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The earliest definitive evidence for the evolution of eukaryotes 
occurs in late Paleoproterozoic marine sediments1,2, but the 
subsequent Mesoproterozoic has traditionally been perceived 

as a period of relative evolutionary stasis2. However, emerging evi-
dence from several early Mesoproterozoic localities3–5 increasingly 
supports a relatively high abundance and diversity of eukaryotic 
organisms by this time. Moreover, decimetre-scale multicellu-
lar fossils have recently been discovered in early Mesoproterozoic 
(~1,560 Ma) shelf sediments from the Gaoyuzhuang Formation of 
the Yanliao Basin, North China Craton6. Although their precise 
affinity is unclear, the Gaoyuzhuang fossils most probably repre-
sent photosynthetic algae, and provide the strongest evidence yet 
for the evolution of complex multicellular eukaryotes as early as the 
Mesoproterozoic6.

Although molecular oxygen is required for eukaryotic synthesis7, 
the precise oxygen requirements of early multicellular eukaryotes, 
which include the Gaoyuzhuang fossils, are unclear. This is exac-
erbated because recent reconstructions of oxygen levels across the 
Mesoproterozoic are highly variable, which has reignited the debate 
over the role of oxygen in early eukaryote evolution8–11. Thus, in 
addition to providing insight into the affinity of the Gaoyuzhuang 
fossils, a detailed understanding of the environmental conditions 
that prevailed in the Yanliao Basin would also inform on the nature 
of Earth surface oxygenation through the Mesoproterozoic.

Over recent years, our understanding of Mesoproterozoic ocean 
chemistry has converged on a scenario whereby the deep ocean 
remained predominantly anoxic and iron rich (ferruginous) beneath 
oxic surface waters, with widespread euxinic (anoxic and sulfidic) 
conditions being prevalent along biologically productive continen-
tal margins12–14. Other studies potentially indicate more variability 
in ocean redox during the Mesoproterozoic, with the suggestion that 
mid-depth waters may have become more oxygenated by ~1,400 Ma 
(refs 10,15,16). However, this possibility of an enhanced ocean oxygen-
ation significantly postdates the occurrence of the Gaoyuzhuang 
fossils, and whether later Mesoproterozoic ocean oxygenation was 

widespread remains unclear. Indeed, for surface waters in which 
photosynthetic eukaryotes had the potential to thrive, evidence 
from organic carbon isotopes on the North China Craton suggests a 
very shallow chemocline from ~1,650 to ~1,300 Ma (ref. 17), and rare 
earth element (REE) data have been interpreted to reflect very low 
shallow water O2 concentrations (~0.2 µ​M and below) throughout 
the Mesoproterozoic18.

Here we present REE, Fe-speciation and inorganic carbon iso-
tope data for marine carbonates from the 1,600–1,550 Ma Yanliao 
Basin,to investigate ocean redox conditions in the basin where the 
Gaoyuzhuang fossils were discovered. Our data provide a more direct 
assessment of the potential links between the extent of environmental 
oxygenation and early eukaryote evolution, and suggest that the long-
standing paradigm of the Mesoproterozoic as a period of prolonged 
environmental stasis requires conceptual reconsideration.

Geological setting and samples
The Jixian Section in the Yanliao Basin, 100 km east of Beijing, 
China, preserves ~9 km thickness of Proterozoic sedimentary rocks 
deposited atop an Archean–Paleoproterozoic crystalline basement 
(Supplementary Information). Our samples were collected from the 
~1,600–1,550 Ma Gaoyuzhuang Formation of the Jixian Section. 
The Gaoyuzhuang Formation is divided into four lithological mem-
bers (Fig. 1), each of which comprises a shallowing-upward cycle 
that consists mainly of dolostone and limestone deposited in marine 
environments, which range from the deeper shelf slope to the supra-
tidal/intertidal zone19,20 (Fig. 1 and Supplementary Information give 
full details of the depositional setting). U–Pb dating of zircons from 
tuff beds in the lower and upper horizons of the Zhangjiayu Member 
of the Gaoyuzhuang Formation (Fig. 1) gives ages of 1,577 ±​ 12 Ma 
(ref. 21) and 1,560 ±​ 5 Ma (ref. 22), respectively.

Evaluating ocean redox chemistry
With the exception of cerium (Ce), REEs are strictly trivalent in 
seawater and exhibit no intrinsic redox chemistry in most natural 
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waters (the reduction of europium (Eu) from Eu(iii) to Eu(ii) dur-
ing magmatic, metamorphic or hydrothermal process is an excep-
tion23, but it is unlikely to have occurred in our samples). Solution 
complexation with ligands and surface adsorption to particles are 
fundamental processes that control REE cycling in aquatic environ-
ments24. REE–carbonate ion complexes are the dominant dissolved 
species in seawater, with a systematic increase in complexation 
behaviour that occurs from the light to the heavy REEs (HREEs)25. 

