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Abstract

Background: Aerobic anoxygenic photototrophic (AAP) bacteria represent an important group of marine microorganisms
inhabiting the euphotic zone of the ocean. They harvest light using bacteriochlorophyll (BChl) a and are thought to be
important players in carbon cycling in the ocean.

Methodology/Principal Findings: Aerobic anoxygenic phototrophic (AAP) bacteria represent an important part of marine
microbial communities. Their photosynthetic apparatus is encoded by a number of genes organized in a so-called
photosynthetic gene cluster (PGC). In this study, the organization of PGCs was analyzed in ten AAP species belonging to the
orders Rhodobacterales, Sphingomonadales and the NOR5/OM60 clade. Sphingomonadales contained comparatively smaller
PGCs with an approximately size of 39 kb whereas the average size of PGCs in Rhodobacterales and NOR5/OM60 clade was
about 45 kb. The distribution of four arrangements, based on the permutation and combination of the two conserved
regions bchFNBHLM-LhaA-puhABC and crtF-bchCXYZ, does not correspond to the phylogenetic affiliation of individual AAP
bacterial species. While PGCs of all analyzed species contained the same set of genes for bacteriochlorophyll synthesis and
assembly of photosynthetic centers, they differed largely in the carotenoid biosynthetic genes. Spheroidenone,
spirilloxanthin, and zeaxanthin biosynthetic pathways were found in each clade respectively. All of the carotenoid
biosynthetic genes were found in the PGCs of Rhodobacterales, however Sphingomonadales and NOR5/OM60 strains
contained some of the carotenoid biosynthetic pathway genes outside of the PGC.

Conclusions/Significance: Our investigations shed light on the evolution and functional implications in PGCs of marine
aerobic anoxygenic phototrophs, and support the notion that AAP are a heterogenous physiological group phylogenetically
scattered among Proteobacteria.
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Introduction

Aerobic anoxygenic photototrophic (AAP) bacteria represent an

important group of marine microorganisms inhabiting the

euphotic zone of the ocean. They harvest light using bacterio-

chlorophyll (BChl) a and various carotenoids serving as auxiliary

pigments. These phototrophic microorganisms are thought to be

important players in oceanic carbon cycling [1–3]. Culture-

independent studies have shown that marine AAP bacterial

communities are mostly represented by Alpha- and Gammaproteo-

bacteria [4,5]. Most cultured marine Alphaproteobacterial AAPs belong

to Roseobacter clade and the order Sphingomonadales, which includes

members of the genera Erythrobacter and Citromicrobium [6–8]. AAP

bacterial isolates related to Gammaproteobacteria belong to the clade

NOR5/OM60 which contains Congregibacter litoralis KT71 [9,10]

and strain HTCC2080 [11].

Compared to the oxygenic phototrophs, the anoxygenic species

contain a relatively simple photosynthetic apparatus, which

consists of a reaction center surrounded by one to three types of

antenna complexes [12]. Both aerobic and anaerobic anoxygenic

phototrophs have most of the photosynthetic genes organized in a

so-called photosynthesis gene cluster (PGC) [13]. The PGC

contains genes for the photosynthetic reaction center, light

harvesting complexes, BChl and carotenoid biosynthesis, as well

as some regulatory factors. Despite the fact that the basic set of

genes in PGC is conserved, the gene organization of operons in

PGC largely varies among different AAP bacterial lineages. Two

conserved subclusters, crt-bchCXYZ-puf (about 10 kb) and

bchFNBHLM-IhaA-puh (about 12–15 kb) were identified in PGCs

of different phototrophic Proteobacteria [14–16]. The orientation of

the genes in each subcluster was the same, although the gene order

could vary slightly (e.g. pufBA and pufLM). Interestingly, the
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regulatory elements such as the transcriptional regulator ppsR gene

were conserved as well, suggesting that the operons in the PGCs

are co-expressed. The organization of puf (photosynthetic unit

forming, approximately 3 kb) operon varies among different AAP

bacterial species. The presence/absence of pufC and pufQ, as well

as various gene orders of puf genes, were observed [5,15–17].

Further investigation indicated that such gene organization is

crucial for environmental adaptation [14].

