Theory of wind-driven circulation

The classical view

Rui Xin Huang Woods Hole Oceanographic Institution Woods Hole, MA 02543

Wind-driven circulation has been studied for a long time

Gulf Stream from Benjamin Franklin's map (widely used by ship captains) and SST map from satellite

Richardson, Science (1980)

SST satellite image (U. Miami RSMAS)

Major wind-driven gyres in the world oceans Why gyres? Why western boundary currents?

The Ekman Spiral (Ekman, 1905)

• Momentum equations

$$fu = -\frac{1}{\rho} \frac{\partial p}{\partial y} + \frac{\partial}{\partial z} \left(A \frac{\partial v}{\partial z} \right) \qquad A \frac{\partial u}{\partial z} = \tau^{x} / \rho, A \frac{\partial v}{\partial z} = \tau^{y} / \rho \quad at \ z = 0$$
$$-fv = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \frac{\partial}{\partial z} \left(A \frac{\partial u}{\partial z} \right) \qquad (u, v) \to 0, \ as \ z \to -\infty$$

• Velocity decomposition

$$u = U_g + u_e = -\frac{1}{\rho} \frac{\partial p}{\partial y} + u_e \qquad v = V_g + v_e = \frac{1}{\rho} \frac{\partial p}{\partial x} + v_e$$

- Ekman layer is thin (~30m), so the vertical shear of the geostrophic velocity is negligible
- Equations for the ageostrophic velocity

$$-fv_e = \frac{\partial}{\partial z} \left(A \frac{\partial u_e}{\partial z} \right), \ fu_e = \frac{\partial}{\partial z} \left(A \frac{\partial v_e}{\partial z} \right)$$

The Ekman transport

• Equations for the ageostrophic velocity

$$-fv_e = \frac{\partial}{\partial z} \left(A \frac{\partial u_e}{\partial z} \right), \ fu_e = \frac{\partial}{\partial z} \left(A \frac{\partial v_e}{\partial z} \right)$$

• Vertical integration leads to $-f \int_{-\infty}^{0} v_e dz = A \frac{\partial u_e}{\partial z} |_{z=0} = \tau^x / \rho$

$$-fV_e = \tau^x / \rho$$

$$fU_e = \tau^y / \rho$$

$$\vec{U}_e = -\vec{z} \times \vec{\tau} / f\rho$$

 $\tau = 0.1 Pa, f = 10^{-4} / s \Longrightarrow V_e = \tau / f \rho \Box 1m^2 / s$ Assume layer20mthick $\Longrightarrow v_e \Box 5 cm / s$ $V_e L = 6 \times 10^6 m^3 / s = 6Sv$

The Ekman spiral

• Equations for the ageostrophic velocity

$$M = u_e + iv_e \qquad \frac{d^2 M}{dz^2} - i\frac{f}{A}M = 0$$

$$M = c_1 e^{\lambda z} + c_2 e^{-\lambda z}, \ \lambda = \frac{\sqrt{2}}{2} (1+i) \sqrt{\frac{f}{A}}$$

• Applying boundary conditions

$$M \to 0 \text{ as } z \to -\infty \Longrightarrow c_2 = 0$$

$$\frac{dM}{dz}\Big|_{z=0} = \lambda c_1 = \frac{1}{\rho A} \left(\tau^x + i\tau^y\right) \qquad c_1 = \frac{1-i}{\sqrt{2fA\rho}} \left(\tau^x + i\tau^y\right)$$

• Ekman spiral $u_e + iv_e = \frac{1 - i}{\sqrt{2fA\rho}} (\tau^x + i\tau^y) Exp\left[\frac{\sqrt{2}}{2} (1 + i)\sqrt{\frac{f}{A}}z\right]$

Consequence of Ekman convergence/divergence

- 1) In the ocean interior, Ekman convergence leads to Ekman pumping which drives the wind-driven gyres in the oceans
- 2) Off-shore (on-shore) Ekman flux leads to coastal upwelling (downwelling)
- 3) Off-equator Ekman flux induces equatorial upwelling
- 4) Ekman divergence leads to the upwelling associated with ACC --- the most important upwelling system in the world oceans

The Ekman pumping (泵压/泵吸)

