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Abstract Severe winter ice loss in the Barents–Kara Sea (BKS) affects the local environment and climate in
other regions. To reduce sea ice projection uncertainties and reliably identify future ice‐free periods, we apply a
time‐varying emergent constraint method to model simulations from the Coupled Model Intercomparison
Project Phase 6 (CMIP6). For SSP5‐8.5, the constrained ice‐free date is the multi‐model ensemble mean
(MMEM) estimate of 2071–2075 with a 90% confidence range (equivalent to IPCC's “very likely range”) of
[2047, 2100+], while it shifts to 2086–2090 with the very likely range of [2054, 2100+] for SSP3‐7.0. For
SSP2‐4.5 and SSP1‐2.6, the very likely range for the ice‐free dates are [2080, 2100+] and [2095, 2100+], while
ice remains in the optimal constrained MMEM sea ice concentration. Relative to the unconstrained results, the
optimal constrained maximum probability of an ice‐free BKS increases notably under SSP5‐8.5 and SSP3‐7.0,
but decreases under SSP1‐2.6 and SSP2‐4.5.

Plain Language Summary The recent winter Barents–Kara Sea (BKS) sea ice concentration (SIC)
decrease has considerably affected global weather and climate. Model projections from the Coupled Model
Intercomparison Project Phase 6 (CMIP6) confirm a future decrease in BKS SIC, but the magnitude and
characteristics of this decrease remain uncertain, complicating assessments of future ice‐free conditions.
Applying the time‐varying emergent constraint method, future BKS SIC is constrained by the observation,
thereby reducing projection uncertainty and offering a more reliable scientific basis for the timing of an ice‐free
period. After the constraint, the very likely ranges of the ice‐free period under SSP1‐2.6 and SSP2‐4.5 become
narrower and shift toward the end of the 21st century. Under SSP3‐7.0 and SSP5‐8.5, the constrained ranges
show a delay of approximately 18 years in the onset of the ice‐free condition compared to the original results.
Additionally, the optimal constrained maximum ice‐free probability increases to 67% and 63% for SSP5‐8.5 and
SSP3‐7.0, respectively, up from 42% to 32% in the original projections. Conversely, the constrained
probabilities under SSP1‐2.6 and SSP2‐4.5 are lower and suggest ice‐free conditions are even unlikely. These
results clearly underscore the crucial importance of greenhouse gas emission mitigation in slowing sea ice loss
in the BKS.

1. Introduction
Although the Barents–Kara Sea (BKS) accounts for only 11% of the Arctic ocean (Meier & Stewart, 2023), it has
contributed approximately 30%–40% of the total Arctic winter sea ice loss in recent years (Z. Liu et al., 2022;
Onarheim et al., 2018). Recent studies have also reported that as the Arctic transitions to a seasonally ice‐free state
in the future, winter sea ice loss is expected to dominate, potentially rendering the region a tipping point in the
climate system (McKay et al., 2022; Stroeve & Notz, 2018; Årthun et al., 2021). Consequently, recent severe
winter sea ice loss in the BKS has attracted considerable attention from the scientific community (Dörr
et al., 2024; Luo & Yao, 2018; Rieke et al., 2023; Tian et al., 2022; Yamagami et al., 2022).