Figure 1. Phylogenetic analysis of pufM gene sequences from GenBank database. Symbols ‘‘w’’ represents the pufM sequences from whole
genome sequence. The whole PGC’s of the ten strains highlighted in boxes were also analyzed (Fig. 2). Bootstrap percentages from both neighbor
joining (above nodes) and maximum parsimony (below nodes) are shown. Scale bar represents 10% nucleotide substitution percentage.
doi:10.1371/journal.pone.0025050.g001

Table 1. Main characteristics of genomes and PGCs of studied species.

Clade Organism Genome size (kb) PGC size (kb) Genome GC% PGC GC% PGC/Genome

Rhodobacterales D. shibae DFL 12 4,417.8 48.1 65 67 1.09%

Rsb. denitrificans OCh 114 4,331.2 44.6 58 60 1.03%

Rsb. litoralis Och 149 4,678.9 48.3 57 59 1.03%

Roseovarius sp. 217 4,762.6 45.1 60 64 0.95%

Jannaschia sp. CCS1 4,404.0 45.8 62 62 1.04%

L. vestfoldensis SKA53 3,063.7 41.2 59 60 1.34%

Sphingomonadales Citromicrobium sp. JL354 3,273.3 38.7 65 67 1.18%

Erythrobacter sp. NAP1 3,265.3 38.9 61 62 1.19%

NOR5/OM60 clade Cb. litoralis KT71 4,328.1 44.7 58 59 1.03%

Gamma-HTCC2080 3,576.1 43.6 51 53 1.22%

GC% = relative percentage of guanine and cytosine nucleotides. PGC/Genome = PGC as % of genome size.
doi:10.1371/journal.pone.0025050.t001

Diverse Arrangement of Photosynthetic Gene Cluster
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Despite its diversity, complexity and functional importance for

AAP bacteria, a detailed investigation of the gene and operon

arrangement of PGC has not been performed in their entirety. In

this study, we analyzed the structure and arrangement of PGC in

the AAP bacterial genomes available to date, with the aim of

addressing the frequency of homologous gene recombination as

well as the differences in carotenoid gene composition and

biosynthetic pathways.

Results and Discussion

Ten fully sequenced AAP species were analyzed for their

photosynthetic genes and PGC composition. According to

phylogenetic analysis using both 16S rRNA and pufM genes, the

ten strains were classified into three main groups: Roseobacter clade

(order Rhodobacterales), Erythrobacter-Citromicrobium clade (order

Sphingomonadales) and NOR5/OM60 clade (Gammaproteobacteria)

(Fig. 1). Roseobacter clade contained six strains belonging to five

genera: Roseobacter (Rsb.) denitrificans OCh 114 [18] and Rsb. litoralis

Och 149 [19], Loktanella vestfoldensis SKA53, Dinoroseobacter shibae

DFL12 [20], Jannaschia sp. CCS1, and Roseovarius sp. 217 [21].

Two species belonged to the order Shingomonadales: Erythrobacter sp.

NAP1 [7] and Citromicrobium sp. JL354 [22]. Two species were

members of Gammaproteobacteria: Congregibacter (Cb.) litoralis KT71

[9,10] and marine Gammaproteobacterium HTCC2080 [11]. The

genome size varied from approximately 3,064 kb (L. vestfoldensis) to

4,763 kb (Roseovarius sp. 217). The PGCs represented roughly 1%

of the genomes (Table 1). Sphingomonadales contained comparatively

smaller PGCs (,39 kb) whereas the average size of PGCs in

Rhodobacterales and NOR5/OM60 clades was about 45 kb

(Table 1). The GC content in the PGCs varied from 52.9% to

66.7%, which was similar to the total GC contents of

corresponding genomes (Table 1). This may indicate that PGCs

possibly evolve with their genomes long enough to keep

homogenous genomic characteristics. The fact that the PGC is a

stable part of the phototrophs genome is also indicated also by the

fact that the phylogenetic trees constructed for 16S rRNA, pufM

gene and concatenated PGC core genes show basically the same

topology (Fig. 1 and Fig. S2).

