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Scientific Significance Statement

Seaweed farming is increasingly recognized as a promising strategy for marine carbon dioxide removal (mCDR). However, its
ecological sustainability, particularly in semi-enclosed bays, remains uncertain. Using data collected from Sansha Bay, Fujian,
China, the world’s largest seaweed farming site, our study reveals an inherent trade-off: in highly sheltered coastal environ-
ments, especially when integrated with algae-fish polyculture, seaweed farming can induce significant hypoxia and acidifica-
tion risks through organic carbon degradation. Carbon isotopic tracing further demonstrates that seasonal shifts in organic
carbon sources—from fish feed in autumn to macroalgal detritus in spring—diminish the potential of macroalgal-based carbon
sequestration. These findings emphasize the complexity of coastal carbon management and highlight the critical importance
of considering ecosystem health—including the system’s capacity to maintain oxygen and pH stability and sustain biogeo-
chemical functioning—when implementing seaweed-based carbon sequestration strategies.

Abstract

Seaweed farming is increasingly promoted as a carbon sequestration strategy, but its effectiveness relies on car-
bon burial and export to deep waters. Seaweed farms commonly occupy semi-enclosed bays, causing continu-
ous accumulation of organic carbon (OC) and its degradation products, potentially undermining carbon
sequestration and driving hypoxia and acidification. These ecological impacts may be amplified in fish-algae
polyculture systems, yet they remain unclear. We investigated carbon cycling in Sansha Bay, China, the world’s
largest seaweed farm and intensive algae-fish polyculture site. During aquaculture seasons, bottom waters expe-
rienced rapid OC decomposition, causing severe oxygen depletion and acidification. Vertical mixing spread
these effects throughout the water column, turning surface waters into net CO, sources. §!3Cpyc carbon isoto-
pic analyses indicated seasonal shifts in dominant OC sources, from fish feed in autumn to macroalgal detritus
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in spring. These findings underscore the importance of evaluating the sustainability of coastal systems when

pursuing seaweed-based carbon sequestration.

The ocean absorbs approximately 26% of anthropogenic
CO, emissions, playing a crucial role in climate regulation
(Friedlingstein et al. 2025; Gattuso et al. 2015). Marine carbon
dioxide removal (mCDR) strategies aim to enhance the
ocean’s capacity to sequester additional CO,, representing
promising approaches to mitigate global warming (Doney
et al. 2025). Among these, large-scale seaweed farming (e.g.,
macroalgae cultivation) has attracted considerable attention
due to its rapid biomass production and subsequent organic
cartbon export and potential carbon sequestration (Duarte
et al. 2021, 2025; Krause-Jensen and Duarte 2016; Krause-
Jensen et al. 2018; Paine et al. 2021).

Macroalgae function as crucial carbon sinks, but their
effectiveness depends on the efficient transport of organic
carbon and its long-term storage and net inventory increase
in deep ocean reservoirs (Krause-Jensen and Duarte 2016;
Filbee-Dexter et al. 2024). In open coastal systems with wild
algal forests, persistent tidal forcing and turbulent mixing
can export algal detritus offshore, where it settles into deep
waters under gravitational forcings. This process not only
prevents local organic matter accumulation but also
enhances long-term carbon burial via effective cross-shelf
particulate export. In contrast, seaweed farms are often
established in semi-enclosed bays characterized by limited
water exchange and thermally stable conditions. While
these conditions favor robust macroalgal growth, they also
lead to the prolonged retention of degraded biomass within
the system (Han et al. 2024; Wang et al. 2023). The
resulting elevated nutrient concentrations and accumula-
tion of organic debris stimulate intense microbial activity,
accelerating further decomposition processes that consume
dissolved oxygen (DO) and release CO,. This cascade ulti-
mately triggers hypoxia and acidification events with signif-
icant ecological consequences (Bach et al. 2021; Gallagher
et al. 2022; Xiong et al. 2024).