Changes in winter BKS sea ice can substantially affect regional climate and ecological conditions. For instance,
sea ice loss in this region can amplify surface air temperature warming (Dai et al., 2019; Dai & Jenkins, 2023;
Jenkins & Dai, 2021), enhance primary productivity (Ardyna et al., 2014; Dalpadado et al., 2020; Ji et al., 2013),
exacerbate ocean acidification (Årthun et al., 2025; Ericson et al., 2023; Qi et al., 2022), contribute to the
northward migration of fish populations (Fall et al., 2018; Nascimento et al., 2023; Varpe et al., 2014), and
produce a variety of other ecological and environmental impacts (Aune et al., 2021; Gerland et al., 2023; Strople
et al., 2023; Toxværd et al., 2019). Moreover, the impact of winter BKS sea ice loss is not only local, but also
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influences weather and climate in distant regions (Delhaye et al., 2024; Ghosh et al., 2024; Jiang et al., 2021;
Koenigk et al., 2016; Xinxin; Li et al., 2019; Mori et al., 2014, 2019; Petoukhov & Semenov, 2010; Vihma
et al., 2014; Xu et al., 2021; Zhang, Wu, Simpson, et al., 2018; Zhang, Wu, & Smith, 2018). For example, Mori
et al. (2014, 2019) demonstrated that winter BKS sea ice loss enhances the frequency of Eurasian blocking events,
thereby facilitating the intrusion of cold air into Eurasia and contributing approximately 44% during 1995–2024 to
the observed Eurasian cooling trend. Zhang, Wu, & Smith (2018) and Zhang, Wu, Simpson, et al. (2018) further
revealed that early‐winter BKS sea ice loss can induce cold advection over central Asia and lead to a colder
Siberia, both primarily through stratosphere‐troposphere coupling. Similarly, Sun et al. (2022) suggested that
over the past two decades, the reduction in winter BKS sea ice increased the frequency of extreme heatwaves in
the mid‐high latitudes of Eurasia during spring by enhancing the troposphere‐stratosphere interactions.
Furthermore, Hou et al. (2022) showed that this ice loss triggers a wavenumber one atmospheric circulation,
leading to cooling over Eurasia and warming over North America. More recently, Ghosh et al. (2024) further
emphasized the role of winter BKS sea ice loss in the observed surface air temperature cooling trend over Eurasia
in winter, noting a roughly 6‐year cycle linked to the Warm‐Arctic Cold‐Eurasia pattern. Additionally, Cheng
et al. (2025) depicted that the winter sea ice state in and around the Barents Sea acts is a significant precursor of
the Indian Ocean Dipole development during the following autumn.

Additionally, recent studies have also explored the potential influence of BKS sea ice loss on climate change over
the “Third Pole” — the Tibetan Plateau (TP). In particular, previous studies suggested that wintertime BKS sea
ice reduction could enhance the transport of aerosols from South Asia to the TP (F. Li et al., 2020), intensifying
winter warming (Duan et al., 2022) and snowmelt (Y. Chen et al., 2020) over the TP. Given that both Arctic sea
ice and the TP are considered potential climate tipping elements, continued winter BKS sea ice loss could
accelerate the progression of climate anomalies over the TP toward a critical threshold (T. Liu et al., 2023; McKay
et al., 2022). These scientific results emphasize the impact of winter BKS sea ice loss on climate and ecological
systems at the regional and global scales. Therefore, a comprehensive understanding of future winter sea ice
evolution in the BKS—particularly the potential occurrence and timing ice‐free conditions—is essential to
support climate adaptation strategies and evidence‐based policy decisions to prepare for sustainable development
in the polar regions (Xin Li et al., 2025).

Given the importance of winter sea ice change in the BKS region and the timing of the transition to an ice‐free
state, several studies have sought to address this issue using the Coupled Model Intercomparison Project model
datasets (Onarheim & Årthun, 2017; Pan et al., 2023; Peng et al., 2024). The previous study employed a 40‐
member ensemble of the Community Earth System Model and projected that, under Representative Concen-
tration Pathway 8.5 (RCP8.5) scenario, the winter ice‐free period in the Barents region would occur between 2061
and 2088 (Onarheim & Årthun, 2017). Subsequently, Pan et al. (2023) suggested that under Shared Socioeco-
nomic Pathway 5–8.5 (SSP5‐8.5) scenario, the winter ice‐free condition of the Barents region may emerge be-
tween 2042 and 2089. A recent study reported that the winter BKS region would not experience an ice‐free period
under SSP1‐2.6 scenario alone (Peng et al., 2024). While these studies provide valuable insights, it is important to
recognize that the results could be influenced by model dependencies and associated uncertainties.

