE International, Leighton Buzzard, Bedfordshire, UK).

Chlorophylls were extracted in 90% acetone and determined according to Jeffrey and Humphrey.¹⁴ Cells were counted in 6–10 parallels of small subsamples with a hemocytometer under a microscope. Growth rate (μ) was expressed as doublings/ day, determined as follows:

$$\mu = (\log_2 N_t - \log_2 N_0)/t$$

where N is the cell density (cells/mL) at the beginning (N_0) or t number of days (N_t) .

Data were analyzed according to analysis of variance followed by the Duncan test. The confidence level was set at 5%.

RESULTS

The growth rate (μ) in the exponential growth phase (from the 1st day to the 5th day) of *C. pyrenoidosa* was insignificantly (p > 0.05)

Fig. 1 Growth of *Chlorella pyrenoidosa* under high (200 μ mol/m² per s) and low (50 μ mol/m² per s) light in cultures aerated with air of 350 and 700 p.p.m.v. CO₂ at 25°C. Data are the mean ± SD (n = 3).

affected by CO₂ enrichment either under the low or high light (p > 0.05) (Fig. 1; Table 1), although the increase of PAR from 50 to 200 µmol/m² per s significantly (p < 0.05) enhanced µ-value by approximately 50%. When CO₂ concentration was elevated from 350 to 700 p.p.m.v., cell densities at the end of the culture were significantly raised under the high-light (p < 0.05), but showed insignificant change (p > 0.05) under the low-light regime.

When C. pyrenoidosa was grown under varied light levels, the effects of CO₂ enrichment on its photosynthetic characteristics were dependent on light availabilities (Fig. 2; Table 2). Doubled atmospheric CO₂ concentration to 700 p.p.m.v. had a significant effect on light-saturated net photosynthesis (P_{max}) and dark respiration (R_d) in the high-light cultures (p < 0.05; Fig. 2), but showed insignificant effects in the low-light cultures (p > 0.05). The enriched CO₂ reduced P_{max} and R_d by 11% and 30% in high-light cultures, respectively. The initial slope of the *P*-*E* curves; namely the photo synthetic efficiency (α), was not affected by the CO₂ enrichment under either low light or high light (p > 0.05) (Table 2). However, α was raised by approximately 62% under the low-light compared with the high-light cultures. The impact of the CO_2 enrichment on photosynthesis saturating radiation (E_k) was insignificant under either the low light or the high light (p > 0.05); however, the high light

Table 1	Growth rate (μ) and,	biomass yield (cell	density) at the	end of cul	lture of <i>Chlorel</i>	la pyrenoidosa	grown at 350
and 700 j	p.p.m.v. CO ₂ under va	ried levels of light (50 and 200 μmc	ol/m² per s	5)		

	50 µn	50 µmol/m² per s		200 µmol/m² per s		
	350	700 p.p.m.v. CO ₂	350	700 p.p.m.v. CO ₂		
μ (/day) Cell density (× 10 ⁷ /mL)	$\begin{array}{c} 1.2 \pm 0.2^{a} \\ 13.7 \pm 0.6^{a} \end{array}$	1.2 ± 0.3^{a} 15.2 ± 1.2^{a}	$\frac{1.8\pm0.4^{\rm b}}{21.6\pm0.1^{\rm b}}$	$\begin{array}{c} 2.0 \pm 0.4^{\rm b} \\ 23.4 \pm 0.7^{\rm c} \end{array}$		

Those with different superscript are significantly different (P < 0.05).

Data are the means \pm SD (n=3), based on Fig. 1.

p.p.m.v., parts per million volume.

Table 2 Dark respiration (R_d), light-saturating photosynthetic rates (P_{max}), photosynthetic efficiency (α) and light saturating point (E_k) of *Chlorella pyrenoidosa* grown at 350 and 700 p.p.m.v. CO₂ under varied levels of light

	50 μm	50 µmol/m² per s		200 µmol/m ² per s	
	350	700 p.p.m.v. CO ₂	350	700 p.p.m.v. CO ₂	
$\overline{R_d (\mu molO_2/mg chl per h)}$	$51.7 \pm 1.1^{\mathrm{a}}$	$47.0\pm3.7^{\rm a}$	$22.8\pm2.6^{\rm b}$	$16.0\pm3.1^{\circ}$	
$P_{\rm max}$ (µmolO ₂ /mg chl per h)	$148.2\pm10.8^{\mathrm{a}}$	$136.5 \pm 4.6^{\mathrm{a}}$	$276.1\pm9.2^{\rm b}$	$246.7\pm10.9^{\rm c}$	
$\alpha (\mu molO_2/mg chl per h)/(\mu mol/m^2 per s)$	$3.7\pm0.1^{\mathrm{a}}$	$3.5\pm0.1^{\mathrm{a}}$	$2.3\pm0.1^{ m b}$	$2.2\pm0.0^{ m b}$	
$E_k (\mu { m mol}/{ m m}^2 { m per}{ m s})$	$53.9\pm2.2^{\rm a}$	$54.3\pm1.4^{\rm a}$	$126.5\pm5.7^{\rm b}$	$118.8\pm1.0^{\rm b}$	

Those with different superscript are significantly different (P < 0.05).