Previous studies specifically addressing hypoxia and acidifi-
cation risks associated with seaweed farming remain limited.
Nonetheless, analogous phenomena in natural, algae-
dominated ecosystems offer valuable insights. For instance, in
Chesapeake Bay—a system prone to seasonal hypoxia—
oxygen depletion is primarily driven by phytoplankton
blooms followed by subsurface and benthic decomposition
(Du et al. 2018; Officer et al. 1984; Zheng and DiGiacomo
2020; Su et al. 2020). Similarly, bottom waters of larger river-
impacted coastal oceans such as those on the northern Gulf
of Mexico (United States) and the East China Sea (China)
receive substantial organic carbon input (70%-80%) from
surface algal blooms, whose rapid decomposition dramati-
cally reduces DO levels (by 90%-111%) and triggers mass
mortality events (Jiang et al. 2014; Wang et al. 2017; Wang

et al. 2016, 2018; Zhang et al. 2022;). Given that transient
algal proliferation in these natural systems can induce
severe hypoxia and acidification, similar—or even
amplified—risks are highly likely in semi-enclosed aquacul-
ture environments characterized by limited water exchange
and intensive polyculture practices.

Integrated multi-trophic aquaculture models conceive syner-
gistic relationships where fish consume macroalgal detritus and
macroalgae assimilate CO, released by fish respiration
(McNeary and Erickson 2013; Saba et al. 2021). However,
empirical evidence indicates that only about 20%-25% of fish
feed is utilized by cultured organisms (Han et al. 2021; Hu
et al. 2012), leaving behind substantial organic residues. These
residues further elevate oxygen demand and disrupt the car-
bonate chemistry of the system. Despite these findings, critical
knowledge gaps persist regarding the temporal dynamics and
predominant sources of organic matter driving hypoxia and
acidification in intensive polyculture aquaculture systems.

We conducted comprehensive biogeochemical investiga-
tions in Sansha Bay, China—a representative seaweed farming
system that produces approximately 1.8 million tons of bio-
mass annually (fresh weight; Duarte et al. 2025). Notably, San-
sha Bay features a narrower opening and greater physical
barriers compared to a typical semi-enclosed bay (Fig. 1a,b),
making it a highly sheltered system that experiences signifi-
cantly restricted water exchange with the open ocean (Han
et al. 2021; Lin et al. 2017, 2019). Aquaculture activities in this
region follow a well-defined seasonal pattern, with macroalgae
(e.g., Saccharina japonica) cultivated mainly from winter
through spring and intensive fish farming occurring in spring
and autumn (see details in Methods), coinciding with periods
of high feed input and organic matter loading (Deng
et al. 2025; Xie et al. 2021). By integrating carbonate parame-
ters measurements, 5'>Cpc isotopic tracing, and end-member
mixing analyses, we compared carbon biogeochemical cycling
in seaweed culture, seaweed-fish polyculture, and non-culture.
Our quantitative assessment of the contributions from macro-
algal detritus and fish feed decomposition to subsurface CO,
release uncovers the mechanisms driving hypoxia and acidifica-
tion in seaweed farms with highly restricted water exchange.

Materials and methods

Study area and aquaculture types

Sansha Bay (26°30'-26°58'N, 119°26-120°10' E), located in
the northeastern Fujian Province, China, is a lagoon-like
semi-enclosed coastal system spanning approximately
675 km?. An area of 150 km? within the bay is designated for
seaweed farming (Fig. 1c-g), making it the world’s largest con-
tiguous macroalgae cultivation zone (Duarte et al. 2025). The
bay connects to the East China Sea via the narrow Dongchong
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Fig. 1. Map of Sansha Bay and the seaweed farming activities within the bay. (a) Geographic location of Sansha Bay. (b) Sampling stations during four
cruises. (c) Macroalgae cultivation areas. (d) Operational harvesting processes for seaweed.

Channel (3 km width; Figs. 1, 2i) (Ji et al. 2021; Lin
et al. 2017; Xie et al. 2022). The bay’s unique topography
limits water exchange, predominantly driven by tidal action
(Fig. lab). Hydrodynamic studies show spatially variable
exchange rates, with half-exchange times less than 10 d in the
main channel but significantly longer (15-40 d) in the inner
Dongwuyang region (Lin et al. 2017, 2019). As a consequence,
this system exhibits high sedimentation rates but significantly
lower stocks of organic carbon in sediments (Duarte
et al. 2025).