Recently, the emergent constraint method has been widely used to reduce projection uncertainty by leveraging a
robust inter‐model relationship between historical factor and future climate projection (Bracegirdle & Ste-
phenson, 2013; Kwiatkowski et al., 2017; Yao et al., 2025; Zhu et al., 2024). However, in most studies employing
the emergent constraint method, the selection of historical period used to constrain future projection was often
arbitrary, depending primarily on the availability of observational data (Z. Chen et al., 2023; A. Liu et al., 2024;
Shiogama et al., 2022; Terhaar et al., 2020), which could overlook the dynamic and evolving nature of the climate
system over time. Shen et al. (2023) proposed a time‐varying emergent constraint method, which can effectively
address this issue by identifying the optimal historical constraint period corresponding to different future pro-
jection periods, thereby yielding more reasonable projection results. Therefore, to adopt a more objective
constraint approach and consider the potential changes in the Arctic system, this study employs the time‐varying
emergent constraint method to estimate future winter BKS sea ice changes and access the emergence of ice‐free
conditions, with the goal of improving the robustness and credibility of climate projections.
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2. Data and Methods
2.1. Data

The observational sea ice concentration (SIC) with a 25 km × 25 km grid during 1979–2024 is from Version 4 of
the Climate Data Record of Passive Microwave SIC provided by the National Snow and Ice Data Center (NSIDC)
(Meier et al., 2021). A regional mask for the BKS region, which serves as the focus area of this study, is also
provided by NSIDC, as shown in Figure S1a in Supporting Information S1. Since satellite observation data of SIC
commenced in 1979, our analysis focuses on the output after 1979, which is adopted in the previous studies (Liu
et al., 2013; Onarheim & Årthun, 2017; Shen et al., 2021).

For model simulations, this study utilizes SIC data from 30 CMIP6 models (detailed, Table S1 in Supporting
Information S1) under both historical simulations and future emission scenarios (Eyring et al., 2016; O’Neill
et al., 2016). The future scenarios include SSP1‐2.6, SSP2‐4.5, SSP3‐7.0, and SSP5‐8.5, which represent different
socioeconomic development and radiative forcing conditions. These scenarios are used to assess future changes
of wintertime BKS SIC and to project the timing of potential ice‐free condition. The first publicly available
ensemble member is analyzed for each model (Table S1 in Supporting Information S1) and the winter BKS SIC
time series is computed on the model's native grid. Here, a winter in the BKS is considered ice‐free if the regional
average SIC during that season falls below 15% for the first time, based on the value smoothed with a 5‐year
running mean (Årthun et al., 2021). The winter mean value is calculated as the seasonal mean value from the
December, January, and February data.

2.2. Time‐Varying Emergent Constraint Method

The traditional emergent constraint method consists of two main steps:

1. Identify a physically meaningful historical predictor (X) that exhibits a significant correlation with a future
climate variable of interest (Y), and establish an inter‐model linear regression relationship between them:

Y = Y + b(X − X) (1)

Where b is the regression coefficient, Y and X is the multi‐model mean of Y and X, respectively.

2. Apply this statistical relationship to constrain the future projection by substituting the observed value Xo into
the regression equation to obtain the constrained Yc, and subsequently calculate the associated prediction
confidence interval:

Yc = Y + b(Xo − X) (2)

σ2Yc
=
∑

n
i=1(Yi − Y)2

n − 2
(1 − r2) (3)

Where r is the inter‐model correlation coefficient between Y and X, n is the number of models, and σ2Yc
is the

constrained variance, respectively. According to the “very likely range” defined in the Intergovernmental Panel
on Climate Change (IPCC) report (Masson‐Delmotte et al., 2021), the 90% prediction confidence interval of Yc is
calculated here, that is [Yc − 1.65σYc

,Yc + 1.65σYc
], assuming a normal distribution for the regression

residuals.

More recently, the time‐varying emergent constraint method has refined the traditional approach by evaluating
inter‐model correlations between the future predictand and the predictor over different historical periods. The
period exhibiting the strongest correlation (i.e., the highest inter‐model correlation coefficient) is identified as the
optimal constraint window, within which the traditional emergent constraint method is subsequently applied for
further analysis (Shen et al., 2023).

