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Scientific Significance Statement

Seaweed farming is increasingly recognized as a promising strategy for marine carbon dioxide removal (mCDR). However, its
ecological sustainability, particularly in semi-enclosed bays, remains uncertain. Using data collected from Sansha Bay, Fujian,
China, the world’s largest seaweed farming site, our study reveals an inherent trade-off: in highly sheltered coastal environ-
ments, especially when integrated with algae-fish polyculture, seaweed farming can induce significant hypoxia and acidifica-
tion risks through organic carbon degradation. Carbon isotopic tracing further demonstrates that seasonal shifts in organic
carbon sources—from fish feed in autumn to macroalgal detritus in spring—diminish the potential of macroalgal-based carbon
sequestration. These findings emphasize the complexity of coastal carbon management and highlight the critical importance
of considering ecosystem health—including the system’s capacity to maintain oxygen and pH stability and sustain biogeo-
chemical functioning—when implementing seaweed-based carbon sequestration strategies.

Abstract
Seaweed farming is increasingly promoted as a carbon sequestration strategy, but its effectiveness relies on car-
bon burial and export to deep waters. Seaweed farms commonly occupy semi-enclosed bays, causing continu-
ous accumulation of organic carbon (OC) and its degradation products, potentially undermining carbon
sequestration and driving hypoxia and acidification. These ecological impacts may be amplified in fish–algae
polyculture systems, yet they remain unclear. We investigated carbon cycling in Sansha Bay, China, the world’s
largest seaweed farm and intensive algae–fish polyculture site. During aquaculture seasons, bottom waters expe-
rienced rapid OC decomposition, causing severe oxygen depletion and acidification. Vertical mixing spread
these effects throughout the water column, turning surface waters into net CO2 sources. δ13CDIC carbon isoto-
pic analyses indicated seasonal shifts in dominant OC sources, from fish feed in autumn to macroalgal detritus
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in spring. These findings underscore the importance of evaluating the sustainability of coastal systems when
pursuing seaweed-based carbon sequestration.

The ocean absorbs approximately 26% of anthropogenic
CO2 emissions, playing a crucial role in climate regulation
(Friedlingstein et al. 2025; Gattuso et al. 2015). Marine carbon
dioxide removal (mCDR) strategies aim to enhance the
ocean’s capacity to sequester additional CO2, representing
promising approaches to mitigate global warming (Doney
et al. 2025). Among these, large-scale seaweed farming (e.g.,
macroalgae cultivation) has attracted considerable attention
due to its rapid biomass production and subsequent organic
carbon export and potential carbon sequestration (Duarte
et al. 2021, 2025; Krause-Jensen and Duarte 2016; Krause-
Jensen et al. 2018; Paine et al. 2021).

Macroalgae function as crucial carbon sinks, but their
effectiveness depends on the efficient transport of organic
carbon and its long-term storage and net inventory increase
in deep ocean reservoirs (Krause-Jensen and Duarte 2016;
Filbee-Dexter et al. 2024). In open coastal systems with wild
algal forests, persistent tidal forcing and turbulent mixing
can export algal detritus offshore, where it settles into deep
waters under gravitational forcings. This process not only
prevents local organic matter accumulation but also
enhances long-term carbon burial via effective cross-shelf
particulate export. In contrast, seaweed farms are often
established in semi-enclosed bays characterized by limited
water exchange and thermally stable conditions. While
these conditions favor robust macroalgal growth, they also
lead to the prolonged retention of degraded biomass within
the system (Han et al. 2024; Wang et al. 2023). The
resulting elevated nutrient concentrations and accumula-
tion of organic debris stimulate intense microbial activity,
accelerating further decomposition processes that consume
dissolved oxygen (DO) and release CO2. This cascade ulti-
mately triggers hypoxia and acidification events with signif-
icant ecological consequences (Bach et al. 2021; Gallagher
et al. 2022; Xiong et al. 2024).