The structure and arrangement of PGC
The PGCs have a mosaic structure and consist of five main sets

of genes: bch genes encoding enzymes of BChla biosynthetic

pathways, puf operons encoding proteins forming the reaction

centers, puh operons involved in the RC assembly, crt genes

responsible for biosynthesis of carotenoids and various regulatory

genes. A core set of 27 genes were identified, which were present in

all analyzed PGCs (Fig. S1). Most of them came from the BChl a

biosynthetic pathway. The genes bchBCDFGHILMNOPXYZ and

ascF, with exception of 8-vinyl reductase, represent the complete

biosynthetic pathway from protoporphyrin XI to BChl a. In

contrast, there are only two genes involved in carotenoid synthesis

which are common for all PGCs. Other shared core genes encode

proteins pufABLM and assembly factors puhABCE and lhaA of the

bacterial photosynthetic units.

More complete PGC structures are observed in AAP of

Roseobacter clade compared to Sphingomonadales or NOR5/

OM60 clades. The majority of Roseobacter-related species contained

all the puf genes organized in pufQBALMC operon, which is

involved in the assembly of the photosynthetic units. The only

Figure 2. Photosynthetic gene cluster structure and arrangement in AAP species. Green, bch genes; red, puf and regulators genes; pink,
puh genes; orange, crt genes; blue, hem and cyc gene; yellow, LhaA gene; blank, uncertain or unrelated genes; grey, hypothetical protein. The
horizontal arrows represent putative transcripts.
doi:10.1371/journal.pone.0025050.g002

Diverse Arrangement of Photosynthetic Gene Cluster

PLoS ONE | www.plosone.org 3 September 2011 | Volume 6 | Issue 9 | e25050



exception was L. vestfoldensis SKA53, in which some photosynthetic

genes are located outside the PGC and spread throughout the

genome. Previously it was reported that the PGC in Rsb. litoralis

Och 149 is located on a linear plasmid, with two RPA genes

between bchFNBHLM-LhaA-puh and crtF-bchCXYZ-puf, which act as

a centromere-like anchor when plasmids replicate [19,23].

The PGC organization in Erythrobacter sp. NAP1 and Citromicro-

bium sp. JL354 (order Sphingomonadales) is almost identical in terms

of gene arrangement and composition. When compared to

Roseobacters, this group contains less carotenoid genes and no

light-harvesting 2 (LH2) genes. The presence of a smaller number

of photosynthetic genes in Sphingomonadales is consistent with the

smaller size of their PGCs (Table 1).

Similarly, PGCs of two NOR5/OM60 strains have very

comparable gene composition and organization. It contains less

transcriptional regulators compared to the other groups. Con-

versely, a BLUF (blue light using flavin adenine dinucleotide

sensors) was usually observed in upstream regions of PGCs of

NOR5/OM60 clade [9].

Two conserved gene arrangements are found in all analyzed

PGCs: bchFNBHLM-LhaA-puhABC and crtF-bchCXYZ (Fig. 2). Ac-

cording to their direction and order, the ten PGCs can be divided

into three groups: Type I (forward bchFNBHLM-LhaA-puh plus

forward crtF-bchCXYZ-puf) includes Rsb. denitrificans OCh 114 and

Rsb. litoralis Och 149. Cb. litoralis KT71, Gammaproteobacterium

HTCC2080 and Roseovarius sp. 217 belong to type II (forward

bchFNBHLM-LhaA-puh plus reverse crtF-bchCXYZ-puf), and the last

five organisms form type III (forward crtF-bchCXYZ-puf plus forward

bchFNBHLM-LhaA-puh). The last possible arrangement (type IV,

reverse bchFNBHLM-LhaA-puh plus forward crtF-bchCXYZ-puf) has

not been yet found in AAP (or AAP candidates) bacterial genomes

(Fig. S1), however it is present in the purple non-sulfur anaerobic

bacteria Rba. sphaeroides and Rba. capsulatus (Fig. 2 and Fig. S2). The

distribution of PGC types does not correspond to their phylogenetic

affiliation. For example, the Roseobacter clade shows all three PGC

arrangement types observed in AAP genomes. This suggests that

complex operon recombination in PGC occurred after phylogenetic

divergence of AAP bacterial genera.