Additionally, the quantitative measure of the reduced uncertainty between the constrained and unconstrained
results of winter BKS SIC is calculated as follows:
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Reduced uncertainty =
uncontrained uncertainty range of SIC − contrained uncertainty range of SIC

uncontrained uncertainty range of SIC
× 100%

(4)

3. Results
3.1. Winter BKS SIC in Original CMIP6 Simulations

Figure 1a illustrates the time series of winter BKS SIC, where the purple line represents the observation and the
black line corresponds to the multi‐model ensemble mean (MMEM) derived from 30 CMIP6 models. During the
historical simulation period (1979–2014), the MMEM exhibits a positive bias compared to the observation, with
its climatological mean approximately 10% higher. In 2015–2023, the MMEM projections remain consistently
higher than the observation under all emission scenarios, suggesting a possible delay in the occurrence of ice‐free
conditions in the BKS. Moreover, the MMEM SIC projections remain broadly consistent for all emission sce-
narios in the near‐term period (2020–2039) but start diverging in the mid‐term period (2040–2059). Toward the

Figure 1. (a) The time series of winter sea ice concentration (SIC) over the Barents‐Kara (BKS). The solid purple line
represents the observed winter SIC from 1979 to 2023. The solid black, green, orange, blue, and red lines indicate the multi‐
model ensemble mean (MMEM) of 30 Coupled Model Intercomparison Project Phase 6 (CMIP6) models under the
historical, SSP1‐2.6, SSP2‐4.5, SSP3‐7.0 and SSP5‐8.5 scenarios, respectively. The Shading shows the one standard
deviation spread from the MMEM value. The horizontal dashed red line indicates the threshold for the ice‐free condition.
(b) The winter ice‐free year over the BKS projected by 30 CMIP6 models under the four scenarios. The circle, pentagram,
and triangle represent the year with one, two, and three models indicating ice‐free condition, respectively. The green, orange,
blue and red numbers denote the amount of 30 models projecting ice‐free state under the four scenarios, respectively.
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late 21st century (2080–2099), the winter BKS SIC stabilizes under SSP1‐2.6 and SSP2‐4.5 but decreases further
under the SSP3‐7.0 and SSP5‐8.5 scenarios, in response to the continuously increasing greenhouse gas forcing.
Nevertheless, the calculated SIC values remain above the 15% threshold, even under high‐emission scenarios.

Shaded areas in Figure 1a indicates the range of uncertainty in winter BKS SIC projections derived from the
CMIP6 models. There is a notable spread among the 30 models. The associated uncertainty increases substan-
tially over time. This growing uncertainty directly contributes to the divergence in CMIP6 model projections
regarding the timing of future winter ice‐free conditions in the BKS region (Figure 1b). Specifically, only 5
models project an ice‐free state in the BKS before 2100 under SSP1‐2.6 scenario, with onset years from 2039 to
2089. Under SSP2‐4.5, 12 models project ice‐free conditions starting between 2046 and 2097, while 16 models
simulate an ice‐free state occurring between 2036 and 2093 under the SSP3‐7.0 scenario. Finally, for the high‐
emission SSP5‐8.5 scenario, 19 models indicate an onset of ice‐free conditions in the BKS between 2036 and
2089. The substantial inter‐model spread in the occurring timing of winter BKS ice‐free conditions and the biases
presented in the historical simulations of CMIP6 models demonstrate the limitations of unconstrained projection
methods. To alleviate these, this study will employ a time‐varying emergent constraint approach to calibrate
model projections and optimize the reliability as much as possible.