• Integrating continuity equation

$$u_x + v_y + w_z = 0$$

leads to

$$w_{e} = \int_{-H}^{0} \left(u_{x} + v_{y} \right) dz = \frac{\partial}{\partial x} \int_{-H}^{0} u_{e} dz + \frac{\partial}{\partial y} \int_{-H}^{0} v_{e} dz$$

• Ekman pumping rate

$$w_{e} = \frac{\partial}{\partial x} \left(\frac{\tau^{y}}{f\rho} \right) - \frac{\partial}{\partial y} \left(\frac{\tau^{x}}{f\rho} \right) = \frac{1}{f\rho} \left[\frac{\partial \tau^{y}}{\partial x} - \frac{\partial \tau^{x}}{\partial y} \right] + \frac{\beta \tau^{x}}{f^{2}\rho}$$

• Typical values:

 $W_e \square \mp 10^{-6} m / s$

Sketch of the wind-driven gyres

Thermocline in the world oceans

The best way to search for the thermocline is from the bottom and move upward

Thermocline at a station; The meaning of a reduced gravity model

Pressure terms

• Rigid-lid approximation

We should not take the so-called rigid-lid approximation as a "钢盖"。 This is just an approximation in which the upper surface of the ocean is set at the z=0 level with a suitable boundary condition.

- Pressure gradient under the rigid-lid approximation
 Note that pressure at the z=0 is not constant, and this term can be eliminated based on certain assumptions
- Assume $p=p_a$ at z=0 and integrated the hydrostatic relation downward

$$\frac{1}{\rho_2} \nabla_h p_2 \Box g \nabla_h \zeta - g'_1 \nabla_h h_1 \Box 0 \Rightarrow \frac{1}{\rho_1} \nabla_h p_1 = g' \nabla_h h_1, \zeta \Box \frac{\Delta \rho}{\rho} h_1$$

A reduced gravity model

• Basic assumptions:

Treat the main thermocline as a step function in density Assume the lower layer is very thick and motionless Assume motions in the upper layer is adiabatic

• Basic equations

$$hu_{t} + h(uu_{x} + vu_{y}) - fhv = -g'hh_{x} + \tau^{x} / \rho_{0} + A\nabla_{h}^{2}(hu) - Ru$$

$$hv_{t} + h(uv_{x} + vv_{y}) + fhu = -g'hh_{y} + \tau^{y} / \rho_{0} + A\nabla_{h}^{2}(hv) - Rv$$
Reduced gravity wind stress
$$h_{t} + (hu)_{x} + (hv)_{y} = 0$$
lateral friction bottom friction

A slightly different form

$$u_t + uu_x - (f + v_x - u_y)v + vv_x = -g'h_x + \frac{\tau}{\rho_0 h} + A_h(u_{xx} + u_{yy}) - ru$$

$$u_{t} - (f + \zeta)v = -B_{x} + \frac{\tau^{x}}{\rho_{0}h} + A_{h}(u_{xx} + u_{yy}) - ru, B = g'h + \frac{u^{2} + v^{2}}{2}$$

$$v_{t} + uv_{x} + (f + v_{x} - u_{y})u + uu_{y} = -g'h_{y} + \frac{\iota}{\rho_{0}h} + A_{h}(v_{xx} + v_{yy}) - rv$$

$$v_{t} + (f + \zeta)u = -B_{y} + \frac{\tau^{y}}{\rho_{0}h} + A_{h}(v_{xx} + v_{yy}) - rv, B = g'h + \frac{u^{2} + v^{2}}{2}$$

The final form

$$u_{t} - (f + \zeta)v = -B_{x} + \frac{\tau^{x}}{\rho_{0}h} + A_{h}(u_{xx} + u_{yy}) - ru;$$

$$v_t + (f + \zeta)u = -B_y + \frac{\tau^y}{\rho_0 h} + A_h (v_{xx} + v_{yy}) - rv;$$

Mechanic energy balance

• Multiplying momentum equation by u and v and add:

$$h\vec{u}\cdot\nabla_{h}\left(\frac{u^{2}+v^{2}}{2}+g'h\right)=W$$

Along streamlines total energy change is balance by source/sink

Kinetic
energyPotential energy
Bernoulli function $W = \frac{1}{\rho_0} (u\tau^x + v\tau^y) - R(u^2 + v^2) + A[u\nabla_h^2(hu) + v\nabla_h^2(hv)]$ Wind work
positive sourceBottom
friction
sinkLateral
friction
sink

