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ABSTRACT

The Arctic, Antarctic, and Tibetan Plateau (TP) are often referred to as Earth’s three poles, and they exert
outsized influence on the global climate. The three poles have undergone accelerating loss of sea ice, ice
shelves, and/or glaciers, accompanied by pronounced warming in the Arctic and TP and region-specific
warming in Antarctica. Despite their geographical remoteness, the three poles exhibit evident linkages,
yet substantial gaps remain in our understanding of their climate teleconnections. This review summa-
rizes the interactions among Earth’s three poles. The three poles are dynamically linked through a hier-
archy of pathways. The Arctic-TP interactions are dominated by stationary Rossby-wave trains triggered
by sea-ice and snow anomalies and reinforced by land-surface feedback over the plateau. The Arctic—
Antarctic coupling relies on ocean heat transport through the Atlantic Meridional Overturning
Circulation and on the modulation of tropical Atlantic temperature and the Intertropical Convergence
Zone. The Antarctic-TP signals travel via sea-surface temperature anomalies in the Indian Ocean forced
by the Antarctic Oscillation, which propagate northward and excite wave trains and transport moisture
onto the TP. Closing the remaining knowledge gaps will require coordinated paleoclimate constraints,
targeted field campaigns over the Southern Ocean and TP, and next-generation Earth-system models
equipped with machine-learning techniques. Such integrative efforts are essential for more reliable pro-
jections of compound extremes and for informing adaptation strategies.
© 2025 Science China Press. Published by Elsevier B.V. and Science China Press. All rights are reserved,
including those for text and data mining, Al training, and similar technologies.

1. Introduction

lost approximately half of its summer sea-ice extent [6-8] and is
warming at more than twice the global average, a phenomenon

The Earth’s three poles (Fig. 1), including the Arctic, the Antarc-
tic, and the Third Pole, the Tibetan Plateau (TP), are the predomi-
nant components of the cryosphere and are characterized by
frigid temperature, snow, frozen ground, and extensive terrains
outlined by ice sheets [1-4]. These regions serve as habitats for
unique species and reservoirs for Earth’s freshwater resources
and exhibit high sensitivity to climate change, which are key sim-
ilarities among their natural environments and ecosystems [1,2,5].

Over the past four decades, all three poles have undergone pro-
nounced and, in many cases, accelerating change. The Arctic has
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known as Arctic amplification [9,10]. West Antarctica has experi-
enced significant surface-air warming and rapid ice-shelf thinning,
whereas East Antarctica remains relatively stable [11,12]. On the
TP, high-elevation glaciers are retreating, permafrost is degrading,
and an elevation-dependent warming pattern has emerged, with
the fastest increases occurring at the highest altitudes [13-16].
Rapid warming across Earth’s three poles is driven by powerful
surface-albedo feedback. As sea ice, seasonal snow and glacial
cover diminish, darker land, ocean and vegetation surfaces absorb
more solar radiation, accelerating local heating in the Arctic [9,17],
on the TP, where elevation-dependent warming enhances the
snow-albedo effect [18,19], and on Antarctic ice shelves and
coastal ice sheets, where melt-albedo interactions reinforce warm-
ing and mass loss [20,21]. This locally amplified heating intensifies
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Fig. 1. Earth’s three poles. Geographic areas of (a) the North Pole, (b) the South Pole, and (c) the Third Pole (Tibetan Plateau). The red line in (a) represents the Arctic boundary
defined by the Arctic Monitoring and Assessment Program, whereas the blue line indicates the Arctic Circle. The red line in (b) represents the Antarctic ice shelf edge, and the
blue line represents the Antarctic Circle. Shading over the ocean in (a) and (b) represents climatological sea-ice concentrations (1979-2023; units: 1) based on the Hadley
Centre Sea Ice and Sea Surface Temperature dataset (Version 1.1). The red line in (c) indicates the 2500 m topographic contour, and shading indicates climatological snow
cover (1979-2023; units: %) derived from the National Oceanic and Atmospheric Administration Climate Data Record.

meridional temperature gradients and excites large-scale plane-
tary wave trains and jet-stream shifts that act as atmospheric
bridges, linking anomalies at one pole to circulation changes at
the other poles and to lower-latitude climates [22-24]. Concurrent
oceanic adjustments, such as Atlantic Meridional Overturning Cir-
culation (AMOC) responses to freshwater and heat fluxes, also
transmit polar signals equatorward and across basins, completing
a three-pole teleconnection network that couples cryospheric
change at both ends of the planet with the high-altitude TP [25].

Teleconnections among the three poles emerge along three
principal corridors with distinct physical mechanisms. The
Arctic-TP corridor transmits anomalies primarily through fast, sta-
tionary Rossby-wave trains that arc across Eurasia. For example,
sea-ice decline in the Barents-Kara Seas can alter Tibetan snowfall
and temperatures within a season, and feedback from TP snow can
in turn reshape Arctic circulation [26-28]. The Arctic-Antarctic cor-
ridor relies on interhemispheric ocean heat transport by the AMOC,
accompanied by shifts in the Intertropical Convergence Zone (ITCZ)
and Hadley cells [29-31], producing the out-of-phase temperature
and sea-ice swings known as the bipolar seesaw. The Antarctic-TP
corridor is governed mainly by air-sea interactions in the southern
Indian Ocean, where changes in the Antarctic Oscillation (AAO)
alter wind stress, induce a north-south Sea Surface Temperature
(SST) dipole, and excite Rossby-wave trains and modulate moisture
transport toward the TP [32].