Aquaculture activities in Sansha Bay exhibit clear spatial
variability, primarily comprising raft-based and cage-based
aquaculture systems (Fig. 1c-g). Macroalgae cultivation foc-
uses predominantly on S. japonica (December-May) and
Gracilariopsis lemaneiformis, the latter of which, despite its
shorter culture cycle, is cultivated nearly year-round (Deng
et al. 2025). Simultaneously, cage farming of Larimichthys
crocea follows two intensive stocking cycles annually
(April-May and October-December), demanding substantial
feed inputs (Wang et al. 2024; Xie et al. 2021). During our
surveys, G. lemaneiformis and L. crocea dominated in

autumn; G. lemaneiformis alone was cultivated in winter
(as S. japonica had not yet been deployed), and S. japonica
became dominant in spring when it entered the harvest
stage (Supporting Information Fig. S1; Supporting Informa-
tion Tables S1-S3). The integration of intensive polyculture
practices with limited hydrodynamic exchange renders San-
sha Bay an ideal natural laboratory for investigating carbon-
ate chemistry alterations under sustained aquaculture and
organic matter enrichment.

Sampling and data collection

Four seasonal surveys were conducted in winter 2021
(December 11-12), autumn 2022 (November 17-19), spring
2024 (April 4-7), and winter 2024 (December 1-4) (Fig. 1).
Water samples were collected using S L Niskin bottles, imme-
diately transferred to 250 mL PYREX borosilicate glass bottles,
and poisoned with 100 uL of saturated HgCl, solution for sub-
sequent analysis of dissolved inorganic carbon (DIC), total
alkalinity (TA), and 5"*Cpc.

DO concentrations were determined within 24 h using
automated Winkler titration (precision: 0.1% or +0.23
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umol kg’1) (Dai et al. 2006). Dissolved inorganic carbon con-
centrations were analyzed by acidifying 0.6 mL seawater
samples with phosphoric acid; liberating CO, was quanti-
fied via a LI-COR 7000 non-dispersive infrared (NDIR) spec-
trometer (AS-C6L, accuracy =+ 2.0 yumol kg_l) (Cai et al.
2004). Total alkalinity was measured using potentiometric
Gran titration (AS-ALK3, accuracy =+ 2.0 ymol kg’l) (Cai
et al. 2004). Both DIC and TA measurements were cali-
brated against certified reference materials (CRMs) from the
Scripps Institution of Oceanography. For 8'3*Cp;c analysis,
CO, was extracted cryogenically from 3 mL acidified seawa-
ter, purified via vacuum distillation, and analyzed by cavity
ring-down spectroscopy (Picarro G2131-i; accuracy < 0.1%o)
(Chen et al. 2022).

pH was calculated from DIC and TA using the CO2SYS
program (Lewis and Wallace 1998), employing carbonic
acid dissociation constants (K; and K;) from Lueker et al.
(2000), Kygso4 dissociation constants from Dickson (1990),
and total borate-salinity relationship from Lee et al. (2010).
All pH values are reported on the total hydrogen scale
(pHr). While organic alkalinity can contribute to measured
TA in aquaculture waters (Xiong et al. 2023) and should be
considered, our assessment indicates that this contribution
is negligible in the Sansha Bay system (see Supporting Infor-
mation Text S2).

Multi-endmember mixing model

To disentangle physical mixing from biogeochemical pro-
cesses affecting DIC, TA, DO, and 53Cpic, we employed a
two-endmember mixing model following e.g., Yang et al.
(2022) (Cao et al. 2011; Yang et al. 2022):

fi+f2=1 (1)
Sixfi+S2xf,=S8 (2)

where S denotes salinity, subscripts 1 and 2 denote distinct
water mass end-members, with f; and f, calculated accord-
ingly. Conservative concentrations (DIC®", DO"S, TA®")
and 8'3Cp;c were calculated as:

DIC®™ =DIC; x f; +DIC; x f, (3)

DO®™ =DO; xf; +DO2 x [, (4)

TA™ —TA; x f,+TAy x f, (5)