Previous studies specifically addressing hypoxia and acidifi-
cation risks associated with seaweed farming remain limited.
Nonetheless, analogous phenomena in natural, algae-
dominated ecosystems offer valuable insights. For instance, in
Chesapeake Bay—a system prone to seasonal hypoxia—
oxygen depletion is primarily driven by phytoplankton
blooms followed by subsurface and benthic decomposition
(Du et al. 2018; Officer et al. 1984; Zheng and DiGiacomo
2020; Su et al. 2020). Similarly, bottom waters of larger river-
impacted coastal oceans such as those on the northern Gulf
of Mexico (United States) and the East China Sea (China)
receive substantial organic carbon input (70%–80%) from
surface algal blooms, whose rapid decomposition dramati-
cally reduces DO levels (by 90%–111%) and triggers mass
mortality events (Jiang et al. 2014; Wang et al. 2017; Wang

et al. 2016, 2018; Zhang et al. 2022;). Given that transient
algal proliferation in these natural systems can induce
severe hypoxia and acidification, similar—or even
amplified—risks are highly likely in semi-enclosed aquacul-
ture environments characterized by limited water exchange
and intensive polyculture practices.

Integrated multi-trophic aquaculture models conceive syner-
gistic relationships where fish consume macroalgal detritus and
macroalgae assimilate CO2 released by fish respiration
(McNeary and Erickson 2013; Saba et al. 2021). However,
empirical evidence indicates that only about 20%–25% of fish
feed is utilized by cultured organisms (Han et al. 2021; Hu
et al. 2012), leaving behind substantial organic residues. These
residues further elevate oxygen demand and disrupt the car-
bonate chemistry of the system. Despite these findings, critical
knowledge gaps persist regarding the temporal dynamics and
predominant sources of organic matter driving hypoxia and
acidification in intensive polyculture aquaculture systems.

We conducted comprehensive biogeochemical investiga-
tions in Sansha Bay, China—a representative seaweed farming
system that produces approximately 1.8 million tons of bio-
mass annually (fresh weight; Duarte et al. 2025). Notably, San-
sha Bay features a narrower opening and greater physical
barriers compared to a typical semi-enclosed bay (Fig. 1a,b),
making it a highly sheltered system that experiences signifi-
cantly restricted water exchange with the open ocean (Han
et al. 2021; Lin et al. 2017, 2019). Aquaculture activities in this
region follow a well-defined seasonal pattern, with macroalgae
(e.g., Saccharina japonica) cultivated mainly from winter
through spring and intensive fish farming occurring in spring
and autumn (see details in Methods), coinciding with periods
of high feed input and organic matter loading (Deng
et al. 2025; Xie et al. 2021). By integrating carbonate parame-
ters measurements, δ13CDIC isotopic tracing, and end-member
mixing analyses, we compared carbon biogeochemical cycling
in seaweed culture, seaweed-fish polyculture, and non-culture.
Our quantitative assessment of the contributions from macro-
algal detritus and fish feed decomposition to subsurface CO2

release uncovers the mechanisms driving hypoxia and acidifica-
tion in seaweed farms with highly restricted water exchange.

Materials and methods
Study area and aquaculture types

Sansha Bay (26�300–26�580N, 119�260–120�100 E), located in
the northeastern Fujian Province, China, is a lagoon-like
semi-enclosed coastal system spanning approximately
675 km2. An area of 150 km2 within the bay is designated for
seaweed farming (Fig. 1c–g), making it the world’s largest con-
tiguous macroalgae cultivation zone (Duarte et al. 2025). The
bay connects to the East China Sea via the narrow Dongchong
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Channel (3 km width; Figs. 1, 2i) (Ji et al. 2021; Lin
et al. 2017; Xie et al. 2022). The bay’s unique topography
limits water exchange, predominantly driven by tidal action
(Fig. 1a,b). Hydrodynamic studies show spatially variable
exchange rates, with half-exchange times less than 10 d in the
main channel but significantly longer (15–40 d) in the inner
Dongwuyang region (Lin et al. 2017, 2019). As a consequence,
this system exhibits high sedimentation rates but significantly
lower stocks of organic carbon in sediments (Duarte
et al. 2025).