Viewing the Arctic, Antarctic, and TP as a coupled network is
essential because their joint anomalies can reshape the climate
far beyond high latitudes and altitudes. Recent events illustrate

this leverage. In 2022, concurrent hydrothermal anomalies over
all three poles intensified mid-latitude heatwaves and Asian
extreme rainfall by altering the mid-latitude westerly jet and excit-
ing Rossby-wave trains; the same tripolar signal also forced a
southward, weaker Asian summer monsoon [33]. Earlier work
has shown that Arctic sea-ice deficits and TP surface heating
together accelerate the spring-to-summer transition of the South
Asian monsoon [34] and modulate summer rainfall anomalies over
eastern China [35]. A growing body of evidence even links tripolar
covariability to subcontinental heat extremes. For example, the
synergistic amplifications of the Arctic and TP explain much of
the interannual variability in Yangtze River Basin heatwaves, with
Arctic amplification chiefly controlling spatial extent and TP ampli-
fication governing intensity via a meridional tripole pattern and
double-jet configuration over East Asia. This combined effect is sig-
nificantly stronger than the individual contributions of Arctic or TP
amplification, highlighting nonlinear amplification [36].

This article synthesizes recent advances in our understanding of
the climate teleconnections among the Earth’s three poles. We eluci-
date the physical mechanisms that couple the Arctic with the TP, the
Arctic with Antarctica, and Antarctica with the TP. To conclude, we
offer a succinct summary along with a forward-looking perspective.

2. Land-air-cryosphere coupled linkage between the Arctic and
the TP

The interaction between the Arctic and the TP has attracted
considerable attention, primarily because the two regions are clo-
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ser to each other than the Arctic-Antarctic and Antarctic-TP inter-
actions are [26,27,37-39]. The linkages within this corridor are not
uniform: they operate across a spectrum of timescales, from sub-
seasonal to long-term trends. The influence is also bidirectional,
with anomalies in each region capable of forcing a response in
the other through complex atmospheric and land-surface path-
ways. The conceptual framework for the interactions between
the Arctic and the TP is shown in Fig. 2.

2.1. The impact of the Arctic on the TP climate

Observational data reveal that anomalies in Arctic sea ice and
large-scale atmospheric modes such as the Arctic Oscillation (AO)
and North Atlantic Oscillation (NAO) significantly impact various
climatic variables on the TP, including surface air temperature
[40], land-surface temperature [41], precipitation [42], aerosols
[38], dust [43], sensible-heat flux [44], and snow depth [45], across
different time scales. These teleconnections primarily operate
through atmospheric Rossby-wave trains, which rapidly convey
anomalous climate signals from high-latitude Arctic regions to
the mid-latitude TP. Additionally, the persistence of climatic
anomalies across seasons is maintained through land-surface pro-
cesses (a “land-memory” effect), where signals induced by Arctic
sea-ice and atmospheric circulation anomalies are stored in Eura-
sian snow cover and soil moisture, facilitating delayed climatic
responses on the TP. The position and strength of the subtropical
westerly jet vary seasonally and interannually, providing a critical
atmospheric waveguide for determining the effectiveness of these
teleconnections.

At subseasonal-to-seasonal timescales, the teleconnections typ-
ically depend on specific atmospheric conditions. For instance, a
Rossby-wave train originating from the Arctic influences the TP
predominantly when the AO exhibits a positive phase concurrently
with a negative Western Pacific pattern in February. Under these
circumstances, increased snowfall on the TP occurs, leading to per-
sistent cold surface anomalies that continue into spring [27].
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At the interannual timescale, Arctic sea-ice anomalies in the
North Atlantic sector, particularly in the Greenland, Barents, and
Kara Seas, substantially impact various climatic variables over
the TP via Rossby-wave propagation and land-surface processes.
For example, negative sea-ice anomalies in the Barents-Kara Sea
(BKS) in May induced circumglobal teleconnection-like wave
trains, significantly amplifying surface warming on the TP after
2001[41]. Spring BKS ice anomalies can also persist into summer,
affecting summer precipitation patterns on the TP through Silk
Road pattern wave propagation [42]. In addition, reduced winter
sea ice in the Barents Sea directly modulates winter snow depth
on the mid-western TP via Rossby-wave excitation [45]. Similarly,
winter sea-ice anomalies north of Greenland persist into spring,
generating anomalies in sensible-heat flux on the TP [44]. Although
still controversial, negative autumn sea-ice anomalies in the Beau-
fort and Laptev Seas have been linked to increased extreme cold
events over the TP in the subsequent winter, presumably via
Rossby-wave propagation [46]. Moreover, through the mediation
of Eurasian snow cover, the reduction in February Arctic sea ice
in the North Atlantic region significantly facilitates the transport
of aerosols from South Asia to the Tibetan Plateau in April [38].
Similarly, autumn sea-ice variability in the BKS influences winter
dust over the TP through Eurasian snow cover acting as an inter-
mediary [43]. Furthermore, BKS ice loss in spring induces a sum-
mer warm anomaly on the eastern TP because the signal is
stored in Eurasian soil moisture [40].