3.2. Constrained Projections of Winter BKS SIC

Models with more historical sea ice typically exhibit weaker responses to greenhouse gas forcing and slower ice
loss, retaining ice for longer periods. Therefore, following earlier studies (J. Liu et al., 2013; Shen et al., 2023), the
historical winter BKS SIC climatology is applied as a constraint factor on future SIC projections in that area.
Since the observational data is available until winter 2023, the calibration period for projections is defined as the
winters from 2024 to 2099. Figure 2 illustrates the process of time‐varying emergent constraint, employing the 5‐
year mean of winter BKS SIC during 2024–2028 under SSP3‐7.0 scenario as an example. The first step involves
identifying the optimal constraint window for this projection period. In Figure 2a, the x‐axis represents the ending
year of each historical running period, the y‐axis denotes the length of the running window, and the color shading
indicates the inter‐model correlation coefficients between the historical running means over different time periods
and the projected five‐year average SIC for 2024–2028. For instance, the point at (2023, 45) in Figure 2a rep-
resents the inter‐model correlation coefficient between the average SIC over 1979–2023 and that over 2024–
2028. The highest correlation coefficient value (black dot in Figure 2a) marks the optimal constraint period
for the selected projection window. In this example, we identify 2011–2023 as the optimal constraint period, with
an inter‐model correlation coefficient of 0.98.

In Figure 2b, the x‐axis represents the average value of SIC during the optimal historical constraint period (2011–
2023), while the y‐axis denotes that for the projection period (2024–2028). Different symbols represent individual
climate models. The red solid line indicates the regression relationship between the historical and projected SIC
values across models, with the pink shaded area representing the 90% prediction confidence interval. The green
vertical dashed line marks the observed mean SIC for 2011–2023, which serves as the constraint on the projected
SIC for 2024–2028. Results show that the constrained MMEM SIC is approximately 45% (blue dashed line in
Figure 2b), which is 15% lower than the original CMIP6MMEM (60%, gray dashed line). The corresponding 90%
confidence interval for the constrained result is (36%, 53%) (blue shading), representing a 78% uncertainty
reduction relatively to the original CMIP6 confidence interval ((21%, 99%), gray shading). The probability
density function in Figure 2c further illustrates that the inter‐model uncertainty in the projected SIC for 2024–
2028 is substantially reduced after applying the constraint. For other emission scenarios, applying the optimal
emergent constraint for the same period similarly yields MMEM SIC values that are over 10% lower than the
original CMIP6 MMEM, along with a reduction in projection uncertainty exceeding 70% (Figures S2–S4 in
Supporting Information S1). These results clearly demonstrate the effectiveness of the time‐varying emergent
constraint method.

A similar analysis is conducted for the remaining projection 5‐year moving periods, as shown in Figure S5 in
Supporting Information S1, which demonstrates that the optimal constraint period evolves over time across the
four emission scenarios. This temporal dependence justifies the necessity of dynamically identifying the optimal
constraint window rather than arbitrarily adopting a fixed period as in previous studies (Z. Chen et al., 2023; A.
Liu et al., 2024; Shiogama et al., 2022; Terhaar et al., 2020). Therefore, it is important to emphasize that a
constraint period optimal for one target window may not be appropriate for another, particularly under different
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forcing scenarios. Reliance on a static constraint period could yield less reliable or even misleading projections.
Moreover, Figure 2d illustrates the temporal evolution of inter‐model correlation coefficients between the optimal
constraint period and the corresponding projected values. Under SSP1‐2.6 and SSP2‐4.5 scenarios, correlation
coefficients remain consistently above 0.9, indicating strong inter‐model consistency. Conversely, under high‐
emission scenarios such as SSP3‐7.0 and SSP5‐8.5, the correlation coefficients exhibit a slight decline in the
later period. Nevertheless, the correlation coefficients remain still above 0.75 and are statistically significant at the
99% confidence level, suggesting that the selected optimal constraint period maintains strong constraining ability
across all scenarios.

Figure 3 compares times series of the projected winter BKS SIC with and without the emergent constraint. The
gray shading and black line represent the original model ensemble results, whereas the colored shading and lines
indicate the constrained projections. Applying the constraint leads to a substantial reduction in projection un-
certainty and a systematic narrowing and temporal shift of the very likely range for the projected ice‐free period.
Specifically, under the SSP1‐2.6 and SSP2‐4.5 scenarios, the projected range of ice‐free conditions changes from
[2036, 2100+] to [2095, 2100+] and from [2034, 2100+] to [2080, 2100+], respectively. In contrast, the range