Aquaculture activities in Sansha Bay exhibit clear spatial
variability, primarily comprising raft-based and cage-based
aquaculture systems (Fig. 1c–g). Macroalgae cultivation foc-
uses predominantly on S. japonica (December–May) and
Gracilariopsis lemaneiformis, the latter of which, despite its
shorter culture cycle, is cultivated nearly year-round (Deng
et al. 2025). Simultaneously, cage farming of Larimichthys
crocea follows two intensive stocking cycles annually
(April–May and October–December), demanding substantial
feed inputs (Wang et al. 2024; Xie et al. 2021). During our
surveys, G. lemaneiformis and L. crocea dominated in

autumn; G. lemaneiformis alone was cultivated in winter
(as S. japonica had not yet been deployed), and S. japonica
became dominant in spring when it entered the harvest
stage (Supporting Information Fig. S1; Supporting Informa-
tion Tables S1–S3). The integration of intensive polyculture
practices with limited hydrodynamic exchange renders San-
sha Bay an ideal natural laboratory for investigating carbon-
ate chemistry alterations under sustained aquaculture and
organic matter enrichment.

Sampling and data collection
Four seasonal surveys were conducted in winter 2021

(December 11–12), autumn 2022 (November 17–19), spring
2024 (April 4–7), and winter 2024 (December 1–4) (Fig. 1).
Water samples were collected using 5 L Niskin bottles, imme-
diately transferred to 250 mL PYREX borosilicate glass bottles,
and poisoned with 100 μL of saturated HgCl2 solution for sub-
sequent analysis of dissolved inorganic carbon (DIC), total
alkalinity (TA), and δ13CDIC.

DO concentrations were determined within 24 h using
automated Winkler titration (precision: 0.1% or � 0.23

Fig. 1. Map of Sansha Bay and the seaweed farming activities within the bay. (a) Geographic location of Sansha Bay. (b) Sampling stations during four
cruises. (c) Macroalgae cultivation areas. (d) Operational harvesting processes for seaweed.
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μmol kg�1) (Dai et al. 2006). Dissolved inorganic carbon con-
centrations were analyzed by acidifying 0.6 mL seawater
samples with phosphoric acid; liberating CO2 was quanti-
fied via a LI-COR 7000 non-dispersive infrared (NDIR) spec-
trometer (AS-C6L, accuracy � 2.0 μmol kg�1) (Cai et al.
2004). Total alkalinity was measured using potentiometric
Gran titration (AS-ALK3, accuracy � 2.0 μmol kg�1) (Cai
et al. 2004). Both DIC and TA measurements were cali-
brated against certified reference materials (CRMs) from the
Scripps Institution of Oceanography. For δ13CDIC analysis,
CO2 was extracted cryogenically from 3 mL acidified seawa-
ter, purified via vacuum distillation, and analyzed by cavity
ring-down spectroscopy (Picarro G2131-i; accuracy < 0.1‰)
(Chen et al. 2022).

pH was calculated from DIC and TA using the CO2SYS
program (Lewis and Wallace 1998), employing carbonic
acid dissociation constants (K1 and K2) from Lueker et al.
(2000), KHSO4 dissociation constants from Dickson (1990),
and total borate-salinity relationship from Lee et al. (2010).
All pH values are reported on the total hydrogen scale
(pHT). While organic alkalinity can contribute to measured
TA in aquaculture waters (Xiong et al. 2023) and should be
considered, our assessment indicates that this contribution
is negligible in the Sansha Bay system (see Supporting Infor-
mation Text S2).

Multi-endmember mixing model
To disentangle physical mixing from biogeochemical pro-

cesses affecting DIC, TA, DO, and δ13CDIC, we employed a
two-endmember mixing model following e.g., Yang et al.
(2022) (Cao et al. 2011; Yang et al. 2022):

f 1þ f 2 ¼1 ð1Þ

S1� f 1þS2� f 2 ¼ S ð2Þ

where S denotes salinity, subscripts 1 and 2 denote distinct
water mass end-members, with f 1 and f 2 calculated accord-
ingly. Conservative concentrations (DICcons, DOcons, TAcons)
and δ13CDIC were calculated as:

DICcons ¼DIC1� f 1þDIC2� f 2 ð3Þ
DOcons ¼DO1� f 1þDO2� f 2 ð4Þ
TAcons ¼TA1� f 1þTA2� f 2 ð5Þ

δ13Ccons
DIC ¼ δ13C1�DIC1� f 1þδ13C2�DIC2� f 2

� �
=DICcons ð6Þ

Non-conservative deviations (ΔDIC¼DICobs�DICcons)
reflect net biogeochemical alterations (Su et al. 2017; Zhao
et al. 2020). The selection of end-members and their
corresponding values are detailed in Supporting Information
Fig. S2 and Supporting Information Table S4.