The AO and NAO also significantly influence the TP climate
through Rossby-wave propagation at interannual scales. During
summer, a positive AO phase generates a Rossby-wave train that
establishes anticyclonic circulation over the northeastern TP, lead-
ing to warmer conditions, particularly on the eastern TP. The AO-
temperature relationship over the TP has strengthened notably
since the late 1990s because of a phase shift in the Pacific Decadal
Oscillation (PDO) from positive to negative [40,47]. Similarly, the
negative summer NAO (SNAO) phase triggers eastward-
propagating Rossby-wave trains, increasing precipitation on the
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Fig. 2. Conceptual framework of the interaction between the Arctic and TP. The orange arrow represents Arctic influences (upper hemisphere) on the TP through atmospheric
and land-surface processes. The blue arrow indicates the influence of the TP (lower hemisphere) on the Arctic through atmospheric pathways. SST: sea surface temperature;
Tem: temperature; Preci: precipitation; Aero: Aerosol; SH: sensible heating; ECE: extreme-cold event; EP: extreme precipitation.
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southeastern TP but reducing it in the northeast [28]. However, the
strength of this SNAO-precipitation relationship has diminished
since the late 1990s, likely because of the Atlantic Multidecadal
Oscillation (AMO) transitioning from its cold to warm phase [48].
Additionally, winter sea-ice dipoles between the Barents-Nordic
Seas and the Labrador Sea intensify negative NAO events, stimulat-
ing Rossby waves that lead to increased snowfall on the western TP
[49].

On decadal timescales, sustained anomalies in Arctic sea ice and
the AO/NAO state influence the TP climate predominantly through
prolonged Rossby-wave activity. Persistent summer warming in
the Labrador Sea triggers a Rossby-wave train, causing positive
summer temperature anomalies over the TP [39]. Similarly, reduc-
tions in winter BKS sea ice significantly modulate winter extreme
precipitation patterns over the TP, resulting in positive anomalies
in the northwest and negative anomalies in the southeast,
although the exact mechanism remains unclear [50]. In addition,
a strengthened Arctic stratospheric polar vortex during winter
associated with a positive AO phase can modulate the vertical
propagation of planetary waves. This further influences tropo-
spheric circulation by weakening the Siberian High and deepening
the India-Burma Trough, thereby enhancing southwesterly mois-
ture transport and leading to increased snowfall over the TP during
winter and early spring [51]. The positive AO phase in spring sim-
ilarly enhances snow accumulation over the TP via Rossby-wave
propagation [52]. Similarly, a positive winter NAO phase strength-
ens the Asian subtropical westerly jet and regional circulation
anomalies, enhancing moisture transport and subsequently
increasing snowfall over the TP [53].

At long-term trend scales, continuous Arctic sea-ice reductions,
particularly in the BKS region, significantly alter the climatic con-
ditions of the TP through sustained Rossby-wave excitation. Persis-
tent declines in winter sea ice in the BKS region notably amplify
winter warming trends over the TP [26]. The winter Barents-Kara
decline in recent decades can explain 18 %-32 % of the observed
winter warming over the TP. Additionally, sea-ice reductions in
the North Atlantic during late spring have been associated with a
notable northwestward shift in summer precipitation on the TP,
driven by delayed evaporation from anomalously wet soils near
the Caspian Sea region, reinforcing teleconnections via soil mois-
ture memory mechanisms [54].

The fundamental mechanism underlying Arctic-TP teleconnec-
tions is the excitation and propagation of atmospheric Rossby-
wave trains. These wave trains serve as rapid conduits, transferring
climatic perturbations from Arctic sea ice or AO/NAO anomalies
toward the TP within days to weeks. However, the establishment
of these wave trains requires specific atmospheric conditions.
The subtropical westerly jet plays a crucial role, acting as a waveg-
uide that channels wave energy efficiently toward the TP. Seasonal
shifts in the latitude and strength of the jet critically influence
wave propagation pathways and intensities. For instance, the prop-
agation of a stationary wave train toward the Tibetan Plateau is
most efficient when sea-ice anomalies develop in the Barents-
Kara and Labrador seas, which sit along the preferred corridor for
such waves. Conversely, anomalies in more remote Arctic sectors
or less favorable jet conditions may weaken or disrupt the
teleconnections.

The apparent discrepancies between the rapid propagation
speed of atmospheric wave trains (subseasonal scale) and the
longer-term climatic teleconnections observed (interannual to
decadal scales) are largely attributable to the persistence of forcing
anomalies in the Arctic region. Persistent sea-ice or SST anomalies,
which may recur annually or sustain themselves over decades,
continually excite these rapid wave trains, leading to robust,
long-lived climate correlations at interannual and decadal time-
scales. Moreover, land-surface memory further extends the effects

Science Bulletin xxx (XXxx) Xxx

of teleconnection across seasons. Climatic anomalies induced by
winter Arctic sea-ice reductions, for instance, can be stored in Eur-
asian soil moisture or snow cover, influencing subsequent seasons
by altering surface albedo, diabatic heating, and moisture availabil-
ity, thus reinforcing atmospheric circulation anomalies down-
stream. This interplay between rapid atmospheric dynamics and
slower land-surface processes elucidates the complex temporal
structures of Arctic-TP teleconnections and underscores the impor-
tance of clearly distinguishing among subseasonal, interannual,
decadal, and long-term trend timescales.