8 CHE = ("Cy x DIC; x f; +8'C; x DIC, x f,) /DIC™ (6)

Non-conservative  deviations  (ADIC = DIC®P — DIC®™)
reflect net biogeochemical alterations (Su et al. 2017; Zhao
et al. 2020). The selection of end-members and their
corresponding values are detailed in Supporting Information
Fig. S2 and Supporting Information Table S4.
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Semi-analytical diagnostic method based on DIC and
613CDIC

Observed vs. modeled discrepancies were attributed to air-
sea CO, exchange (ADIC,s), biological processes (ADICy;),
and calcium carbonate cycling (ADICcaico,) (Ouyang
et al. 2024; Zhao et al. 2020):

ADIC = DIC® — DIC®™ = ADICys + ADIC;o + ADICcaco, (7)

8"%Cops X DICops — 8" Ceons X DICcons = ADICas x 8 Cas

13 13 (8)
+ADICbiO X & Cbio + ADICCaCO3 X O CCaCO3

A systematic analysis of each term in Eqgs. 7 and 8 is pres-
ented below:

t
ADICaS :FC02 Xﬁ//) (9)

where Fco, is air-sea CO, flux (mmolm 2 d™'), t the time
interval (days), h the mixed-layer depth (m), and p seawater
density (kgm~>). The isotopic composition of CO, (5'3Cy)
associated with gas exchange was derived as:

9701.5

813Cco, =83 Cpic +23.644 — (10)

613Cas = 613Catmfcoz +e (1 1)

where T is temperature (K), 8*Cam_co,=—8.5%0 (Keeling
et al. 2017), and £ =8'3Ccoz —8'3Cpjc represents equilibrium
fractionation.

We assumed (613Ccé,co3 =0%o) for marine limestone
(Alling et al. 2012). Since air-sea exchange and biological pro-
cesses negligibly affect TA, the calculation of ADICc,co, is per-
formed using the formula ADICcaco,=0.5xATA (Xue
et al. 2020). Consequently:

ADICpio = ADIC — ADIC,, — ADICc4co0, (12)

The DIC isotopic mass balance (Su et al. 2017) is
expressed as

813 Cops X DICqps = 83 Ceons X DICcons + 82 Chio X DIChio  (13)

The degradation of OC typically generates DIC with minor
isotopic fractionation relative to the original OC substrate
(Breteler et al. 2002; Su et al. 2017). Consequently, the isoto-
pic composition of biologically produced DIC (5!3Cy;) is
expected to closely reflect that of the source organic carbon
(6'3Coc), which consumed oxygen during its breakdown
(Ouyang et al. 2024). The value of 5!3Coc was estimated using
mass balance equations based on both DIC concentration and
its stable carbon isotope composition.
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8" Coc= (613C0bs x DICops — 613Cmixing X DICnixing — ADICas
%813 Cys — ADICcaco, % 8'3Ceaco,)/ (DICObS — DIC™™ — ADIC,

—ADICCaCO3)
(14)
which can be rearranged into
A(8"Cpic x DIC) =8"Coc x ADICho (15)

where the left term represents the cumulative isotopic devia-
tion, and the slope of A(8"*Cpic x DIC) vs. ADICp;, quantifies
the &'C signature of metabolized organic carbon
(Su et al. 2020).

The contribution of organic matter to oxygen-consuming
organic matter was estimated using a carbon isotopic mass
balance approach, as described by the following equation
(Zhao et al. 2020; Hu et al. 2006):

(%)= (8" Coc—8"3Cy)/ (5" C, —8'*C1) x 100 (16)

where §'3C; and 8'3C, are the representative values of fish
feed and macroalgae detritus particulate organic carbon,
respectively, at approximately —23.4%o (Han et al. 2024) and
—16.9%o0 (Han et al. 2024).

Results
Spatial-temporal distributions of oxygen and pH in
Sansha Bay and their seasonal evolutions

This study investigates the regulation of the carbonate sys-
tem across different aquaculture regimes by comparing the
main channel of Sansha Bay (non-culture area) with
the Dongwuyang embayment (seasonal aquaculture area)
(Fig. 2¢). In Dongwuyang, aquaculture practices exhibit pro-
nounced seasonal transitions. During autumn, intensive fish
farming at the embayment’s entrance coincides with the culti-
vation of G. lemaneiformis in the northeast. This is followed
by a winter phase dominated by S. japonica cultivation—with
residual G. lemaneiformis beds persisting into the pre-planting
phase—and ultimately transitions into a spring period marked
by extensive S. japonica harvesting.