There are four conserved regions in PGCs for BChl a expressing

of AAP bacteria: bchFNBHLM, bchCXYZ, bchIDO and bchOP. Gene

bchEJ, which exists in most Rhodobacter, was found in Cb. litoralis

KT71 (Fig. 2). There are carotenoid genes between bchCXYZ and

bchIDO, except in D. shibae DLF 12 and Jannaschia sp. CCS1. The

region between bchOP and bchFNBHLM is of variable sequences in

different AAP bacteria clades. In Roseobacter clade and Sphingomona-

dales, there are two regulators (ppsR and ppaA) which are sensitive

to light intensity and oxygen concentration [24]. In NOR5/OM60

clade, a crtJ gene was found, which controls aerobic repression of

BChl, carotenoid, and LH2 gene expression [25,26].

Four structural types of puf gene organization were observed in

the ten PGCs: pufQBALMC, pufQBALM, pufBALM and pufLMCBA.

Unlike the purple non-sulfur species Rba. sphaeroides and Rba.

capsulatus, all the AAP strains studied lack the pufX gene in the

PGC. The pufQ gene, is absent in the puf operon of NOR5/OM60

and Sphingomonadales clades. In addition, Sphingomonadales and L.

vestfoldensis SKA53 do not have a pufC gene. The gene encoding 1-

deoxy-D-xylulose-5-phosphate synthase (DXPS) is always located

downstream of puf genes in the Roseobacter clade. DXPS is part of a

mevalonate-independent pathway for isopentenylpyrophosphate

(iPP) biosynthesis, a precursor for carotenoid and bacteriochloro-

phyll biosynthesis [27]. Interestingly, a switch of order in the puf

gene cluster is observed in NOR5/OM60 clade (pufLMC-BA)

compared to the other two AAP clades (pufBA-LMC).

The structure of puhABC-hyp-ascF-puhE is conserved in Roseobacter

and Sphingomonadales clades. However in NOR5/OM60 clade,

puhABC and puhE are located together and ascF is at a site near

BLUF. LhaA, encoding a possible LHI assembly protein [28],

occupies the upstream region of puh genes. In downstream puh

genes, there are hemN (NOR5/OM60 clade) or hemA (Roseobacter

and Sphingomonadales clade) [29,30].

The composition and organization of carotenoid genes
in PGC

The main difference among analyzed PGCs was found in the

genes encoding the carotenoid biosynthetic pathway. The

standard set of crt genes identified in Rba. capsulatus contains

crtAIBKCDEFJ (Table 2). A slightly reduced set of genes

(crtAIBCDEF) was also found in some Roseobacter species (Table 2).

However, the organization of the crt operon in Roseobacter clade is

most variable among PGCs (Fig. 2). The almost complete structure

crtAIBK-hyp-crtCDEF is present in the genera Roseobacter and

Dinoroseobacter (Fig. 2), while in D. shibae, crtA and crtIBK are

separated. Homologous recombination occurred between crtAIB

Table 2. The composition of carotenoid genes in AAP
bacteria.

Alpha Gamma

Rhodobacterales Sphingomonadales NOR5

1 2 3 4 5

crtA N N
crtI N N # # N
crtB N N # # N
crtC N N N N
crtD N N N #

crtE N N # # N
crtF N N N N
crtJ N N
crtY # #

crtZ # #

crtW #

1, Roseobacter clade (R. denitrificans Och114, R. litoralis OCh149, D. shibae DLF
12, L. vestfoldensis SKA53, Jannaschia sp. CCS1, Roseovarius sp. 217 included). 2,
Rhodobacter genus (Rhodobacter sphaeroides 2.4.1 and Rhodobacter capsulatus
BEC404). The crtJ gene was found only in Rhodobacter capsulatus BEC404 and
NOR5/OM60 gamma-proteobacteria. 3, Erythrobacter sp. NAP1. 4, C.
bathyomarinum JL354. 5, NOR5 clade (Cb. litoralis KT71 and Gamma-
proteobacterium HTCC2080 included). The genes located in the PGC are marked
by ‘‘N’’; the genes outside PGC are marked by ‘‘#’’. The gene CrtK is not
included in the Table as it does not participate in any known carotenoid
biosynthetic pathway.
doi:10.1371/journal.pone.0025050.t002
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and crtCDEF in Jannaschia sp. CCS1. Comparably, crtICDEF and

crtCDF are missing in NOR5/OM60 clade and order Sphingomona-

dales, respectively. The re-arrangement of crt genes may result from

events of gene duplication and loss, accounting for the absence of

crtA gene in Sphingomonadales and NOR5 clade (Table 2), and

duplication of some of the crt genes, such as the crtE and crtIB

found outside the PGC in Bradyrhizobium sp. ORS278 [31].

