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SUMMARY

Ocean deoxygenation is impacting and will also in the future impact fundamental biogeochemical cycles. 

This review explores the ecological functions of microbes under hypoxic and anoxic conditions, emphasizing 

their critical roles in carbon source-sink dynamics. We examine microbial ecosystems in both open-ocean 

oxygen minimum zones and China’s coastal hypoxic areas, highlighting the microbial contributions to deox

ygenation driven processes. We also explore how organic carbon cycling driven by microbial heterotrophic 

and autotrophic metabolisms change across oxygen gradients. Furthermore, this review elucidates the inter

connected cycling of carbon, nitrogen, sulfur, and phosphorus, which regulate organic matter consumption 

and/or storage under deoxygenation, and alters the elemental composition of organic matter. Our study high

lights the importance of microbial processes in regulating carbon cycle under ocean deoxygenation, empha

sizing the dual role of hypoxic zones as transient sources and long-term sinks of organic carbon. Lastly, we 

highlight current challenges in addressing ocean deoxygenation and provide avenues for future research.

INTRODUCTION

The ocean plays an important role in regulating global climate 

and biogeochemical cycles. However, marine ecosystems are 

currently impacted by multiple anthropogenic pressures, including 

acidification, warming, and deoxygenation. These stressors, both 

individually and in combination, pose significant challenges to 

fundamental ecological processes.1–3 Climate-driven changes 

are thereby placing critical functions such as the reproduction of 

larger organisms, the maintenance of biodiversity, and aquaculture 

production at high risk.4 This is primarily due to the rapid pace of 

change, which far exceeds the capacity of many organisms to 

adapt.5 Ocean warming is both directly (e.g., due to decreased ox

ygen solubility) and indirectly (e.g., due to increased respiration 

and stratification) reducing the ocean oxygen content (known as 

‘‘ocean deoxygenation’’).6 This impact is in coastal waters further 

amplified by direct human driven impacts, such as eutrophication 

(i.e., anthropogenic nutrient and organic matter enrichment), which 

increases respiration rates and results in low oxygen concentra

tions due to an imbalance between biological and physical sources 

and sinks of oxygen. Deoxygenation, impacts marine biodiversity 

by altering species distributions and interactions, often leading to 

habitat loss and restructuring of the food web, which can have 

cascading impacts on ecosystem functioning.7–9 Deoxygenation 

is typically described across a spectrum of oxygen conditions. 

Generally, hypoxic conditions are defined as occurring when dis

solved oxygen (DO) concentrations reach levels below 60 μM.10

As oxygen concentrations decline further, anaerobic microbes 

become active (<20 μM).11 The water column is further classified 

as suboxic when DO drops below 5 μM, and anoxic condition is 

when oxygen reaches zero, resulting in completely anoxic or sulfi

dic conditions.7,12 These DO thresholds provide a framework for 

characterizing environments impacted by deoxygenation and un

derstanding their ecological impacts.

The combined effects of ocean warming and excessive 

nutrient loading have already caused eutrophication-induced 

hypoxic conditions in over 700 coastal regions globally.8,9

Oceanic hypoxic environments encompass a diverse range of 
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habitats, including mid-depth, persistent oxygen minimum 

zones (OMZs) in the open ocean —which are the largest re

gions,13–15—seasonal hypoxia in coastal waters,16–19 and sulfi

dic waters, such as those found in the Black Sea20,21 and Baltic 

Sea.22 While the primary drivers of these hypoxic conditions 

have been comprehensively reviewed,9,16,23–25 the critical role 

of microbial processes within these systems remains poorly un

derstood.26 In particular, the coupling and interactions between 

microbially driven processes under deoxygenation have yet to 

be understood in detail. Here, a large challenge lies in establish

ing precise thresholds for microbial activities, as example facul

tative anaerobic processes can function across a wide range of 

DO concentrations.11 Furthermore, the complex interactions be

tween heterotrophic microbial metabolism and organic carbon 

(OC) dynamics can further complicate how these systems 

respond. Although previous studies have explored the supply 

and degradation of OC under hypoxic conditions,12 the mecha

nisms by which microbial processes influence regional carbon 

source-sink dynamics remain unclear. During deoxygenation, 

microbial respiration can via OC degradation both release car

bon dioxide (CO2) and exacerbate deoxygenation by consuming 

oxygen. Conversely, hypoxic conditions can enhance carbon 

sinks by slowing OC degradation, increasing sedimentary OC 

burial.27,28 These dynamic microbial processes establish a tight 

feedback mechanism between hypoxia intensity, duration, and 

OC cycling, underscoring their important role in regulating the re

sponses in both coastal and open ocean systems.