Our multi-seasonal investigations revealed a pronounced
spatial variability in carbonate system parameters that is
closely linked to the intensity of macroalgae cultivation and
fish farming. During peak aquaculture periods, surface waters
generally acted as net CO, sources, exhibiting elevated pCO,
levels ranging from 412 to 1172 patm (Fig. 2a—f), contrary to
the anticipated carbon sink behavior. In particular, the north-
eastern Dongwuyang region, characterized by prolonged water
half-exchange time of 15-40 d (Lin et al. 2017), consistently
exhibited higher pCO, levels (672 + 167 patm) compared to
the more rapidly flushed main channel (half-exchange time of
0.5d; Lin et al. 2017) which maintained pCO, levels

Eco-environmental risk by seaweed farm

of 534 + 32 yatm. Our observations of the seasonal evolution
of pCO, level and CO, source-sink status are consistent
with carbon fluxes obtained from eddy covariance time-
series measurements in the same region (Deng et al. 2025).
Although our ship-based observations were limited in dura-
tion and did not capture the expected strong carbon sink
during the rapid growth phase of S. japonica, the continu-
ous eddy covariance measurements indicate that, aside
from a strong carbon sink observed in December, the San-
sha Bay aquaculture areas function as carbon sources
throughout the remainder of the year, even during periods
of ongoing G. lemaneiformis cultivation.

Seasonal variations further highlighted the tightly coupled
dynamics between DO and carbonate system parameters. In
autumn, significant oxygen depletion was observed around
aquaculture sites, with DO levels dropping to as low as 74.8%
of saturation—approximately 10% lower than in the surround-
ing reference waters (Fig. 2g), 8'°Cpic values ranging from
—1.83 %0 to —1.30 %o, indicating a depletion of 0.3-0.8 %o
compared to the Main-channel (Fig. 2j), and pH values between
7.5 and 7.7—roughly 0.2-0.3 units lower than those in adjacent
non-culture waters (Fig. 2m). In winter, the photosynthetic
activity of macroalgae temporarily alleviated acidification, ele-
vating surface DO to 112.9%, reducing DIC concentration to
1931 ymol kg~! (Supporting Information Fig. S3c), and
enriching §13Cpjc values (—0.75%0 to 0.27%o0; Fig. 2h,kn).
Conversely, during spring, conditions intensified oxygen deple-
tion, with minimum DO levels reaching only 44% of satura-
tion, DIC concentrations increasing to 2318 umol kg '
(Supporting Information Fig. $3k), and 5'*C-DIC values becom-
ing notably depleted (—3.21%0 to —0.92%o; Fig. 2i,1,0). In addi-
tion, the relatively high total alkalinity observed in the
Dongwuyang area during spring indicates an input of subma-
rine groundwater discharge (SGD), which elevated the baseline
TA of the system. In contrast, the main channel, benefiting
from rapid water renewal, consistently maintained relatively
stable conditions (DO > 85% and DIC < 2095 uymol kg~!), unde-
rscoring the significant influences of aquaculture and hydrody-
namic forces on local biogeochemical signals.

Low oxygen and pH throughout the water column in
aquaculture areas

Vertical profiles revealed marked differences between aqua-
culture zones and adjacent non-culture regions. In
aquaculture-affected areas, the water column consistently
exhibited low oxygen levels and reduced pH, whereas the
main channel maintained oxygen-rich conditions (Fig. 3).