Data are the means \pm SD (n=3), based on Fig. 2.

chl, chlorophyll; p.p.m.v., parts per million volume.

significantly (p < 0.05) increased the E_k value in comparison with the low light (Fig. 2; Table 2).

DISCUSSION

Inorganic carbon in water exists in the form of CO_2 (aq), HCO_3^{-} , CO_3^{2-} , which can reach an equilibrium as follows:

$$\begin{array}{r} \text{CO}_2 \text{ (aq)} + \text{H}_2\text{O} \leftrightarrow \text{H}_2\text{CO}_3 \leftrightarrow \text{H}^+ + \text{HCO}_3^- \\ \leftrightarrow 2\text{H}^+ + \text{CO}_3^{2-} \end{array}$$

Carbon dioxide in freshwater usually accounts for 0.6–38% of the total inorganic carbon with a pH range of 8.5–6.5.¹⁵ When CO_2 concentration in air increases, the equilibrium will be broken, and the reactions proceed towards the right-hand side to reach a new equilibrium. Aeration with addition of CO_2 to culture raises DIC and aqueous CO_2 partial

pressure.² In the present study, when supply of light was sufficiently high, CO₂ enrichment to the doubled level of the present atmosphere significantly increased cell density of C. pyrenoidosa, but μ was not affected during the exponential growth phase. It appeared that the effects of the elevated CO_2 on the growth of this alga were dependent on light when cell density became high enough for CO_2 or DIC to be a limiting factor. Cell density was not enhanced with the CO₂ enrichment when *C. pyrenoidosa* was cultured under the conditions of low light, which could be associated with limitation of CO₂ fixation because of lowered contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) under low light conditions.¹⁶ It is supposed that doubled atmospheric CO₂ concentration would affect the growth of C. pyrenoidosa when it grows under bright solar radiation, and such an effect would increase by a great extent when the cell density becomes high.

In the present study, CO_2 enrichment insignificantly affected the P_{max} in the low-light, but significantly decreased it in the high-light cultures. Depressed photosynthesis has also been reported in macroalgae cultured with high CO₂ and sufficient light supply.¹⁷ Chlorella pyrenoidosa is capable of using bicarbonate, and possesses carbonic anhydrase (CA)18,19 which catalyzes the interconversion of HCO₃⁻ and CO₂. Suppression of the synthesis of CA by high CO₂, associated with a reduced capacity in using $\text{HCO}_{3}\bar{}$, has been documented in microalgae.20,21 Rubisco in Chlorella was reported not to be affected by 5% CO₂ concentration.¹⁹ In the present study, the activity of CA in C. pyrenoidosa might have been reduced, resulting in decreased P_{max} in CO₂-enriched cultures under high light. It was reported that high CO₂ concentration insignificantly affected CA activity of *Peridinium gatunense* when cultured in low light.²² That CO₂ increase to 700 p.p.m.v. did not affect P_{max} under the low light might be attributed to the stable CA activity in C. pyrenoidosa of the present study. However, to what extent doubled atmospheric CO₂ concentration, a minor enrichment compared to the CO₂ concentrations used for the discovery of CA suppression, could affect the CA synthesis or its activity in C. pyrenoidosa under high light is still a question. E_k was not affected by the doubled CO₂ concentration, implying that such an extent of CO₂ enrichment could not influence the light requirement for photosynthetic saturation.

Photosynthetic efficiency (α) is a function of photosynthetic energy conversion efficiency.¹³ Investigation with *Synechococcus* sp. indicated that photosynthetic efficiency for net O₂ evolution in low CO₂-grown cells was approximately half that of

high CO₂-grown (2–4%) cells, implying that a considerable amount of light energy was used to concentrate CO₂ within the low CO₂-grown cells.²³ However, doubled atmospheric CO₂ concentration did not affect the photosynthetic efficiency of *C. pyrenoidosa* either grown under the low- or high-light regimes in the present study, indicating that 700 p.p.m.v. CO₂ in this study, 75 times lower compared with 5% CO₂, was low enough not to affect the photosynthetic efficiency.

Carbon dioxide removal by photosynthesis in density-lower cultures may be slower than CO₂ dissolution from air; therefore, the photosynthesis could not be CO₂ limited when the alga was cultured with a continuous supply of CO₂. The suppressed photosynthesis of the cells grown with the CO₂ enrichment when measured in the sealed chamber must be due to the limited CO₂ supply within the closed system. Subsequently, C. pyrenoidosa can perform net photosynthesis at a faster rate in the open-system culture than in the closed-system (measurement) when light is sufficiently supplied. This accounts for the discrepancy between the observed growth and measured photosynthesis.