Semi-analytical diagnostic method based on DIC and
δ13CDIC

Observed vs. modeled discrepancies were attributed to air–
sea CO2 exchange (ΔDICas), biological processes (ΔDICbio),
and calcium carbonate cycling (ΔDICCaCO3) (Ouyang
et al. 2024; Zhao et al. 2020):

ΔDIC¼DICobs�DICcons ¼ΔDICasþΔDICbioþΔDICCaCO3 ð7Þ

δ13Cobs�DICobs�δ13Ccons�DICcons ¼ΔDICas�δ13Cas

þΔDICbio�δ13CbioþΔDICCaCO3 �δ13CCaCO3

ð8Þ

A systematic analysis of each term in Eqs. 7 and 8 is pres-
ented below:

ΔDICas ¼ FCO2 �
t
h
=ρ ð9Þ

where FCO2 is air–sea CO2 flux (mmolm�2 d�1), t the time
interval (days), h the mixed-layer depth (m), and ρ seawater

density (kgm�3). The isotopic composition of CO2 (δ13Cas)
associated with gas exchange was derived as:

δ13CCO2 ¼ δ13CDICþ23:644�9701:5
T

ð10Þ

δ13Cas ¼ δ13Catm�CO2 þε ð11Þ

where T is temperature (K), δ13Catm�CO2 ¼�8:5‰ (Keeling

et al. 2017), and ε¼ δ13CCO2�δ13CDIC represents equilibrium
fractionation.

We assumed (δ13CCaCO3 ¼0‰) for marine limestone
(Alling et al. 2012). Since air–sea exchange and biological pro-
cesses negligibly affect TA, the calculation of ΔDICCaCO3 is per-
formed using the formula ΔDICCaCO3 ¼0:5�ΔTA (Xue
et al. 2020). Consequently:

ΔDICbio ¼ΔDIC�ΔDICas�ΔDICCaCO3 ð12Þ

The DIC isotopic mass balance (Su et al. 2017) is
expressed as

δ13Cobs�DICobs ¼ δ13Ccons�DICconsþδ13Cbio�DICbio ð13Þ

The degradation of OC typically generates DIC with minor
isotopic fractionation relative to the original OC substrate
(Breteler et al. 2002; Su et al. 2017). Consequently, the isoto-
pic composition of biologically produced DIC (δ13Cbio) is
expected to closely reflect that of the source organic carbon
(δ13COC), which consumed oxygen during its breakdown

(Ouyang et al. 2024). The value of δ13COC was estimated using
mass balance equations based on both DIC concentration and
its stable carbon isotope composition.
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δ13Coc ¼ δ13Cobs�DICobs�δ13Cmixing�DICmixing�ΔDICas
�

�δ13Cas�ΔDICCaCO3 �δ13CCaCO3Þ= DICobs� DICcons�ΔDICas

�

�ΔDICCaCO3Þ
ð14Þ

which can be rearranged into

Δ δ13CDIC�DIC
� �¼ δ13COC�ΔDICbio ð15Þ

where the left term represents the cumulative isotopic devia-

tion, and the slope of Δ δ13CDIC�DIC
� �

vs. ΔDICbio quantifies
the δ13C signature of metabolized organic carbon
(Su et al. 2020).

The contribution of organic matter to oxygen-consuming
organic matter was estimated using a carbon isotopic mass
balance approach, as described by the following equation
(Zhao et al. 2020; Hu et al. 2006):

f %ð Þ¼ δ13COC�δ13C1
� �

= δ13C2�δ13C1
� ��100 ð16Þ

where δ13C1 and δ13C2 are the representative values of fish
feed and macroalgae detritus particulate organic carbon,
respectively, at approximately �23.4‰ (Han et al. 2024) and
�16.9‰ (Han et al. 2024).