In autumn, although the water columns were generally
well-mixed (Supporting Information Fig. S4), localized zones
of oxygen depletion were persistent near fish farms. This con-
trasted sharply with macroalgae-dense regions, where active
photosynthesis elevated surface dissolved oxygen and pH
levels (Fig. 3a—d). During winter, surface photosynthetic activ-
ity temporarily boosted oxygen concentrations to 112.9% of
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Fig. 2. Spatiotemporal distributions of pCO,, DO, pH, and 5'3Cpc in Sansha Bay. (a—c) Underway measurements of surface pCO,; (d—f) surface pCO,
derived from discrete bottle samples calculated using CO2SYS; (g-0) DO, pH, and 8'3Cpc at the bottom waters. Horizontal distributions of pCO,, DO,
pH, and 8'3Cp,c at the bottom waters. Rows indicate different parameters, and columns indicate different seasons. The white dotted line in (c) divides
Sansha Bay into two distinct zones: non-aquaculture area (main channel) and aquaculture-impacted area (Dongwuyang, seaweed farming and fish-
macroalgae polyculture system).
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Fig. 3. Seasonal vertical profiles along the main channel-Dongwuyang transect. (a—c) autumn, (e-g) winter, and (i-k) spring profiles of DO, pH, and
8"3Cp\c. Depth-integrated averages for each season are quantified in (d), (h), and (l).

saturation and increased pH values, while both parameters we observed net DIC consumption accompanied by increased
remained low in the subsurface (=20 m depth), comparable to pH (Supporting Information Fig. S5). In contrast, both
or lower than those observed in the main channel (Fig. 3h). autumn and spring were characterized by elevated DIC, lower
In spring, the entire water column of northeastern Dong- pH, and depleted 8'3Cpc values (Supporting Information
wuyang was dominated by severe hypoxia (DO ranging Fig. S5), indicating that OC remineralization following algae
from 44% to 70% of saturation) and acidification growth is the primary driver of these changes (Hullar
(pH between 7.4 and 7.6), along with pronounced deple- et al. 1996; Breteler et al. 2002).
tion of §'3Cp;c values (—3.2%0 to —2.5%o; Fig. 3i-k). Wind- In this seaweed farming system, OC is derived from both
driven vertical mixing played a key role by transporting marine and terrestrial sources. Using the DIC isotopic mass
degradation byproducts from organic-rich sediments  Dalance (Eq. 15), we determined the 8'°C signatures of

upward, as indicated by the observed hypoxic gradients and ~ decomposed OC driving DIC production and oxygen con-
carbon isotope fractionation. sumption, with values of —22.6%o in autumn and —19.1%o in

spring (Supporting Information Fig. 4). These values differ
markedly from terrestrial OC signatures (—28.6%o; Zhao

Discussion and conclusion et al. 2020) and closely resemble those of marine sources

Partitioning source of decomposed organic carbon (—20.6%0; Zhao et al. 2020), indicating that marine-derived

inducing hypoxia and acidification OC decomposition dominates. Although limited sampling

Deviations in DIC, pH, and §'3Cpic from conservative near riverine inputs constrains accurate estimation of marine

mixing models exhibited clear seasonal patterns. In winter, vs. terrestrial contributions, evidence suggests that the Jiaoxi
7
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Fig. 4. Relationships between ADICy, and A(3'3Cpic x DIC). ADICy,
denotes the biologically-induced change in DIC, whereas
AB"3Cpic x DIC) reflects deviations of §'3Cpic x DIC from conservative
mixing. Symbols distinguish among the following regions/seasons: non-
culture main channel areas in spring (blue), seaweed culture in Dong-
wuyang in spring (red), and seaweed-fish polyculture in Dongwuyang in
autumn (yellow). The dashed lines represent linear regressions for differ-
ent sets, with slopes indicating the 8'3C signatures of degraded organic
carbon. Note that the regression fit for non-culture areas is statistically
insignificant.

River is the primary terrestrial source to Sansha Bay; however,
its distance from the Dongwuyang study area minimizes ter-
restrial influence due to geomorphic isolation (Fig. 1b; Han
et al. 2021; Wang et al. 2015; Zhang et al. 2024).