In this review, three key aspects will be explored: (1) the 

ecological function of microbial communities in OMZs and under 

coastal deoxygenation conditions, (2) the critical processes by 

which microbes utilize and sequester OC during hypoxic to 

anoxic transitions, and (3) the interplay between microbial-driven 

biogeochemical cycles and the relationship between carbon 

sources and sinks. By addressing these aspects, we aim to pro

vide a comprehensive understanding of how microbes influence 

carbon cycling in deoxygenated ocean.

CHARACTERIZATION OF MICROBIAL ECOSYSTEMS IN 

DEOXYGENATED OCEANS

Open ocean

OMZs occur at depths between 200 and 2000 meters in the open 

ocean and are characterized by a bell-shaped oxygen profile, 

with oxygenated waters at the surface and bottom layers, and 

an anoxic or hypoxic core at mid-depths.29 These hypoxic envi

ronments encompass a continuum, with open ocean OMZs rep

resenting the largest and most well studied regions.6,30 OMZs, 

such as those in the Eastern Tropical North and South Pacific, 

and the Arabian Sea, are characterized by anoxic cores that sus

tain anoxic nitrogen cycling processes like denitrification and 

anammox.31,32 Unlike euxinic systems such as the Black Sea, 

where hydrogen sulfide accumulates due to permanent stratifica

tion,21 OMZs rarely experience sustained sulfidic conditions, 

although transient sulfur plumes and cryptic sulfur cycling have 

been observed in some regions such as off the Namibian coast 

and the Eastern Tropical South Pacific.33 As global average sea 

surface temperatures will increase by approximately 3◦C over 

the next century, the ocean oxygen consumption rate will in

crease 1.5-fold due to increased respiration rates.34 This increase 

in sea surface temperature, together with enhanced water strati

fication and the compounding effects of acidification, will further 

exacerbate the reduction of oxygen availability throughout the 

ocean.35 However, due to changes in ocean currents and rising 

temperatures —reducing oxygen solubility and increasing micro

bial respiration— it is projected that, by 2100, permanent ocean 

deoxygenation will affect 80% of the twilight zones (200–1000 

m) globally.29,36

The distribution of microorganisms in OMZs has been exten

sively reviewed in the past.11,26 In these regions stratification fos

ters the development of distinct microbial communities adapted 

to hypoxic conditions, with several taxa, including SAR11, 

SAR324, Thaumarchaeota, Brocadiales, and Nitrospinaceae, 

commonly found across multiple major OMZs (Figure 1). So 

while the microbial community structure have been reported 

across different OMZs, the exact composition may vary depend

ing on local environmental conditions.37–39 The stability of micro

bial communities across OMZs, such as those in the Eastern 

Tropical North and South Pacific, indicates their shared ecolog

ical functions, particularly in supporting specialized nitrogen and 

carbon processes within the stable anoxic core.40–44 The resil

ience of these microbial assemblages to variations in oxygen 

concentrations suggests a stable functional framework for pro

cesses such as ammonia oxidation, sulfate reduction, and 

methane production, even under fluctuating environmental con

ditions. Within these deoxygenated zones, the dominating meta

bolic active microbes primarily influence the nitrogen cycle,26,45

but also other functional groups of microorganisms such as 

those involved in sulfate reduction and methane production are 

active. Additionally, the presence of carbon fixing microbes 

has been documented across three major OMZs (Eastern Trop

ical North and South Pacific and Arabian Sea).43,44,46

Coastal environments

Along coastlines, deoxygenation is primarily driven by (1) the 

degradation of OC from various sources, including sewage, agri

cultural runoff, and other nutrient-rich inputs; (2) increased 

nutrient influx, often associated with upwelling events (in which 

deep, nutrient-rich waters rise to the surface), that enhance 

plankton production and subsequent sedimentation, leading to 

deoxygenation in shelf sediments47; and (3) the advection of 

warm offshore water, as well as freshwater input causing salinity 

changes, both of which contribute to water stratification and 

reduce the transfer of oxygen to bottom waters (Figure 2A).23

When urban sewage is transported to coastal waters it results 

in a high biological oxygen demand (BOD) which will quickly 

decrease the DO concentrations (Figure 2B). This leads to deox

ygenated water masses being transported downstream by 

rivers.50 Often the increased phytoplankton production of 