Figure 2. (a) The inter‐model correlation coefficients between the running sea ice concentration (SIC) values over different
periods during 1979–2023 and the projected SIC during 2024–2028 under SSP3‐7.0 scenario. The black dot denotes the
position of the maximum correlation coefficient, which is 0.977. (b) The result of constraining the projected SIC (2024–
2028) using the observed SIC from the optimal constraint period (2011–2023) under SSP3‐7.0 scenario. The solid pink line
illustrates the regression line between the two, and the pink shading indicates the 90% prediction confidence interval. The
green vertical dashed line marks the observation value. The blue dashed line depicts the constrained SIC, while the gray
dashed line shows the original CMIP6 multi‐model ensemble mean value. The 90% confidence interval of the constrained
SIC is represented by the blue shading, and the original range is depicted by the gray shading. (c) The constrained (red) and
original (blue) Probability density functions for winter SIC during 2024–2028. (d) Evolutions of the inter‐model correlation
coefficients between the optimal constraint period and the corresponding projected SIC during 2028–2099 under the four
scenarios.
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shifts from [2036, 2100+] to [2054, 2100+] under SSP3‐7.0, and from [2029, 2100+] to [2047, 2100+] under
SSP5‐8.5. Furthermore, although the original MMEM projections indicate that an ice‐free state does not occur
under any scenario, the constrained MMEM projections show a further decrease in winter BKS SIC, with
ensemble mean values reduced by 11%–19% depending on the scenario. This resulted notably in the emergence of
ice‐free conditions under SSP3‐7.0 and SSP5‐8.5, with ice‐free periods occurring in [2086, 2090] and [2071,
2075], respectively. Additionally, Figure 4 further compares the optimal constrained and original results for the
occurrence probability of the winter BKS ice‐free conditions across all emission scenarios. According to the IPCC
report, event likelihoods are categorized based on probability ranges as follows: 0%–10% (very unlikely), 10%–
33% (unlikely), 33%–66% (likely as not), and 66%–100% (likely). Under the SSP5‐8.5 scenario, the constrained
results indicate that the probability of an ice‐free winter in the BKS reaches the as likely as not level by 2069,
occurring 17 years earlier than in the original results. By the end of the century, this probability further increases
to the likely level, with a maximum probability of 68% compared to only 42% in the original projections. Under
the SSP3‐7.0 scenario, the constrained probability surpasses the as likely as not threshold in 2074, peaking at 63%,
whereas the original projections remain within the unlikely range throughout the 21st century. In contrast, under
SSP1‐2.6 and SSP2‐4.5 scenarios, the constrained probabilities remain consistently lower than their original
counterparts, indicating that ice‐free winters in the BKS are unlikely to occur during the 21st century.

4. Discussion and Conclusions
The rapid decline in winter BKS SIC has raised increasing scientific and societal concern because of its far‐
reaching implications for the local climate and ecosystems, as well as for weather and climate patterns in
remote regions. Nevertheless, future projections of winter BKS SIC remain highly uncertain across climate
models, thereby constraining the robustness of climate impact assessments and adaptation planning. To address
this issue, the present study employs the time‐varying emergent constraint approach to CMIP6 model outputs,
effectively reducing projection uncertainties and yielding more reliable results of future sea ice conditions.