Wind drive circulation is treated as adiabatic motions \rightarrow thermodynamic is not included in such a theory

Vorticity balance

• Cross-differentiating momentum equation and subtracting

$$\vec{u} \cdot \nabla_h q + q(u_x + v_y) = C$$

$$q = f + v_x - u_y \qquad C = \left(\frac{\tau^y}{\rho_0 h} - \frac{Rv}{h} + \frac{A}{h} \nabla_h^2(hv)\right)_x - \left(\frac{\tau^x}{\rho_0 h} - \frac{Ru}{h} + \frac{A}{h} \nabla_h^2(hu)\right)_y$$
Vorticity
Vorticity
Wind
Source of potential vorticity
Wind
stress
curl
Source of potential vorticity
Lateral
friction
sink
Source of sink

$$h\vec{u}\cdot\nabla_{h}Q=C, \ Q=\frac{f+v_{x}-u_{y}}{h}$$

Potential vorticity balance

Along streamlines potential vorticity (PV) change is balance by source/sink

$$h\vec{u}\cdot\nabla_h Q = C, \ Q = \frac{f+v_x-u_y}{h}$$

A more accurate expression is to include the density jump

$$Q' = \left(f + v_x - u_y\right) \frac{\Delta \rho}{\rho_0 \Delta h}$$

For continuous stratification

$$Q' = -\left(f + v_x - u_y\right) \frac{\partial \rho}{\rho_0 \partial z}$$

For large-scale circulation, relative vorticity is small and negligible; thus, the commonly used forms are

Conservation laws

• For steady flow, we introduce a streamfunction

$$\psi_x = hv, \ \psi_y = -hu$$

• Two conservation laws

$$B = \frac{u^2 + v^2}{2} + g'h = F(\psi) \quad Q = \frac{f + v_x - u_y}{h} = G(\psi)$$

• These two functions are not independent

Taking the gradient

$$\nabla B = \frac{dF}{d\psi} \nabla \psi$$

$$\frac{dF}{d\psi} = G(\psi), \text{ or } Q\nabla \psi = \nabla B$$

The interior solution, based on wind stress (Ekman flux is included, 全流) $-fhv = -g'hh_r + \tau^x / \rho_0$ $fhu = -g'hh_{v}$ $(hu)_{v} + (hv)_{v} = 0$ $\rightarrow \psi_x = hv, \psi_y = -hu$ Sverdrup transport • Cross-differentiation \rightarrow $\longrightarrow \psi = \frac{1}{\rho_0 \beta} \tau_y^x (x_e - x)$ $\beta hv = -\tau_v^x / \rho_0$ $hh_{x} = -\frac{f^{2}}{g'\rho_{0}\beta} \left(\frac{\tau^{x}}{f}\right) \longrightarrow h^{2} = h_{e}^{2} + \frac{2f^{2}}{g'\rho_{0}\beta} \left(\frac{\tau^{x}}{f}\right) (x_{e} - x)$

Why integration from eastern boundary, not the western b.?

Sverdrup transport in the world oceans

Descriptive Physical Oceanography Fig. 5.17

The interior solution, based on Ekman pumping (Ekman flux not included)

$$-fhv = -g'hh_{x}$$

$$fhu = -g'hh_{y}$$

$$(hu)_{x} + (hv)_{y} = -w_{e}, w_{e} = -(\tau^{x} / f\rho_{0})_{y}$$

• Cross-differentiation \rightarrow

$$\beta h v = f w_e = -f \left(\frac{\tau^x}{f \rho_0} \right)_y$$

$$hh_{x} = -\frac{f^{2}}{g'\rho_{0}\beta} \left(\frac{\tau^{x}}{f}\right)_{y} \longrightarrow h^{2} = h_{e}^{2} + \frac{2f^{2}}{g'\rho_{0}\beta} \left(\frac{\tau^{x}}{f}\right)_{y} \left(x_{e} - x\right)$$

The interior solution, based on Ekman pumping

• Integrating the vorticity equation leads to the meridional transport (the Sverdrup function)

 $m = \frac{f}{\rho_0 \beta} \left(\frac{\tau^x}{f} \right)_y (x_e - x)$ There is no streamfunction because there is a mass source

• Introduce a virtual streamfunction

$$\psi^* = \frac{g'}{2f_0}(h^2 - h_e^2) = \frac{f^2}{f_0\rho_0\beta} \left(\frac{\tau^x}{f}\right)_y (x_e - x)$$

• A constant line of ψ^* is a streamline; but the flux between two lines can change due to Ekman pumping

The application to interior communication window later.