Particulate organic matter and iron and manganese (oxyhydr)
oxides are the dominant carriers of REEs, and the light REEs 
(LREEs) are preferentially scavenged by these particles compared 
to the HREEs24. These processes result in fractionation among the 
REEs, which leads to LREE depletion in oxic seawater24.

Yttrium (Y) and holmium (Ho) act as a twin pair due to their 
similar charge and radius. Silicate rocks or clastic sedimentary rocks 
generally have chondritic Y/Ho values of ~28, which implies no 
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Fig. 1 | Summary of sedimentary facies (SF) and geochemical signals for carbonates from the Gaoyuzhuang Formation, Jixian Section. a, PAAS-
normalized REE patterns categorized into six groups. b, Ce anomaly profile (Supplementary Information gives the calculation details). c, FeT profile 
(analytical precision is within the size of the symbols). d, Fe-speciation results (text gives the details). e, Feox/FeHR profile. Sea level reached its highest 
around the middle Gaoyuzhuang Formation19,20. Mb, Member. Age data taken from refs 21,22, and GYZ fossil level from ref. 6.
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apparent fractionation of Y from Ho (ref. 26). By contrast, seawater 
is generally characterized by a superchondritic Y/Ho ratio (>​44), 
which results from Ho being scavenged faster than Y (ref. 27). The 
differential behaviour of Ce is particularly useful as a redox indica-
tor of the water column. Ce exists in either a trivalent or a tetra-
valent form, and in oxygenated water soluble Ce3+ tends to adsorb 
to Fe and/or Mn (oxyhydr)oxide minerals on which oxidation to 
the highly insoluble Ce4+ is catalysed, which results in a negative 
Ce anomaly in the water column28. Therefore, compared to ambi-
ent oxic seawater, marine particulates generally have higher LREE/
HREE ratios, lower Y/Ho ratios and smaller negative or even posi-
tive Ce anomalies24. When these particles settle into suboxic/anoxic 
deeper waters in a stratified ocean, REEs become involved in redox 
cycling, whereby particulate Mn, Fe and Ce undergo reductive dis-
solution, which releases scavenged trivalent REEs back into solu-
tion29. This generates higher LREE/HREE ratios, lower Y/Ho ratios 
and smaller negative or even positive Ce anomalies in the anoxic 
water column30,31. However, the original seawater REE patterns can 
be retained in coeval non-skeletal carbonates, and thus provide fun-
damental information on ocean redox conditions31.

Diagenetic alteration and non-carbonate contamination (for 
example, REEs in clay minerals) are two factors that require con-
sideration prior to the interpretation of REE data32. However,  
carbonate REEs are generally robust to post-depositional process 
such as diagenesis or dolomitization33, and most samples evalu-
ated in our study have experienced little diagenetic recrystalliza-
tion and only very early dolomitization (based on petrographic 
features observed under optical microscopy and cathodolumines-
cence (Supplementary Information)). Although some dolomites 
from the fourth member of the Gaoyuzhuang Formation show a 
unimodal, non-planar texture that may reflect late burial dolomi-
tization, these samples retain typical seawater-like REE patterns 
(Fig. 1a), which suggests little modification of the REE patterns. 
To address the potential for non-carbonate contamination, we uti-
lized a sequential dissolution method for REEs using dilute acetic 
acid (Methods), which enables REEs in carbonates to be targeted 
specifically34. In addition, no obvious covariation was observed 
between aluminium (Al), scandium (Sc) or thorium (Th) (as 
indicators of detrital materials) and various REE parameters (for 
example, the sum of REEs (Σ​REE), Y/Ho ratios, the fractionation 
between LREE and HREE (PrnN/ErN) or Ce anomalies( ∕Ce Ce*N N; 
where REEN refers to observed PAAS-normalized REE abundance, 
and REE*N refers to predicted PAAS-normalized REE concentra-
tion) (Supplementary Fig. 5)). These observations provide strong 
support for the preservation and extraction of primary seawater 
REE signals32.