Figure 3. (a) The times series of the 5‐year running winter Barents–Kara Sea sea ice concentration (SIC) during 2028–2099
under SSP1‐2.6 scenario. The solid green line shows the optimal constrained SIC, while the gray dashed line shows the
original CMIP6 multi‐model ensemble mean value. The 90% confidence interval of the constrained SIC is represented by the
green shading, and the original range is depicted by the gray shading. The horizontal dashed red line indicates the threshold
for the ice‐free condition. (b), (c), and (d) are same as (a) but for the results for SSP2‐4.5, SSP3‐7.0 and SSP5‐8.5,
respectively.
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Winter MMEM BKS SIC from the unconstrained CMIP6 output indicates no possibility of an ice‐free period in
that region, regardless of the future emission scenario. However, the optimally constrained results suggest that an
ice‐free period is projected to occur in 2086–2090 under SSP3‐7.0 and in 2071–2075 under SSP5‐8.5. For the low
or moderate emission scenarios, applying the emergent constraint does not generate winter ice‐free conditions in
the BKS but the constrained MMEM SIC also decreases relatively to the original CMIP6 projections, by 10%–
17%. Additionally, applying the constraint results in a pronounced narrowing and temporal shift of the very likely
ranges for ice‐free conditions. Specifically, the ranges shift from [2036, 2100+] to [2095, 2100+] under SSP1‐
2.6, from [2034, 2100+] to [2080, 2100+] under SSP2‐4.5, from [2036, 2100+] to [2054, 2100+] under SSP3‐
7.0, and from [2029, 2100+] to [2047, 2100+] under SSP5‐8.5. Furthermore, under SSP5‐8.5 and SSP3‐7.0, the
optimally constrained maximum probability of an ice‐free BKS rises markedly to 67% and 63%, respectively,
compared with 42% and 32% in the original projections. In contrast, under SSP1‐2.6 and SSP2‐4.5, the con-
strained probabilities are reduced, suggesting that the occurrence of ice‐free conditions becomes even less likely
after applying the constraint.

To further evaluate the influence of constraint periods, a constraint using the 5‐year mean of SIC from the most
recent period (2019–2023) is employed as a fixed observational factor, to compare with the results based on the
optimal constraint period. Firstly, Figure S6 in Supporting Information S1 analyzes the winter BKS SIC for 2024–
2028 under different scenarios, constrained by the period 2019–2023. The uncertainty results decrease to 68.6%,
68.2%, 74.8%, and 62.7% under the SSP1‐2.6, SSP2‐4.5, SSP3‐7.0 and SSP5‐8.5 scenarios, respectively. In
contrast, the corresponding reduced uncertainties after applying the optimal constraint period are 74%, 73%, 78%,
and 72%, respectively. Moreover, Figure S7 in Supporting Information S1 shows that the inter‐model correlation
coefficients between the optimal constraint period and the corresponding projected SIC for 2028–2099 are higher
than those obtained when using 2019–2023 as the constrained period. With the fixed constraint period, the
constrained MMEM SIC also decreases for all scenarios (Figure S8 in Supporting Information S1), but generally
less than that with the optimal constraint period. Consequently, an ice‐free period emerges only under SSP5‐8.5,
occurring between 2085 and 2089, with the very likely ranges of ice‐free conditions under all scenarios being
delayed. Finally, Figure S9 in Supporting Information S1 confirms that the ice‐free probabilities under all four
scenarios are consistently lower when using the fixed constraint period than when applying the optimal constraint
period. These findings highlight both the value of time‐varying emergent constraint methods in improving sea ice

Figure 4. The winter ice‐free probability for each year during 2028–2099 under the SSP1‐2.6 (green), SSP2‐4.5(orange),
SSP3‐7.0 (blue) and SSP5‐8.5 (red), respectively. The solid lines indicate the results after constraint, and the dashed lines
represent the original results. The Intergovernmental Panel on Climate Change report defines different terms according to the
range of probability values, namely very unlikely (0%–10%), unlikely (0%–33%), as likely as not (33%–66%), likely
(66%–100%).
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projections and the critical importance of greenhouse gas mitigation in delaying, or even preventing, an ice‐free
winter in the BKS.

However, the slight decline in inter‐model correlations under the high‐emission scenarios in the later years
(Figure 2d) warrants further consideration. Although the correlation remains statistically significant and
consistently above 0.75, which supports the continued reliability of the optimal constraint period, the reduced
strength may reflect emerging differences in the dominant drivers of winter BKS SIC, such as atmospheric
circulation (Z. Liu et al., 2022; Luo et al., 2023; Zhang et al., 2023) and oceanic heat transport (Årthun et al., 2019;
D. Li et al., 2017; Yamagami et al., 2022), relative to the historical period. Further research is needed to
investigate how such evolving mechanisms may influence the winter BKS SIC under the high‐emission scenarios,
with the aim of enhancing the reliability of future sea ice projection as much as possible and advancing our
understanding for winter sea ice loss in the BKS region.
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