Results
Spatial–temporal distributions of oxygen and pH in
Sansha Bay and their seasonal evolutions

This study investigates the regulation of the carbonate sys-
tem across different aquaculture regimes by comparing the
main channel of Sansha Bay (non-culture area) with
the Dongwuyang embayment (seasonal aquaculture area)
(Fig. 2c). In Dongwuyang, aquaculture practices exhibit pro-
nounced seasonal transitions. During autumn, intensive fish
farming at the embayment’s entrance coincides with the culti-
vation of G. lemaneiformis in the northeast. This is followed
by a winter phase dominated by S. japonica cultivation—with
residual G. lemaneiformis beds persisting into the pre-planting
phase—and ultimately transitions into a spring period marked
by extensive S. japonica harvesting.

Our multi-seasonal investigations revealed a pronounced
spatial variability in carbonate system parameters that is
closely linked to the intensity of macroalgae cultivation and
fish farming. During peak aquaculture periods, surface waters
generally acted as net CO2 sources, exhibiting elevated pCO2

levels ranging from 412 to 1172 μatm (Fig. 2a–f), contrary to
the anticipated carbon sink behavior. In particular, the north-
eastern Dongwuyang region, characterized by prolonged water
half-exchange time of 15–40 d (Lin et al. 2017), consistently
exhibited higher pCO2 levels (672 � 167 μatm) compared to
the more rapidly flushed main channel (half-exchange time of
0.5 d; Lin et al. 2017) which maintained pCO2 levels

of 534 � 32 μatm. Our observations of the seasonal evolution
of pCO2 level and CO2 source-sink status are consistent
with carbon fluxes obtained from eddy covariance time-
series measurements in the same region (Deng et al. 2025).
Although our ship-based observations were limited in dura-
tion and did not capture the expected strong carbon sink
during the rapid growth phase of S. japonica, the continu-
ous eddy covariance measurements indicate that, aside
from a strong carbon sink observed in December, the San-
sha Bay aquaculture areas function as carbon sources
throughout the remainder of the year, even during periods
of ongoing G. lemaneiformis cultivation.

Seasonal variations further highlighted the tightly coupled
dynamics between DO and carbonate system parameters. In
autumn, significant oxygen depletion was observed around
aquaculture sites, with DO levels dropping to as low as 74.8%
of saturation—approximately 10% lower than in the surround-
ing reference waters (Fig. 2g), δ13CDIC values ranging from
�1.83 ‰ to �1.30 ‰, indicating a depletion of 0.3–0.8 ‰

compared to the Main-channel (Fig. 2j), and pH values between
7.5 and 7.7—roughly 0.2–0.3 units lower than those in adjacent
non-culture waters (Fig. 2m). In winter, the photosynthetic
activity of macroalgae temporarily alleviated acidification, ele-
vating surface DO to 112.9%, reducing DIC concentration to
1931 μmol kg�1 (Supporting Information Fig. S3c), and
enriching δ13CDIC values (�0.75‰ to 0.27‰; Fig. 2h,k,n).
Conversely, during spring, conditions intensified oxygen deple-
tion, with minimum DO levels reaching only 44% of satura-
tion, DIC concentrations increasing to 2318 μmol kg�1

(Supporting Information Fig. S3k), and δ13C-DIC values becom-
ing notably depleted (�3.21‰ to �0.92‰; Fig. 2i,l,o). In addi-
tion, the relatively high total alkalinity observed in the
Dongwuyang area during spring indicates an input of subma-
rine groundwater discharge (SGD), which elevated the baseline
TA of the system. In contrast, the main channel, benefiting
from rapid water renewal, consistently maintained relatively
stable conditions (DO > 85% and DIC < 2095 μmol kg�1), unde-
rscoring the significant influences of aquaculture and hydrody-
namic forces on local biogeochemical signals.

Low oxygen and pH throughout the water column in
aquaculture areas

Vertical profiles revealed marked differences between aqua-
culture zones and adjacent non-culture regions. In
aquaculture-affected areas, the water column consistently
exhibited low oxygen levels and reduced pH, whereas the
main channel maintained oxygen-rich conditions (Fig. 3).