2.2. Impact of the TP on the Arctic climate

Teleconnections originating from the TP significantly modulate
Arctic climate across subseasonal, interannual, decadal, and longer
timescales. On subseasonal timescales, rapid changes to the TP sur-
face in late autumn and spring can disturb the midlatitude jet
quickly enough for its footprint to reach the Arctic within a single
season [22]. Reanalysis and numerical experiments show that
rapid snow build-up intensifies local diabatic cooling, taps the sub-
tropical westerly jet and excites a barotropic Rossby wave that
arrives over the central Arctic in approximately ten days. The ensu-
ing cyclonic sea-level-pressure anomaly accelerates equatorward
ice drift and reduces spring sea-ice concentration by as much as
0.2 x 10° km? [22].

Subseasonal teleconnection also emerges in the “Impact of Ini-
tialized Land Surface Temperature and Snowpack on Subseasonal
to Seasonal Prediction (LS4P)” Phase-lI experiments. Initializing
coupled models with a 1 °C cold anomaly in the May TP land-
surface temperature triggers, within a week, a quasibarotropic
wave train extending from the TP to the Rocky Mountains and
the Bering Sea that persists into early summer. Most LS4P models
reproduce a decrease in June sea-level pressure over the Bering-
Chukchi seas and delayed seasonal ice recovery, demonstrating
that high-mountain land temperature is a genuine subseasonal-
to-seasonal predictor of Arctic circulation [55].

On interannual timescales, TP climatic anomalies have substan-
tial effects on Arctic sea ice and atmospheric circulation. A dense
snowpack over the TP in September-November deepens regional
hydrological cooling, and the accompanying horizontal vorticity
source launches a wave train that enhances ice growth in the Ber-
ing and Barents Seas but reduces it in the Sea of Okhotsk, explain-
ing approximately 10 %-30 % of the interannual variance in Arctic
sea-ice extent [56]. When the TP snow anomaly is out of phase
with snow around Lake Baikal, dipole-like forcing occurs. This pat-
tern involves two out-of-phase diabatic centers that generate dual
Rossby-wave trains, one along the subtropical jet and another near
60° N, whose interference pattern amplifies the Arctic signal [57].

Latent heat release over the southern plateau provides a com-
plementary moisture pathway. Atmospheric model sensitivity runs
in which the summer monsoon condensation heating over the
southern TP is increased to produce a poleward-arching wave train
along the Japan-North Pacific, enhancing westerlies and increasing
atmospheric river activity in the North Pacific [58]. This can lead to
stronger melting of thin sea ice in the Arctic and hinder the sea-
sonal recovery of sea ice [59].

On decadal time scales, satellite records reveal a plateau-wide
decrease in albedo of approximately 0.03 per decade. Idealized
surface-darkening experiments show that the resulting sensible-
and latent-heat amplification sets up a stationary wavenumber-1
circulation anomaly pattern that warms the Atlantic sector of the
Arctic and favors sea-ice loss, a darkening resonance whose magni-
tude is comparable to 15 %-20 % of the observed 1995-2024
Barents-Kara ice trend [60].

At the tectonic time scale, the uplift of the TP greatly strength-
ened the stationary planetary wave and favored Arctic cooling. The
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importance of TP orography is underscored by topography-
removal experiments. Coupled modeling experiments indicate that
the removal of TP topography or suppression of TP surface heating
eliminates a crucial stationary wavenumber-1 ridge extending into
the Arctic sector, resulting in Arctic cooling and increased sea-ice
thickness. Conversely, imposed warming over the TP enhances
the stationary wave amplitude, leading to significant Arctic warm-
ing and sea-ice thinning [61]. Additionally, the topography of the
TP influences the Arctic via the stratosphere by generating station-
ary planetary waves (Fig. 3). The TP serves as a key topographic
source of stationary planetary waves over the Northern Hemi-
sphere. These waves propagate upward into the Arctic strato-
sphere, where their convergence releases energy and triggers
stratospheric warming. Such warming weakens the circumpolar
westerlies and may disrupt the polar vortex. When sufficiently
intense and rapid, it can reverse the westerlies to easterlies within
a few days, leading to a sudden stratospheric warming event [62-
64]. Accordingly, the presence of the topography of the TP, relative
to its absence, favors a higher frequency of sudden stratospheric
warming events in the Northern Hemisphere. Moreover, planetary
waves of Wavenumber 1 induced by the topography of the TP can
displace the stratospheric polar vortex toward Eurasia [53],
thereby facilitating the eastward propagation of wave trains from
the North Pacific to the North Atlantic and promoting the develop-
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ment of the Aleutian-Low-Icelandic-Low seesaw pattern [52].
Moreover, stationary waves forced by the topography of the TP
drive the Brewer-Dobson circulation (a hemispheric meridional
stratospheric circulation) [65], which transports ozone from the
tropics toward the Arctic stratosphere. This results in approxi-
mately 15 % higher ozone concentrations during the winter than
in the absence of the topography of the TP [66]. However, the cur-
rent understanding of the stratospheric linkages between the TP
and the Arctic remains relatively limited, highlighting the need
for further in-depth studies in the future.