Scaling of momentum equation in the western boundary layer Assume scales : $u \sim 0.01$, $v \sim 1$, $dx \sim 10^4$, $dy \sim 10^6$, $\tau \sim 0.1, h \sim 100, g' \sim 0.01, R \sim 10^{-4}$ $hu_t + h(uu_x + vu_y) - fhv = -g'hh_x + \tau^x / \rho_0 + A\nabla_h^2(hu) - Ru$ $10^{2}(10^{-9}.10^{-7})$ 10^{-2} 10^{-2} 10^{-4} 10^{-6} $hv_t + h(uv_x + vv_y) + fhu = -g'h_v + \tau^y / \rho_0 + A\nabla_h^2(hv) - Rv$ $10^{2}(10^{-6}, 10^{-6})$ 10^{-4} 10^{-4} 10^{-4} ?? 10^{-4}

Semi-geostrophy: geostrophy in the cross-stream direction ageostrophy in the along-stream direction

 $fhv = g'hh_x$

Common features in Western boundary layer

- Integrating the geostrophic relation in cross-stream
 - direction $fhv = g'hh_x \qquad h_I^2 = h_e^2 + \frac{2f^2}{g'\rho_0\beta} \left(\frac{\tau^x}{f}\right)_y (x_e x_w)$ $\psi = \psi_I + \frac{g'}{2f} \left(h^2 h_I^2\right)$ $\Psi_I = \frac{1}{\rho_0 \beta} \tau_y^x (x_e - x_w)$ $h_{w}^{2} = h_{I}^{2} - \frac{2f}{g'}\psi_{I} = h_{e}^{2} - \frac{2}{g'}\sigma_{c}\tau^{x}(x_{e} - x_{w})$
 - 1) Large layer thickness change across stream

2) Within the subtropical gyre

$$\frac{\partial h_w^2}{\partial y} = -\frac{2}{g'\rho_0} \left(x_e - x_w\right) \frac{\partial \tau^x}{\partial y} < 0$$

Thermocline thickness at the outer edge and wall of the western boundary

Subtropical gyre

Subpolar gyre

A numerical example of the thermocline thickness and surface elevation

4.1 简单分层模式 211

这样一个北向的压强梯度力是沿岸环流(其在海岸横向的尺度则小得多)的一个重要的远 岸背景场。一方面,在亚热带海盆,这个经向压强梯度力可以推动一支沿着亚热带海盆西边界的 向极沿岸流。另一方面,在亚极地海盆,对应的压强梯度是向赤道的,因而它在建立沿着亚极带 海盆西边界的向赤道流动中发挥了关键的作用。此外,由于在整个海盆上气候条件的变化,这样 一个大尺度的压强场应该在年代的时间尺度上发生变化,由此而带来沿岸环流的变化。

Scaling in the western boundary layer

 $hu_{t} + h(uu_{x} + vu_{y}) - fhv = -g'hh_{x} + \tau^{x} / \rho_{0} + A\nabla_{h}^{2}(hu) - Ru$ $10^{2}(10^{-9},10^{-7})$ 10^{-2} 10^{-2} 10^{-4} 10^{-6} $hv_t + h(uv_x + vv_y) + fhu = -g'h_v + \tau^y / \rho_0 + A\nabla_h^2(hv) - Rv$ $10^{2}(10^{-6}, 10^{-6})$ 10^{-4} 10^{-4} 10^{-4} 10^{-4} ?? $-fhv = -g'hh_{r}$ $\beta hv = -Rv$ $fhu = -g'hh_v - Rv$ Scaling of the more complete PV equation \rightarrow wind-stress curl and Ru_{y} $\beta hv = -\frac{\tau_y^x}{2} + R(u_y - v_x)$ can be neglected $2 \cdot 10^{-9}$ 10^{-10} $2 \cdot 10^{-4} (10^{-8}, 10^{-5})$

Thermocline depth with a Stommel layer

$$\tau^{x} = -0.15 \cos\left(\frac{y - y_{s}}{y_{n} - y_{s}}\pi\right), g' = 0.015m / s^{2}, h_{e} = 300m$$