With wider connection to the open ocean

Wild algae and seaweed farming

Seaweed-fish polyculture system

Eco-environmental risk by seaweed farm

Furthermore, we differentiated between fish and algal
sources within the marine OC pool. In autumn, 513Coc values
(—22.6%0; Fig. 4) align with signals from fish feed decomposi-
tion (characterized by value of —23.4%o as reported by Han
et al. 2024), accounting for approximately 88% of DIC accu-
mulation (Eq. 16). In spring, values (—19.1%o; Fig. 4) shift
toward macroalgal detritus signatures (—16.9%o; Han
et al. 2024), with algal-derived carbon contributing about 66%
to DIC enrichment (Eq. 16). This seasonal transition, from
fish-driven carbon dynamics in autumn to macroalgal detritus
dominance in spring (Fig. 4), highlights a previously over-
looked aspect of polyculture operations.

Complexity and implications of polyculture

Our results challenge the conventional view of integrated
aquaculture as a straightforward carbon mitigation strategy.
Although macroalgal photosynthesis temporarily reduces CO,
levels during its peak growth in winter (Deng et al. 2025), our
comprehensive analyses consistently reveal a net CO, release
in other seasons, primarily driven by the decomposition of
macroalgal detritus and fish feed (Fig. 4).

Hydrodynamic conditions critically reinforce these
impacts. In contrast to wild algal forests or open systems that
maintain a wider and unrestricted connection to the open
ocean—allowing macroalgal detritus to be transported over
large distances within days to weeks (Boyd et al. 2022)—the
restricted water exchange in Sansha Bay (Fig. 1b) results in
nearly complete local decomposition of organic debris, typ-
ically over timescales of 6-70 d, with a peak around 15d
(Liu et al. 2016; Luo et al. 2023; Smith and Foreman 1984)
(Supporting Information Fig. S6). This temporal alignment
between water retention and organic decay intensifies

Seaweed farming under restricted water exchange with open ocean

Seaweed farming system

Wild macroalgae

Fig. 5. Schematic illustrating the different biogeochemical drivers in the highly sheltered Sansha Bay seaweed farming area with a lagoon-like geo-
graphic configuration, as well as a comparison to the relatively open systems of wild algae and seaweed cultivation. (a) Wild algae and seaweed farming
system with a wider connection to the open ocean. (b) Autumn scenario dominated by fish feed inputs, leading to localized oxygen depletion and acidi-
fication, establishing surface waters as a net CO, source. (c) Spring scenario primarily controlled by macroalgal detritus decomposition, with surface
waters acting as a net CO; source as well. The net changes in DO, pH, and DIC during seaweed farming and fish polyculture presented in (b) and (c) are

derived from aquaculture zones, with the main channel serving as a baseline.
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negative impacts, including hypoxia, acidification, and
eutrophication. Both the expansion of seaweed farming
and the prolonged water retention time are significant
contributing factors to hypoxia and acidification in the
study area. Although current DO levels (minimum: 44.0%)
have not yet reached severe hypoxia thresholds (< 26.5% at
25°C), they already compromise ecosystem function and
may serve as precursors to more severe conditions, par-
ticularly during summer stratification. In contrast,
another typical partially sheltered aquaculture region,
Sanggou Bay in Northeast China—where similar large-scale
macroalgal aquaculture is practiced without fish poly-
culture but maintains stronger water exchange through its
semi-open connection to the adjacent ocean—consistently
functions as a strong carbon sink throughout the year (Han
et al. 2025).

Our conceptual model (Fig. 5) integrates seasonal inter-
actions across different aquaculture scenarios, clarifying the
combined impacts of seaweed and fish farming on key bio-
geochemical parameters such as DIC, DO, and pH. The sea-
sonal progression, shifting from fish feed decomposition in
autumn to macroalgal detritus decomposition in spring,
explains the transition from transient photosynthetic CO,
uptake to sustained heterotrophic CO, release. These find-
ings highlight the need for aquaculture management strate-
gies that address both biological production phases and
hydrodynamic constraints. Measures such as reducing culti-
vation densities and improving water exchange are essen-
tial to prevent irreversible hypoxia and acidification in
semi-enclosed bays. Without proactive intervention, inten-
sive aquaculture sites such as Sansha Bay may develop
chronic hypoxic conditions similar to those observed in
severely impacted estuarine environments such as the
Yangtze and Pearl River estuaries (Cui et al. 2019; Wang
et al. 2017). Future aquaculture management should con-
sider both carbon sequestration capacity and ecosystem
health to ensure sustainable and resilient environments.
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