Across all time scales, teleconnections from the TP to the Arctic
fundamentally arise from the plateau’s unique topography and its
pronounced snow-albedo, land-surface temperature, and surface
heat flux anomalies. These anomalies project onto the subtropical
westerly jet, whose large meridional potential-vorticity gradient
acts as a waveguide. Critical conditions for robust wave propaga-
tion include the alignment of these TP-generated anomalies with
optimal jet stream configurations, facilitating efficient barotropic
and baroclinic energy conversion and transient-eddy feedback that
sustains wave trains to the Arctic. Wave-mean-flow interactions
and transient-eddy feedback convert background barotropic
energy into the propagating packet, enabling the disturbance to
reach the Arctic in days to weeks. Once sea-level pressure is
altered, sea-ice drift is redistributed. Ice-albedo feedback, together

Sea ice concentration

— >

00 02 04 06 08 1.0
Snow cover (%)

>

T T T 1

5 19 33 47 61 75

Qt) Aleutian low 5
Q} Icelandic low
Warming atmosphere
(7+ . Weakened polar vortex
4= Brewer-Dobson circulation

Vertical propagation of planetary waves
.---> Horizontal propagation of planetary waves
O3+ Accumulative Arctic stratospheric ozone

SSW+ More sudden stratospheric warming

Fig. 3. Influence of the TP topography on the Arctic stratosphere. The TP topography intensifies both the horizontal and vertical propagations of planetary waves in the
Northern Hemisphere, weakening the Arctic stratospheric polar vortex while strengthening the Brewer-Dobson circulation. This leads to more frequent sudden stratospheric
warming events, increased stratospheric ozone, and a pronounced Aleutian-low-Icelandic-low seesaw pattern. The color shading over the TP and Arctic represents
climatological snow cover (1979-2023, units: %) and sea-ice concentration (1979-2023, units: 1), respectively, and their data sources are the same as those in Fig. 1.
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with slowly evolving TP surface properties (snow depth, albedo,
and vegetation), integrates the signal into interannual and decadal
variability. Finally, a portion of the wave activity penetrates the
lower stratosphere, modulating the polar vortex and Brewer-
Dobson circulation and thereby locking the teleconnection into
the annular-mode framework.

3. Earth’s farthest linkage spanning the Arctic-Antarctic

Despite their great geographical distance, the Arctic and Antarc-
tic form an interconnected system [29-31,66-69]. The most repre-
sentative linkage is the bipolar seesaw, demonstrated by
asynchronous variations in Arctic and Antarctic sea ice and tem-
perature [29,68]. Originally proposed in paleoclimate studies
[70,71], the bipolar seesaw is evident in instrumental temperature
data and ice-core records across millennial-centennial [31,72],
interdecadal [68,69], and multidecadal [68,71] timescales.

The Arctic-Antarctic coupling operates through both oceanic
and atmospheric pathways [29,30,67-70] (Fig. 4). On millennial-
centennial time scales, high-resolution ice-core and marine-
sediment archives reveal out-of-phase temperature swings
between Greenland and Antarctica during the last glacial cycle,
when abrupt Greenland warmings (Dansgaard-Oeschger events)
coincided with slow Antarctic cooling, and the opposite pattern
is also observed [29,71]. Stocker and Johnsen’s simple thermody-
namic model linked this antiphase to variations in AMOC, suggest-
ing that a slowdown traps oceanic heat in the south, cooling the
North Atlantic while warming the Southern Ocean, whereas a vig-
orous AMOC does the opposite [70]. As the AMOC is primarily
responsible for northward Atlantic heat transport, any weakening
would result in increased global ocean heat storage [73,74]. More
heat is then retained in the Southern Ocean, increasing the Antarc-
tic air temperature and reducing the temperature in the Arctic.

Sea ice concentration
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Transient simulations and marine records sharpen that picture,
suggesting that even modest freshwater pulses can flip the inter-
hemispheric temperature gradient on millennial-centennial time
scales [29,70,75]. Recent model experiments have further shown
that meltwater discharged from the Antarctic Ice Sheet can weaken
the AMOC, amplifying the thermal contrast between the poles [76].

On multidecadal and decadal time scales, instrumental records
display a twentieth-century seesaw in which detrended Arctic and
Antarctic surface temperatures vary in near-perfect antiphases.
Two mechanisms dominate. First, in multidecadal SST modes, the
AMO and PDO launch hemispheric Rossby-wave trains that
increase the geopotential height in one polar cap while lowering
it in the other, thereby flipping the sign of sea-ice and temperature
anomalies, mainly through cloud-radiation and ice-albedo feed-
back [67,69]. Specifically, Atlantic warming related to the AMO
can induce quasistationary Rossby waves that increase pressure
south of Australia and lower it over the Amundsen Sea. This pres-
sure change induces abnormal atmospheric circulation, which in
turn affects the long-term trends of temperature and sea-ice distri-
bution in the Antarctic region. Anomalies equivalent to one stan-
dard deviation of the North Atlantic SST can induce a 20 %-25 %
change in the extent of Antarctic sea ice [67,77].