The post-Archean Australian Shale (PAAS)-normalized REE 
patterns of the Gaoyuzhuang Formation carbonates show system-
atic variability that can be categorized into six groups (Fig. 1a). 
Carbonates from ~0 to 650 m, including the Guandi Member, the 
Sangshu’an Member and the lower part of the Zhangjiayu Member 
of the Gaoyuzhuang Formation (Groups GYZ-1, GYZ-2 and GYZ-
3-1), show marine REE patterns that are generally not typical of 
oxic seawater: middle REE enrichment, LREE enrichment or nearly 
flat REE patterns, near chondritic or slightly higher Y/Ho ratios 
and absent (or small) Ce anomalies. Samples from ~650 to 800 m 
(Group GYZ-3-2) show variable REE patterns, some of which start 
to show REE patterns and negative Ce anomalies typical of oxic 
seawater. Samples from 800 m to the top of the section (Group 
GYZ-3-3 and GYZ-4) show typical oxic marine REE patterns with 
negative Ce anomalies ( ∕Ce Ce*N N =​ 0.69–0.92). These temporal 
trends in REE patterns record the long-term redox evolution of the  
Yanliao Basin.

In addition to the REE data, we also utilized Fe-speciation as 
an independent redox indicator. Fe-speciation is a well-calibrated 
technique to identify anoxia in the water column, and is the only 

technique that enables ferruginous conditions to be distinguished 
directly from euxinia14,35. Besides its application to ancient fine-
grained siliciclastic marine sediments, Fe-speciation can also be 
successfully applied to carbonate-rich sediments31,36,37 provided the 
samples contain sufficient total Fe (FeT >​ 0.5 wt%) to produce robust 
interpretations that are not skewed by the potential for Fe mobili-
zation during late-stage diagenesis or deep burial dolomitization38. 
Hence, we only applied Fe-speciation to samples with FeT >​ 0.5 wt% 
(Fig. 1) and, in addition, our samples were screened for potential 
modification of primary signals by deep burial dolomitization 
(Supplementary Information).

Fe-speciation defines an Fe pool that is considered highly reac-
tive (FeHR) towards biological and abiological reduction under 
anoxic conditions, and includes carbonate-associated Fe (Fecarb), 
ferric oxides (Feox), magnetite (Femag) and pyrite (Fepy)39. Sediments 
deposited from anoxic waters commonly have FeHR/FeT >​ 0.38, 
whereas ratios below 0.22 are generally considered to provide a 
robust indication of oxic depositional conditions14. For samples that 
show evidence of anoxic deposition (that is, FeHR/FeT >​ 0.38), ferru-
ginous conditions can be distinguished from euxinia by the extent 
of pyritization of the FeHR pool, with Fepy/FeHR >​ 0.7–0.8 indicating 
euxinia and Fepy/FeHR <​ 0.7 indicating ferruginous conditions35,40,41.

From 0 to 800 m in the Gaoyuzhuang Formation, 33 out of 54 sam-
ples had FeT >​ 0.5 wt% and were deemed suitable for Fe-speciation38, 
whereas all samples higher in the succession contained <​ 0.5 wt% 
(Fig. 1c). The samples from 0 to 800 m show clear evidence for 
water-column anoxia, with high FeHR/FeT >​ 0.38. Furthermore, low 
Fepy/FeHR ratios support ferruginous, rather than euxinic, deposi-
tional conditions (Fig. 1d). Fe-speciation also reveals a significant 
enrichment in ferric (oxyhydr)oxide minerals in GYZ-3-2 sedi-
ments, rather than reduced or mixed valence FeHR phases, with Feox 
increasing up to 65% of the total FeHR pool (Fig. 1e), coincident with 
the first development of REE patterns typical of oxic seawater.

Carbonates were also analysed for their inorganic carbon isotope 
(δ​13Ccarb) compositions. Values vary from −​2.85‰ to +​0.54‰ and 
are entirely consistent with previous analyses from other parts of 
the Yanliao Basin (Fig. 2). We interpret these δ​13Ccarb data to reflect 
contemporaneous seawater signatures with a minimal diagenetic 
overprint (Supplementary Information). Throughout much of the 
section there is a relatively narrow range in δ​13Ccarb, but a rapid, 
basin-wide, negative carbon isotope excursion (to values as low as 
−​2.85‰) occurs in the lower part of the Zhangjiayu Member of the 
Gaoyuzhuang Formation.

Oxygenation of the early Mesoproterozoic ocean
Our REE and Fe-speciation data provide strong, independent 
evidence for anoxic depositional conditions across the lower two 
members, and the basal part of the Zhangjiayu Member, of the 
Gaoyuzhuang Formation (GYZ-1, GYZ-2 and GYZ-3-1 in Fig. 1). 
These samples span a significant range in water depth, from shallow 
to deeper distal environments19,20, which suggests that ferruginous 
conditions were a prevalent feature of the water column throughout 
the basin, including in very shallow waters (Fig. 3a). Above this, 
samples from ~650 to 800 m (GYZ-3-2 in Fig. 1) have variable REE 
features, which suggests precipitation around a transitional redox 
zone. In support of this, Fe-speciation data continue to record fer-
ruginous conditions, which implies a redox boundary between the 
ferruginous deeper waters and shallower oxic waters. Moreover, 
an increase in the magnitude of negative Ce anomalies is apparent 
across this transitional zone (Fig. 1b), which also records a signifi-
cant increase in the preservation of ferric (oxyhydr)oxide minerals 
in the sediment (Fig. 1e).