The biosynthetic pathway for carotenoids in AAP
bacterial strains

A typical feature of AAP bacteria is their pigmentation due to

abundant carotenoids, which spans from yellow/orange to brown

or from pink/red to purple. While some of the carotenoids serve as

harvesting pigments, most of them do not participate in the light

harvesting likely having a photoprotection function [32,33]. As

suggested earlier, spheroidenone is the main light harvesting

carotenoid in Roseobacters [34–36] (Table S1). Spheroidenone is

also produced by anaerobic purple non-sulfur photoautotrophic

organisms such as Rba. sphaeroides or Rhodovulum. marinum when

grown under aerobic conditions [37,38]. This is consistent with the

closer phylogenetic relationship of these two organisms to

Roseobacter related photoheterotrophic species (Fig. 1 and Fig.

S2). This indicates the presence of the same carotenoid

biosynthetic pathway in all Rhodobacterales. The central biosynthetic

pathway for carotenoids in the Roseobacter clade is the spheroidene

pathway (Fig. 3, Table S1), and all the necessary genes (crtAIBCDF)

for it are located in the PGCs (Fig. 2 and Table 2).

In most studied Erythrobacter species, erythroxanthin sulfate was

shown to be the main carotenoid [7,39] (Table S1), however, it does

not participate in the photosynthetic processes [39]. Light is

harvested by other pigments such as bacteriorubixanthinal,

zeaxanthin and b-carotene [39]. The main carotenoid identified

in Citromicrobium sp. JL354 was nostoxanthin (Table S1). We assume

that both species share similar carotenoid biosynthetic pathways

(Fig. 3). First, b-carotene is produced from lycopene by the action of

lycopene cyclase (crtY gene product). Zeaxanthin is obtained by two

Figure 3. Tentative carotenoid biosynthesis in AAP bacteria. The biosynthetic pathways are proposed based on the identification of
respective genes in the analyzed genomes.
doi:10.1371/journal.pone.0025050.g003
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step hydroxylation of b-carotene catalyzed by b-carotene hydrox-

ylase (crtZ gene product). Interestingly, the key genes (crtY and crtZ)

for zeaxanthin pathway are not organized in the PGCs, but are

spread throughout the chromosome (Table 2). Zeaxanthin is then a

starting intermediade for synthesis of both nostoxanthin (in genus

Citromicrobium) and erythroxanthin (in genus Erythrobacter) (Fig. 3).

The major carotenoids in Cb. litoralis KT71 is spirilloxanthin,

the same as in Rhodospirillum rubrum DSM 467T [10] (Table S1).

There are two possible options for spirilloxanthin biosynthesis:

typical-spirilloxanthin biosynthestic pathway and unusual-spiril-

loxanthin pathway (Fig. 3). Interestingly, the gene crtD was found

to be out of PGC in Cb. litoralis KT71 (Table 2), indicating that Cb.

litoralis KT71 might use the shorter unusual-spirilloxanthin

pathway.

In summary, this study showed that most of the photosynthetic

genes in AAP species were organized in the PGC. Two conserved

regions bchFNBHLM-LhaA-puhABC and crtF-bchCXYZ, were iden-

tified in all studied PGC. Based on their orientation we can divide

the studied strains into four different groups. The composition of

bch, puf and puh genes in the analyzed PGCs was relatively similar,

and the main difference was found among crt genes. Such

variability was mainly connected with different carotenoid

biosynthetic pathways present in AAP groups: spheroidenone

biosynthetic pathway in Roseobacters, zeaxanthin pathway in

Sphingomonadales and spirilloxanthin pathway in gammaproteobac-

terial NOR5/OM60 clade. Our investigation shed light on the

evolution and functional implications of PGCs of marine aerobic

anoxygenic phototrophs.