High-latitude thermal forcing in one hemisphere can influence
the polar climate of the opposite hemisphere by modulating the
position of the ITCZ and hence the strength and latitude of the
polar westerly jet [31,68,72,78]. Idealized modeling experiments
have shown that polar-surface warming in one hemisphere can
produce up to ~30 % of that warming in the opposite hemisphere
[31]. Cooling in northern high latitudes, for example, displaces
the ITCZ southward, weakens the northern Hadley circulation
and strengthens its Southern Hemisphere counterpart. This inten-
sified southern cell transfers more angular momentum to the
Southern Hemisphere subtropics, accelerating the subtropical jet
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Fig. 4. Conceptual pathways linking the Arctic and Antarctic. AMOC mediates the oceanic pathway, whereas tropospheric processes, such as Rossby-wave excitation and
shifts in atmospheric meridional overturning, provide the atmospheric route. Disturbances also spread across hemispheres through stratosphere-troposphere coupling. The
SPV represents the stratospheric polar vortex. Color shading over the TP and polar regions represents climatological snow cover (1979-2023, units: %) and sea-ice
concentration (1979-2023, units: 1), respectively, and their data sources are the same as those in Fig. 1.
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stream and shifting the eddy-driven jet equatorward. Conse-
quently, anomalous eddy momentum flux divergence develops in
the high southern latitudes, inducing northerly winds and forming
a counterclockwise meridional circulation. Within this pattern,
subsidence over polar regions leads to adiabatic atmospheric
warming [31,68,72,78].

On the interannual time scale, synchronization between the AO
and AAO occurs in February and October. Reanalysis composites
display a barotropic annular-mode pattern that extends from the
surface to the lower stratosphere, implying a shared stratospheric
driver [30]. Moreover, planetary waves generated by sea-ice and
temperature anomalies can propagate upward, triggering sudden
stratospheric warming that spreads globally [79-82] and inducing
upper atmospheric and ionospheric anomalies in the Southern
Hemisphere [83].

Projected warming in the Antarctic is likely to exacerbate
warming in the Arctic on decadal time scales. The projected sea-
ice loss in the Antarctic by the end of the 21° century can induce
a 1°C increase in surface temperature in the Arctic and a reduction
in Arctic sea-ice extent by approximately 0.5 x 10° km? [84]. This
decadal Antarctic-Arctic teleconnection is routed through the
tropics. First, the loss of Antarctic sea ice leads to enhanced surface
warming and increased precipitation in the equatorial Pacific. The
loss of Antarctic sea ice can induce cyclonic winds over the South-
ern Ocean and the associated northwesterly winds in the subtrop-
ics, which lead to Ekman suction at subduction latitudes, weaken
oceanic subtropical meridional overturning cells, and allow more
heat to accumulate in the tropical upper ocean, especially in the
central and eastern Pacific [85]. Second, the resulting warming in
the tropical Pacific excites a Rossby-wave train across the Pacific
and intensifies the Aleutian Low in boreal winter, channeling warm
air into the Arctic and contributing to sea-ice loss in the Bering Sea.
Some studies [86,87] have reported differently routed tropical-
Arctic links. The discrepancy appears to stem from the spatial pat-
tern of imposed SST anomalies (particularly in the western Pacific),
the season in which the forcing is applied, and climate model
biases in simulating subtropical overturning and extratropical
wave propagation.

The Arctic-Antarctic link operates through a set of distinct path-
ways, each most effective on a particular time scale rather than
functioning as a continuous pathway at all times. On millennial
to centennial horizons, the dominant mechanism is oceanic, as
large changes in the AMOC redistribute heat between hemispheres
and create the classic bipolar seesaw seen in paleoclimate archives.
As the focus shifts to multidecadal and decadal variability, ocean
memory becomes less influential, and a tropospheric bridge
assumes greater importance. Persistent phases of the AMO or the
PDO, along with sustained shifts in the ITCZ, generate cross-
equatorial Rossby waves that impose pressure and temperature
anomalies of opposite signs at the two poles. At the interannual
scale, bursts of planetary wave activity or sudden stratospheric
warming can synchronize the Arctic and Antarctic annular modes
and cause the poles to respond almost simultaneously. Each bridge
therefore requires a specific set of conditions, including substantial
freshwater or buoyancy forcing for the overturning circulation,
basin-wide sea-surface-temperature anomalies and a pre-existing
hemispheric energy imbalance for the tropospheric route, vigorous
wave activity and a receptive polar vortex for the stratospheric
connection, and well-aligned subtropical jets for the brief atmo-
spheric ducts. When these conditions overlap, for example, during
a warm AMO phase combined with a positive AO, the two poles
can behave like communicating vessels, but in their absence, the
Arctic and Antarctic often evolve independently even under strong
external forcing.
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4. Cross-equatorial connection of the TP-Antarctica

Research on teleconnections between the TP and Antarctica is
more limited than it is for TP-Arctic and Arctic-Antarctic links, yet
recent work has confirmed a dynamic bridge. Observations and
model simulations suggest that a teleconnection linkage does exist
between the TP and Antarctic in which the AAO or the Southern
Annular Mode (SAM), which is the most prominent atmospheric
variability in the Southern Hemisphere [88,89], has been regarded
as the key moderator of the climate of the TP [32,52,61,90-93].