In autumn, although the water columns were generally
well-mixed (Supporting Information Fig. S4), localized zones
of oxygen depletion were persistent near fish farms. This con-
trasted sharply with macroalgae-dense regions, where active
photosynthesis elevated surface dissolved oxygen and pH
levels (Fig. 3a–d). During winter, surface photosynthetic activ-
ity temporarily boosted oxygen concentrations to 112.9% of
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Fig. 2. Spatiotemporal distributions of pCO2, DO, pH, and δ13CDIC in Sansha Bay. (a–c) Underway measurements of surface pCO2; (d–f) surface pCO2

derived from discrete bottle samples calculated using CO2SYS; (g–o) DO, pH, and δ13CDIC at the bottom waters. Horizontal distributions of pCO2, DO,
pH, and δ13CDIC at the bottom waters. Rows indicate different parameters, and columns indicate different seasons. The white dotted line in (c) divides
Sansha Bay into two distinct zones: non-aquaculture area (main channel) and aquaculture-impacted area (Dongwuyang, seaweed farming and fish-
macroalgae polyculture system).
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saturation and increased pH values, while both parameters
remained low in the subsurface (≥20 m depth), comparable to
or lower than those observed in the main channel (Fig. 3h).

In spring, the entire water column of northeastern Dong-
wuyang was dominated by severe hypoxia (DO ranging
from 44% to 70% of saturation) and acidification
(pH between 7.4 and 7.6), along with pronounced deple-
tion of δ13CDIC values (�3.2‰ to �2.5‰; Fig. 3i–k). Wind-
driven vertical mixing played a key role by transporting
degradation byproducts from organic-rich sediments
upward, as indicated by the observed hypoxic gradients and
carbon isotope fractionation.

Discussion and conclusion
Partitioning source of decomposed organic carbon
inducing hypoxia and acidification

Deviations in DIC, pH, and δ13CDIC from conservative
mixing models exhibited clear seasonal patterns. In winter,

we observed net DIC consumption accompanied by increased
pH (Supporting Information Fig. S5). In contrast, both
autumn and spring were characterized by elevated DIC, lower
pH, and depleted δ13CDIC values (Supporting Information
Fig. S5), indicating that OC remineralization following algae
growth is the primary driver of these changes (Hullar
et al. 1996; Breteler et al. 2002).

In this seaweed farming system, OC is derived from both
marine and terrestrial sources. Using the DIC isotopic mass
balance (Eq. 15), we determined the δ13C signatures of
decomposed OC driving DIC production and oxygen con-
sumption, with values of �22.6‰ in autumn and �19.1‰ in
spring (Supporting Information Fig. 4). These values differ
markedly from terrestrial OC signatures (�28.6‰; Zhao
et al. 2020) and closely resemble those of marine sources
(�20.6‰; Zhao et al. 2020), indicating that marine-derived
OC decomposition dominates. Although limited sampling
near riverine inputs constrains accurate estimation of marine
vs. terrestrial contributions, evidence suggests that the Jiaoxi

Fig. 3. Seasonal vertical profiles along the main channel–Dongwuyang transect. (a–c) autumn, (e–g) winter, and (i–k) spring profiles of DO, pH, and
δ13CDIC. Depth-integrated averages for each season are quantified in (d), (h), and (l).
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River is the primary terrestrial source to Sansha Bay; however,
its distance from the Dongwuyang study area minimizes ter-
restrial influence due to geomorphic isolation (Fig. 1b; Han
et al. 2021; Wang et al. 2015; Zhang et al. 2024).

Furthermore, we differentiated between fish and algal
sources within the marine OC pool. In autumn, δ13COC values
(�22.6‰; Fig. 4) align with signals from fish feed decomposi-
tion (characterized by value of �23.4‰ as reported by Han
et al. 2024), accounting for approximately 88% of DIC accu-
mulation (Eq. 16). In spring, values (�19.1‰; Fig. 4) shift
toward macroalgal detritus signatures (�16.9‰; Han
et al. 2024), with algal-derived carbon contributing about 66%
to DIC enrichment (Eq. 16). This seasonal transition, from
fish-driven carbon dynamics in autumn to macroalgal detritus
dominance in spring (Fig. 4), highlights a previously over-
looked aspect of polyculture operations.