ACKNOWLEDGMENTS

This study was funded by the National Natural Science Foundation of China (No. 39830060 and No. 39625002) and Guangdong Natural Science Foundation.

REFERENCES

- King AW, Emanuel WR, Post WM. Projecting future concentration of atmospheric CO₂ with global carbon cycle models: the importance of simulating historical changes. *Environ. Manage* 1992; 16: 91–108.
- Stumm W, Morgan JJ. Aquatic Chemistry, 3rd edn. John Wiley & Sons, New York. 1996.
- Riebesell U, Wolf-Gladrow DA, Smetacek V. Carbon dioxide limitation of marine phytoplankton growth rates. *Nature* (*London*) 1993; 361: 249–251.
- Hein M, Sand-Jensen K. CO₂ increases oceanic primary production. *Nature (London)* 1997; 388: 988–990.
- Miyachi S, Tsuzuki M, Avramova ST. Utilization modes of inorganic carbon for photosynthesis in various species of *Chlorella. Plant Cell Physiol.* 1983; 24: 441–451.
- Raven JA. Physiology of inorganic C acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO₂ and temperature. *Plant Cell Environ.* 1991; 14: 779–794.
- Sultemeyer DF, Fock HP, Canvin DT. Mass spectrometric measurement of intracellular carbonic anhydrase activity in high and low Ci cells of *Chlamydomonas*. *Plant Physiol*. 1990; 94: 1250–1257.

- Badger MR, Kaplan A, Berry JA. Internal inorganic carbon pool of *Chlamydomonas reinhardii*. Evidence for a carbon dioxide concentrating mechanism. *Plant Physiol*. 1980; 66: 407–413.
- 9. Raven JA, Lucas WJ. The energetic of carbon acquisition. In: Lucas WJ, Berry JA (eds). *Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms*. The American Society of Plant Physiologists, Rockville, MA. 1985; 305–324.
- Thielmann J, Tolbert NE, Goyal A, Senger H. Two system for concentration CO₂ and bicarbonate during photosynthesis by *Scenedesmus. Plant Physiol.* 1990; **92**: 622–629.
- Fujita Y. Composition of culture media. In: Tammiya H, Watanable T (eds). *Experimental Methods of Algae:* Nankoto, Tokyo. 1972; 68–104 (in Japanese).
- Jassby AD, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. *Limnol. Oceanogr.* 1976; 21: 540–547.
- Henley WJ. Measurement and interpretation of photosynthetic light-response curves in the context of photoinhibition and diel changes. J. Phycol. 1993; 29: 729–739.
- Jeffery SW, Humphrey GF. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural populations. *Biochem. Physiol. Pflanzen* 1975; 167: 191–194.
- Yang Y, Gao K, Xia JR. Effects of doubled atmospheric CO₂ concentration on the growth and photosynthesis of *Chlamydomonas reinhardtii* (Volvocales, Chlorophyceae). *Phycol. Res.* 2001; **49**: 299–303.

- Lapointe BE, Duke CS. Biochemical strategeies for growth of *Gracilaria tikvahiae* (Rhodophyta) in relation to light intensity and nitrogen availability. *J. Phycol.* 1984; **20**: 488– 495.
- Gao K, Aruga Y, Asada K. Influence of enhanced CO₂ on growth and photosynthesis of red algae *Gracilara* sp and *G. chilensis. J. Appl. Phycol.* 1993; **40**: 373–377.
- Rotatore C, Colman B. The acquisition and accumulation of inorganic carbon by the unicellular green alga *Chlorella ellipsoidea*. *Plant Cell Environ*. 1991; 14: 377–382.
- Reed ML, Graham D. Carbon dioxide and regulation of photosynthesis: activities of photosynthetic enzymes and carbonate dehydratase (carbonic anhydrase) in *Chlorella* after growth or adaptation in different carbon dioxide concentration. *Aust. J. Plant Physiol.* 1977; 4: 87–98.
- Shiraiwa Y, Miyachi S. Effects of temperature and CO₂ concentration on induction of carbonic anhydrate and changes in efficiency of photosynthesis in *Chlorella vulgaris* 11h. *Plant Cell Physiol.* 1985; 26: 543–554.
- Patel BN, Merrett. Regulation of carbonic anhydrase activity, inorganic-carbon uptake and photosynthetic biomass yield in *Chlamydomonas reinhardtii*. *Planta* 1986; 169: 81–86.
- 22. Berman-Frank I, Kaplan A, Zohary T, Dubinsky Z. Carbonic anhydrase activity in the bloom-forming dinoflagellate *Peridinium gatunense. J. Phycol.* 1995; **31**: 906–913.
- Badger MR, Andrews TJ. Photosynthesis and inorganic carbon usage by the marine cyanobacterium, *Synechococcus* sp. *Plant Physiol.* 1982; **70**: 517–523.