The Antarctic-TP teleconnection comprises two distinct path-
ways (Fig. 5). The first interannual pathway involves combined
atmospheric and oceanic bridge processes. During a positive
AAO, a cyclonic anomaly spans the southern Indian Ocean, induc-
ing SST anomalies through the wind-evaporation mechanism in
boreal spring [32,91,94-96]. The resulting SST anomalies further
induce an anticyclone over the northern Indian Ocean that trans-
ports water vapor to the TP [32]. Statistically, May AAO variability
explains approximately 20 % of the June sensible-heat flux variance
over the TP [32]. Additionally, diabatic heating related to tropical
Indian  Ocean  precipitation  anomalies stimulates a
northeastward-propagating wave train and a resultant cyclonic
circulation anomaly over the TP [91,97]. A recent study of Antarctic
ozone variability revealed a second, longer-lag route that also
relies on the southern Indian Ocean but is triggered months earlier.
[98]. Positive stratospheric ozone anomalies over Antarctica in
September-October favor a negative SAM in the following boreal
winter. Changes in the SAM-related wind and clouds warm the
southwestern Indian Ocean near Madagascar. Owing to the ocean’s
thermal inertia, this warm pool survives into boreal spring. Merid-
ional overturning then exports heat toward 15°N, increases land-
surface temperature over Indochina and, through Iland-
atmosphere feedback, builds a persistent heat source that intensi-
fies the southwesterly monsoon in early summer. The strength-
ened monsoon moisture flow and its associated Rossby response
increase rainfall from the eastern Tibetan Plateau to East Asia
and account for approximately 20 % of the interannual precipita-
tion variability on the eastern Tibetan Plateau.

The second interdecadal pathway is a purely atmospheric
bridge. The AAO-related northward wave train travels to northern
Australia, leading to high-pressure anomalies and altering the
quasimeridional overturning circulation spanning northern Aus-
tralia and the TP [57]. Moreover, AAO-induced tropical Atlantic
SST anomalies can modulate high-latitudinal Atlantic SST anoma-
lies via the Hadley circulation, and the resulting pattern excites a
stationary Rossby-wave train from the Atlantic to the TP on inter-
annual timescales, further impacting the TP via moisture transport
[90,94,96].

On the tectonic time scale, the rise in the topography of the TP
disturbed both the atmospheric circulation and oceanic circulation
in the Antarctic [66,93]. Removing the TP in the model experiments
generates anomalous cross-equatorial flow during the austral win-
ter and triggers an SST dipole pattern in the Indian Ocean. Station-
ary waves then channel energy southeastward from the tropical
Indian Ocean toward Antarctica, promoting a Rossby-wave train
that encircles the continent. Moreover, the absence of the TP could
substantially increase Antarctic bottom water formation by initiat-
ing Rossby-wave trains that extend from the tropical Indo-Pacific
to the Amundsen-Bellingshausen Seas. These experiments high-
light the significant role of the TP in far-field climate regulation.

Research on the Antarctic-TP link remains limited because there
are no atmospheric wave guides across the equator, and more
attention has been given to the Arctic-TP link. Any disturbance that
begins over Antarctica must first survive the equatorial belt, where
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Fig. 5. Teleconnection linkage between Antarctica and the TP. Two pathway impacts of the Antarctic Oscillation (AAO) on the TP. The first pathway is through the circumpolar
wave train and the tropical Indian Ocean. The second is from a northward-traveling wave train across Australia. The upper left panel shows the influence of AAO-induced
tropical Atlantic SST anomalies on the Tibetan Plateau through high-latitudinal Atlantic SSTs and Rossby-wave trains. The color shading over the TP and Antarctica represents
climatological snow cover (1979-2023, units: %) and the color shaded in the Arctic sea and around Antarctica represents sea-ice concentration (1979-2023, units: 1), and

their data sources are the same as those in Fig. 1.

the mean meridional temperature gradient is weak and the sub-
tropical jets are discontinuous in longitude. Only rare combina-
tions of seasonal jet alignment and wave phase speed allow
Rossby energy to cross from one hemisphere to the other without
destructive interference. Even when a pathway is open, the trans-
mitted anomaly is typically an order of magnitude weaker than the
original perturbation; thus, it can be masked by monsoon variabil-
ity, ENSO events or mid-latitude eddy noise around the TP. Finally,
climate studies targeting the TP have often focused on its influence
within the Northern Hemisphere, whereas Antarctic studies tradi-
tionally emphasize Southern Ocean feedbacks; hence, few studies
have been designed specifically to trace a pole-to-plateau link.
These physical hurdles explain why the literature on the
Antarctic-TP teleconnection is much less common than it is for
Arctic-related links, even though recent work indicates that the
pathway is physically plausible.

5. Summary and future perspective
5.1. Summary

The three poles form an integrated, globe-spanning network,
but the signals that bind them together travel mainly along three
pairwise corridors, each with a distinctive physical fingerprint.

Among the linkages, the Arctic-TP corridor is the most dynam-
ically active. Sea-ice and SST anomalies in the Barents-Kara Seas,

Labrador Sea, or northern Greenland excite planetary waves that
arc across Eurasia; alter the subtropical jet; and modulate TP sur-
face winds, precipitation, and snow cover on subseasonal-to-
decadal scales. Land-surface memory via Eurasian snow and TP
soil-moisture anomalies extends the Arctic imprint well beyond
the life-span of the initial forcing. The coupling is bidirectional,
where enhanced TP snow or sensible-heat release can, in turn,
trigger AO-like circulation and even accelerate regional Arctic
sea-ice melt through wave-train-induced wind stress. Strato-
spheric processes add a further tier of interaction, as TP-forced
planetary waves weaken the Arctic polar vortex, increase
Brewer-Dobson upwelling, and feed back onto tropospheric flow
that deepens snow over the plateau.