Complexity and implications of polyculture
Our results challenge the conventional view of integrated

aquaculture as a straightforward carbon mitigation strategy.
Although macroalgal photosynthesis temporarily reduces CO2

levels during its peak growth in winter (Deng et al. 2025), our
comprehensive analyses consistently reveal a net CO2 release
in other seasons, primarily driven by the decomposition of
macroalgal detritus and fish feed (Fig. 4).

Hydrodynamic conditions critically reinforce these
impacts. In contrast to wild algal forests or open systems that
maintain a wider and unrestricted connection to the open
ocean—allowing macroalgal detritus to be transported over
large distances within days to weeks (Boyd et al. 2022)—the
restricted water exchange in Sansha Bay (Fig. 1b) results in
nearly complete local decomposition of organic debris, typ-
ically over timescales of 6–70 d, with a peak around 15 d
(Liu et al. 2016; Luo et al. 2023; Smith and Foreman 1984)
(Supporting Information Fig. S6). This temporal alignment
between water retention and organic decay intensifies

Fig. 4. Relationships between ΔDICbio and Δ(δ13CDIC � DIC). ΔDICbio

denotes the biologically-induced change in DIC, whereas
Δ(δ13CDIC � DIC) reflects deviations of δ13CDIC � DIC from conservative
mixing. Symbols distinguish among the following regions/seasons: non-
culture main channel areas in spring (blue), seaweed culture in Dong-
wuyang in spring (red), and seaweed-fish polyculture in Dongwuyang in
autumn (yellow). The dashed lines represent linear regressions for differ-
ent sets, with slopes indicating the δ13C signatures of degraded organic
carbon. Note that the regression fit for non-culture areas is statistically
insignificant.

Fig. 5. Schematic illustrating the different biogeochemical drivers in the highly sheltered Sansha Bay seaweed farming area with a lagoon-like geo-
graphic configuration, as well as a comparison to the relatively open systems of wild algae and seaweed cultivation. (a) Wild algae and seaweed farming
system with a wider connection to the open ocean. (b) Autumn scenario dominated by fish feed inputs, leading to localized oxygen depletion and acidi-
fication, establishing surface waters as a net CO2 source. (c) Spring scenario primarily controlled by macroalgal detritus decomposition, with surface
waters acting as a net CO2 source as well. The net changes in DO, pH, and DIC during seaweed farming and fish polyculture presented in (b) and (c) are
derived from aquaculture zones, with the main channel serving as a baseline.
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negative impacts, including hypoxia, acidification, and
eutrophication. Both the expansion of seaweed farming
and the prolonged water retention time are significant
contributing factors to hypoxia and acidification in the
study area. Although current DO levels (minimum: 44.0%)
have not yet reached severe hypoxia thresholds (< 26.5% at
25�C), they already compromise ecosystem function and
may serve as precursors to more severe conditions, par-
ticularly during summer stratification. In contrast,
another typical partially sheltered aquaculture region,
Sanggou Bay in Northeast China—where similar large-scale
macroalgal aquaculture is practiced without fish poly-
culture but maintains stronger water exchange through its
semi-open connection to the adjacent ocean—consistently
functions as a strong carbon sink throughout the year (Han
et al. 2025).

Our conceptual model (Fig. 5) integrates seasonal inter-
actions across different aquaculture scenarios, clarifying the
combined impacts of seaweed and fish farming on key bio-
geochemical parameters such as DIC, DO, and pH. The sea-
sonal progression, shifting from fish feed decomposition in
autumn to macroalgal detritus decomposition in spring,
explains the transition from transient photosynthetic CO2

uptake to sustained heterotrophic CO2 release. These find-
ings highlight the need for aquaculture management strate-
gies that address both biological production phases and
hydrodynamic constraints. Measures such as reducing culti-
vation densities and improving water exchange are essen-
tial to prevent irreversible hypoxia and acidification in
semi-enclosed bays. Without proactive intervention, inten-
sive aquaculture sites such as Sansha Bay may develop
chronic hypoxic conditions similar to those observed in
severely impacted estuarine environments such as the
Yangtze and Pearl River estuaries (Cui et al. 2019; Wang
et al. 2017). Future aquaculture management should con-
sider both carbon sequestration capacity and ecosystem
health to ensure sustainable and resilient environments.
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