In combination, these observations suggest that our data capture 
a major transition in water-column oxygenation, which resulted in 
the extensive precipitation of Fe (oxyhydr)oxide minerals at the che-
mocline as ferruginous deeper waters became oxygenated (which 
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is supported by the significant increase in FeT across this interval 
(Fig. 1c)). Indeed, this transitional redox zone occurs as the water 
depth increases to almost the maximum observed in the succes-
sion (Fig. 1), which suggests that a significant rise in surface-water 
oxygen levels resulted in a major deepening of the chemocline, as  
depicted in Fig. 3b.

REE systematics then support the persistence of well-oxygenated 
waters throughout the overlying succession, from deep basinal 
waters, through fluctuating water depths, to very shallow waters. If 
the dissolved oxygen content remained constant as the water depth 
shallowed through time, a change from more negative (in deeper 
waters) to less negative (in shallower waters) Ce anomalies would 
naturally occur, due to the preferential desorption of LREEs relative 
to Ce(iv) at depth in the water column42. Therefore, the relatively 
stable negative Ce anomalies (and the one sample with a large nega-
tive anomaly) as water depth shallows from 800 m to the top of the 
Gaoyuzhuang Formation (Fig. 1b) imply a continued progressive 
oxygenation of the water column (Fig. 3c). The very low FeT content 
of these samples after the large-scale drawdown of water-column Fe 
in unit GYZ-3-2 (Fig. 1) is also entirely consistent with an absence 
of FeHR (and Fepy) enrichments due to persistent water-column  
oxygenation38.

Our reconstruction of anoxic ferruginous water-column condi-
tions in very shallow waters of the lower Gaoyuzhuang Formation 
(Fig. 3a) is consistent with previous studies that suggest a very low 
surface-water oxygenation in the Mesoproterozoic17. However, we 
also find clear evidence for a progressive oxygenation ‘event’ begin-
ning at ~1,570 Ma. REE and Fe-speciation data are, however, con-
sidered to record local to regional water-column redox conditions. 
To place our observations in the more widespread context of the 
entire Yanliao Basin, we also consider carbon isotope systematics 
from the Jixian Section and elsewhere in the basin. A prominent 
negative δ​13Ccarb excursion, lasting ~1.6 Myr (assuming a constant 
depositional rate), is apparent throughout the Yanliao Basin at 
~1,570 Ma (Fig. 2), coincident with the onset of the oxygenation 
event, as recorded independently by our geochemical data. This 
excursion was previously attributed to diagenetic alteration43, 
but more-detailed isotopic studies suggested that the excursion 
reflects the development of anoxic bottom waters in deeper basinal  
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environments, which may have resulted in an enhanced heterotro-
phic remineralization under anoxic conditions19. However, these 
previous studies lacked the environmental context afforded by our 
redox evaluation of the water column, which suggests that, by con-
trast, the excursion is linked to the development of oxic, rather than 
anoxic, conditions.

Based on our data, we consider two potential mechanisms to 
explain the negative δ​13Ccarb excursion. One mechanism requires a 
widespread decline in organic carbon burial, but this is inconsis-
tent with the total organic carbon data, which show an increase 
from <​0.1 wt% below the excursion to ~0.5 wt% during the excur-
sion (Supplementary Fig. 7). Instead, we suggest that the negative  
δ​13Ccarb excursion is directly related to widespread oxygenation in 
the basin, and probably reflects the oxidation of a δ​13C-depleted pool 
of dissolved organic carbon and/or methane at the redoxcline. The 
δ​13Ccarb record of early Mesoproterozoic successions in the Yanliao 
Basin also shows a gentle long-term increase to more-positive val-
ues above the negative isotope excursion (Fig. 2)44, which is also 
consistent with the progressive longer-term increase in oxygenation 
indicated by our REE data. This is consistent with the emerging evi-
dence for a possible deeper water oxygenation recorded in marine 
sediments from the ~1,400 Ma Kaltasy Formation (Russia)16, and 
in the ~1,400–1,320 Ma Xiamaling Formation (North China)10,15. 
These observations suggest that our data may capture the onset of 
a major global rise in Mesoproterozoic Earth surface oxygenation, 
which contrasts with the persistent low-oxygen condition often 
advocated for this period8,9,17,18.