The Arctic-Antarctic bipolar seesaw operates through both
oceanic and atmospheric conduits from millennial to interannual
time scales. Variations in the AMOC redistribute heat between
hemispheres, producing out-of-phase SST and sea-ice anomalies
that can persist for centuries. In the atmosphere, shifts in the ITCZ
and Hadley circulation alter the strength and latitude of polar jet
streams, whereas Pacific and Atlantic decadal oscillations spawn
Rossby-wave pairs that induce opposing pressure and temperature
signatures at the two poles on decadal time scales. Stratospheric
links in the synchronicity of the AO and AAO phases and in
planetary-wave coupling during sudden-stratospheric-warming
events provide a rapid, vertically coherent bridge that comple-
ments the slower AMOC signal.
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The TP-Antarctic teleconnection has two main routes: a com-
bined ocean-atmosphere bridge in the Indian Ocean and a purely
tropospheric wave train that arcs across northern Australia into
Asia. In the former, AAO-induced wind stress drives Indian Ocean
SST dipoles, which trigger Rossby waves and moisture transport
onto the plateau. In the latter, a poleward-propagating wave train
alters the meridional overturning circulation between Australia
and the TP. Topographic experiments emphasize reciprocity, show-
ing that removing the TP generates cross-equatorial flow, an Indian
Ocean SST dipole, and Rossby waves that encircle Antarctica,
underscoring the plateau’s far-reaching influence on Southern
Ocean dynamics.

5.2. Challenges

Despite the advances in the intricate interactions among the
three poles, several compelling challenges continue to stimulate
scientific inquiry.

(1) The mechanisms governing heat exchange among the three
poles remain uncertain, with the Southern Ocean highlighted as a
key area of interest. It is often considered a heat capacitor that
plays a remarkable role in Southern Hemisphere warming, espe-
cially during periods of AMOC weakening or collapse. Nonetheless,
recent studies have challenged this view by questioning the precise
locations of heat storage, potentially extending beyond the South-
ern Ocean to include the South Atlantic and other oceans [29].

(2) The role of tropical oceans in three-pole teleconnections
needs further investigation. Although the Indian Ocean has been
identified as a mediator connecting the climate in the Antarctic
and the TP, the contributions of the tropical Pacific and Atlantic
to Arctic-Antarctic or TP-Antarctic interactions remain largely
unexplored. Insights from recent advances in tropical-polar tele-
connections can provide insights into how tropical oceans influ-
ence three-pole teleconnections [99].

(3) The uncertainty surrounding whether the tipping elements
in the three poles have surpassed their thresholds requires further
investigations into the cascading effects these changes may have
on the global climate. Recent studies [25,100] have indicated that
critical tipping points for Arctic sea ice, the Antarctic ice sheet,
and the Atlantic gyre may have been reached, suggesting a depar-
ture from previous climatic stability and the onset of a new cli-
matic era. This shift raises crucial questions about the extent to
which abrupt changes in one pole can trigger similar abrupt tran-
sitions in another, thereby influencing the global climate.

5.3. Future perspective

The future of research into three-pole interactions holds great
promise. The construction of a 3-D observational system based
on in situ stations, satellite retrievals, digital twins, and novel data
assimilation products across the TP and polar oceans opens excit-
ing avenues for investigation. For instance, a recent study lever-
aged continuous oceanographic records from beneath the East
Antarctic ice shelf to elucidate critical insights into ice-shelf warm-
ing and the effects of subpolar westerlies and sea-ice changes
[101].

Moreover, promoting interdisciplinary collaboration between
the paleoclimate and modern climate research communities is
crucial. While instrument data span only approximately a cen-
tury, the rich paleoclimate archives at the three poles (including
ice cores and marine and lake sediments) offer an extended time-
line that can illuminate climate teleconnections over decadal to
millennial scales. These extensive records provide a unique
opportunity for modern climate scientists, who possess a deep
understanding of climate dynamics, to assist in the interpretation
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of paleoclimate data. Such collaborations can ensure that
hypotheses based on paleoclimate records are rigorously exam-
ined for physical validity.

Expanding research tools, including causal inference and
machine learning, combined with state-of-the-art numerical mod-
els are gaining prominence [102,103]. These approaches help iden-
tify potential causal links among the three poles, accelerating
progress in unraveling their interconnected mechanisms. High-
resolution climate models, particularly those equipped with
advanced interacting ice-sheet modules, hold promise for more
accurately simulating ice-sheet mass variability across the three
poles, thereby enhancing our ability to investigate three-pole
teleconnections.

Collaboration across diverse disciplines, including climatology,
oceanography, biogeochemistry, and remote sensing, is essential
for advancing three-pole interaction research. This interdisci-
plinary approach promises a holistic understanding of the intricate
connections among these geographically distant regions, especially
for comprehending the tipping elements in the three poles. These
synergistic elements offer a compelling trajectory for unraveling
the complexities of Arctic, Antarctic, and TP interactions, with pro-
found implications for our understanding of Earth’s climate system
and our ability to address the challenges posed by a changing
climate.
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