Wind-driven gyre with a Stommel layer (in Sv)

Potential vorticity (10⁻¹⁰/s/m)

The sink and source of PV

Wind work on the subtropical gyre

The Inertial western boundary layer

 Basic idea → Stommel (1954): within the western boundary, the inertial term associated with horizontal advection balances the planetary vorticity term

Charney (1955) and Morgan (1956) put this idea in accurate formulation

• The basic equations

$$h(uu_{x} + vu_{y}) - fhv = -g'hh_{x} + \tau^{x} / \rho_{0}$$

$$h(uv_{x} + vv_{y}) + fhu = -g'hh_{y}$$

$$(hu)_{x} + (hv)_{y} = 0$$

$$fhv = g'hh_{x}$$

$$B = \frac{1}{2}v^{2} + g'h = F(\psi), \text{ energy conservation}$$

$$Q = \frac{f + v_{x}}{h} = G(\psi), \text{ potential vorticity conservation}$$

The inertial western boundary layer

• Determine the energy/vorticity functions from the outer edge of the w.b.l. f(Y)

$$F(\psi_I) = g'h_I(Y) \qquad G(\psi_I) = \frac{f(I)}{h_I(Y)}$$

• The interior solution at the outer edge of w.b.l.

• North of the latitude where $\psi_I(Y)$ reaches the maximum, this one-to-one inverse is no longer valid \rightarrow this is the northern limit of inertial western boundary layer

The inertial western boundary layer

• Streamfunction and layer thickness within w.b.l.

$$\psi = \psi_I + \frac{g'}{2f} (h^2 - h_I^2)$$
 $h^2 = h_I^2 + \frac{2f}{g'} (\psi - \psi_I)$

- The velocity is linked through the Bernoulli function $\frac{1}{2}v^2 + g'h = F(\psi) \Rightarrow v = \sqrt{2\left[F(\psi) - g'h\right]}$
- Note that $h^2 = h_I^2 + \frac{2f}{g'}(\psi \psi_I)$

is the inertial western boundary layer solution in streamfunction coordinate, which can be plot in physical coordinate by use the Von-Mises transformation (used in fluid mechanics) to the streamfunction coordinate

$$x = \int_0^{\psi} \frac{d\psi}{h\nu}$$

Inertial western boundary current

PV controls the lowest-order dynamics Other parameters (friction) are secondary

Stommel (1948) classical figures What controls the circulation?

A simple model $hu_t - fhv = -g'hh_x + \tau^x / \rho_0 + A\nabla_h^2(hu) - ru$ $hv_t + fhu = -g'hh_y + \tau^y / \rho_0 + A\nabla_h^2(hv) - rv$ $h_t + (hu)_x + (hv)_y = 0$

Streamfunction for a model on f-plane Circulation inversely proportional to friction

Vorticity equation $(\tau^x)_y / \rho_0 = r(u_y - v_x) + HOT$

Streamfunction for a model on beta-plane solution insensitive to friction

Vorticity
equation
$$\beta hv = -\tau_y^x / \rho_0 + r(u_y - v_x)^{\text{High order term}}$$
Necessary only in the
western boundary

b) ψ (Sv), gpri=1cm/s²,r=0.05cm/s², β -plane

Vorticity balance

Ventilation and subduction

Ventilation through exposure to atmospheric forcing

Subduction via motion continuous from the outcropping

Ventilated thermocline

Interior solution (2 moving layers)

Inertial western boundary layer (No solution for the northern part of the western boundary layer)

Mixing/dissipation required for close the budgets of the circulation

Flow structure of a 2-gyre circulation

Typical trajectory of a water parcel

An Eulerian view of the Ekman cells

Lagrangian eddy flux?

Can Ekman pumping be cancelled by an upward Lagrangian eddy flux?

- 1) Flux in Eulerian and Lagrangian coordinates have different physical meaning --- they cannot be treated as the same fluxes
- 2) In the Lagrangian coordinates, there might be different fluxes associated with different tracers and different eddy sizes
- 3) Eddy flux associated with certain size of eddies may be compensated by a virtual flux of "eddy shadow" --- such a compensating virtual flux may move in the opposite direction.
- 4) When people in a meeting moves around, the air occupied by people should also move around --- the motions of air more or less compensates the flux associated with human being.