Implications for eukaryote evolution
The complex eukaryotes of the Gaoyuzhuang Formation (Fig. 1) 
are found in the Zhangjiayu Member6, shortly after the onset of the 
oxygenation event recorded by our geochemical data. In addition, 
the Gaoyuzhuang fossils are found near the storm wave base (SWB) 
on the shelf (Fig. 3b)6, which suggests that rising oxygen levels and 
a concomitant deepening of the oxycline created the environmental 
stability required for their evolution. This reinforces the role of oxy-
gen as an evolutionary driver in the Mesoproterozoic, and provides 
support for the suggestion that these complex eukaryotes were prob-
ably involved in aerobic respiration and photosynthesis6. Although 
Gaoyuzhuang-type fossils have not yet been discovered elsewhere, 
several other early Mesoproterozoic successions, including the 
Ruyang Group (~1,750–1,400 Ma) in the southwestern margin of 
the North China Craton3, the Kotuikan Formation (~1,500 Ma) on 
the northern Siberia Platform5 and the Roper Group (~1,500 Ma) 
in northern Australia4, have been reported to preserve a relatively 
high abundance and diversity of eukaryotic organisms, in contrast 
to older strata. This suggests that chemical and biological evolution 
during the Mesoproterozoic were probably intrinsically linked, and 
far from static, on a global scale.

In summary, the early Mesoproterozoic Yanliao Basin records 
an important step change in Earth's oxygenation history, which was 
most probably linked to atmospheric oxygenation. The emerging 
evidence from the North China Craton and elsewhere10,15,16 sug-
gests that the progressive oxygenation event recorded by our data 
may have been of global significance, with major implications for 
eukaryote evolution. Although further detailed study of other suc-
cessions is required to evaluate the spatial and temporal constraints 
on early Mesoproterozoic oxygenation, our data build upon emerg-
ing evidence from the fossil record to suggest that environmental 
change was probably considerably more dynamic than previously 
recognized during the far from ‘boring’ Mesoproterozoic Era.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41561-018-0111-y.
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Methods
REEs. The chemical dissolution of REEs was carried out in a class 100 ultraclean 
laboratory. The dissolution method applied is reported elsewhere34. Briefly, the 
technique initially dissolves 30–40% of total carbonate, followed by a subsequent 
extraction of the next 30–40% of total carbonate using dilute acetic acid 
(0.5 mol /l), which was sampled for REEs and considered to best represent that of 
the carbonate source water. Elemental analysis, including REEs, Th, Sc, Ca, Mg 
and Al in carbonate leachates, was conducted via inductively coupled plasma mass 
spectrometry and inductively coupled plasma optical emission spectrometry, with 
replicate extractions that gave a relative standard deviation (RSD) of less than 3% 
for these elements.

Fe-speciation and FeT. Fe-speciation extraction was performed using standard 
sequential extraction protocols39. Fecarb was extracted with a sodium acetate 
solution at pH 4.5 for 48 h at 50 °C, Feox was then extracted with a sodium 
dithionite solution at pH 4.8 for 2 h at room temperature and, finally, Femag was 
extracted with an ammonium oxalate solution for 6 h at room temperature. All 
the Fe concentrations were measured via atomic absorption spectrometry (AAS) 
with replicate extractions that gave a RSD of <​5% for all the phases. FeT was 
determined by one of two methods: (1) X-ray fluorescence and (2) a HNO3–HF–
HClO4 digest on ashed samples (overnight at 550 °C) followed by AAS analysis. 

Fepy was calculated on the basis of the weight percentage of sulfur extracted during 
chromous chloride distillation45, with a RSD of <​5%.

Inorganic carbon isotopes. To determine δ​13Ccarb, carbonate powders of ~150 μ​g  
were first reacted with anhydrous phosphoric acid at 70 °C to extract CO2 using 
a KEIL IV carbonate device. The produced CO2 was then purified stepwise and 
ultimately introduced into a Finnigan MAT 253 mass spectrometer. Carbon 
isotope determinations were performed using a dual-inlet mode against an in-
house standard reference gas in the mass spectrometer. All the values are reported 
as δ​13Ccarb relative to the Vienna Peedee Belemnite standard. The precision is 
better than 0.06‰ based on replicate analyses of the Chinese national standard 
GBW04416 (δ​13C =​ 1.61 ±​ 0.03‰).

Data availability. The authors declare that the data supporting the findings of this 
study are available within the article and its supplementary information files.
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