Methods

Photosynthetic superoperon sequences and
phylogenetic analysis

Ten full-length PGC sequences and gene locations were obtained

from the GenBank genome database. The GenBank accession

numbers are: Citromicrobium sp. JL354 (ADAE00000000) [22], Loktanella

vestfoldensis SKA53 (NZ_AAMS00000000), Dinoroseobacter shibae DFL 12

(NC_009952) [20], Roseobacter denitrificans OCh 114 (NC_008209) [18],

Jannaschia sp. CCS1 (NC_007802), Roseobacter litoralis Och 149

(NZ_ABIG00000000) [19], Roseovarius sp. 217 (NZ_AAMV00000000)

[21], Roseobacter sp. CCS2 (NZ_AAYB00000000), Roseobacter sp. AzwK-

3b (NZ_ABCR00000000), Erythrobacter sp. NAP1 (NZ_AAMW00

000000) [7], Congregibacter litoralis KT71 (Cb. litoralis KT71)

(NZ_AAOA00000000) [9,10], Marine gammaproteobacterium HTCC

2080 (NZ_AAVV00000000) [11].

For comparison two anaerobic anoxygenic phototroph Rhodo-

bacter sphaeroides strain 2.4.1 (NC_007493) and Rhodobacter capsulatus

SB 1003 (NC_014034) also were included in the analysis. Another

three green sulfur bacteria genome information used to outgroup

of phylogenetic tree, and their Genbank accession numbers are

Chloroflexus aggregans DSM 9485 (NC_011831), Chloroflexus aurantia-

cus J-10-fl (NC_010175) and Roseiflexus castenholzii DSM 13941

(NC_009767). In some cases the automatic gene annotation was

corrected manually.

Nearly complete pufM (.900 bps) genes and 27 core proteins in

PGCs were used to construct phylogenetic trees [17]. Both pufM

gene sequences collected from NCBI database were aligned using

Clustal X and phylogenetic trees were constructed using the

neighbour-joining and maximum-parsimony algorithms of MEGA

software 3.0 [40]. The phylogenetic trees were supported by

bootstrap for resampling test with 1000 replicates.

Pigment analyses
Six strains were used for pigment analyses: Rsb. denitrificans OCh

114 (DSM 7001), Rsb. litoralis Och 149 (DSM 6996) and Erb. longus

DSM 6997 were purchased from the DSMZ culture collections. D.

shibae JL1447, Cmi. bathyomarinum JL354 and Erythrobacter sp. JL475

were isolated and maintained in the laboratory [22]. The strains

were grown in Erlenmayer flasks with organic rich medium [8] at

room temperature (25uC) using a light-dark cycle. The grown cells

were harvested by centrifugation and extracted using 100%

methanol (in the case of Sphingomonadales species) or 7:2 (vol:vol)

acetone-methanol (in the case of Roseobacter species). The pigment

extract and analysis were done by high performance liquid

chromatography (HPLC) as described previously [41]. Briefly, the

chromatography was performed using the Agilent 1100 Series

system (Agilent Technologies Inc., Palo Alto, CA, USA). Pigments

were separated on a heated (35uC) Phenomenex Luna 3 m C8(2)

100 Å column with binary solvent system (0 min 100% A, 20 min

100% B, 25 min 100% B, 27 min 100% A, 30 min 100% A; A:

70% methanol+28 mM ammonium acetate, B: methanol) and

detected by a UV-VIS diode-array detector (Agilent DAD

61315B).

Supporting Information

Figure S1 Photosynthetic gene cluster structure and arrange-

ment in other phototrophs. Green, bch genes; red, puf and

regulator genes; pink, puh genes; orange, crt genes; blue, hem and cyc

gene; yellow, LhaA gene; blank, uncertain or unrelated genes; grey,

hypothetical protein.

(PPT)

Figure S2 Neighbor joining phylogenetic analysis of 27 core

proteins in PGCs from GenBank database. The core proteins are

bchBCDFGHILMNOPXYZ-crtCF-pufABLM- lhaA-puhABCE-ascF. Bar,

0.1 substitutions per amino acids position.

(PPT)

Table S1 The major carotenoid composition in AAP bacteria.

(DOC)
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