organic matter due to eutrophication can also lead to seasonal 

hypoxic conditions in coastal regions.51,52 In China, commonly, 

these phytoplankton communities are dominated by diatoms, di

noflagellates (primarily referring to the photosynthetic members 

of Dinophyceae), Synechococcus,51–53 and sometimes blooms 

of Aureococcus anophagefferens.54,55 As such, deoxygenation 

in coastal regions commonly is influenced by a wider range of 

factors than in OMZs.
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In contrast to OMZs, coastal hypoxic environments exhibit 

greater variability; they are driven by local factors such as 

nutrient availability, sewage input, and aquaculture activities, 

which lead to diverse microbial communities which can change 

activity and composition over relatively short time scales (days). 

Along the Chinese coastline seasonal deoxygenation frequently 

occurs in various regions, particularly in the Yangtze River Estu

ary, Pearl River Delta, and Bohai Sea. Microbial communities in 

these areas have been shown to distinct compared to oxygen

ated environments.56,57 While Thaumarchaeota and SAR11 

dominate in most hypoxic zones, near-shore deoxygenated en

vironments are characterized by a higher abundance of opportu

nistic microbes, reflecting distinct community structures.48,49,58

For example, taxa such as the highly active Flavobacteriales 

and Alteromonadales groups, which are known for their ability 

to efficiently degrade OC, are frequently observed in high abun

dance in coastal hypoxic regions59–61 (Figure 2C).

In China, extensive nearshore aquaculture also contributes to 

deoxygenation (Table 1).80,81 Especially in areas of low water cir

culation, the excessive addition of OC and higher temperatures 

increase heterotrophic microbial respiration leading to both hyp

oxia and lower pH (i.e., acidification) in bottom waters. This com

bined decline in oxygen and pH, has been demonstrated in Chi

nese coastal waters with observations in the Bohai Sea’s 

seasonal hypoxic zones showing a 60%–100% increase in the 

bottom water H+ concentrations within a two month period. 

This corresponds to a similar change in pH levels as is projected 

for ocean surface waters over the next 50–100 years83 Recent 

observations also suggest that periods of intensified hypoxia in 

aquaculture systems coincide with elevated dissolved organic 

carbon (DOC) concentrations, reflecting enhanced in situ pro

duction of DOC and its potential role in sustaining oxygen 

consumption over extended periods.80 Additionally microbial 

processes in these deoxygenated waters also generate 

Figure 1. The distribution of microbial functional groups, dissolved oxygen and community composition across the Eastern Tropical North 

and South Pacific and Arabian Sea OMZs 

(A) The metagenomic features of microbial populations are presented, including the relative proportions of key functional groups of microorganisms. 

(B) The dissolved oxygen profile data were obtained from: www.ewoce.org/data/index.html and OMZs were defined as regions with oxygen concentrations 

below 60 μM. 

(C) The composition of microbial communities involved in carbon, nitrogen, and sulfur cycling are shown with data obtained from the Tara Ocean database (http:// 

ocean-microbiome.embl.de/companion.html). Genomic and metagenomic data for the Eastern Tropical South Pacific OMZ were derived from stations 100, 110, 

and 111 (metagenomic data were only available for station 110). Data for the Eastern Tropical North Pacific OMZ were obtained from stations 137 and 138 and for 

the Arabian Sea OMZ from stations 037 and 038. All selected stations have DO concentrations below 5 μM.
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greenhouse gases, including N2O and CH4.84,85 These gases are 

partially transported to the upper ocean or the atmosphere, 

potentially further exacerbating global warming.

Additionally, coastal morphology and physical water move

ment also influences water column oxygen dynamics by impact

ing water exchange which has been shown to promote hypoxia 

A

B C

Figure 2. Factors influencing deoxygenation in coastal waters and records of seasonal hypoxia along the Chinese coast 

(A) Outline of the key factors that impact nearshore deoxygenation and possible biogeochemical feedbacks. 

(B) Schematic graph showing BOD responses along an estuary impacted by human sewage inputs. When receiving sewage inputs the BOD increases sharply, 

leading to rapid depletion of oxygen however as the water flows further offshore it exchanges with other water masses which replenishes the oxygen as shown by 

the black line. 

(C) Characteristics of different major hypoxic zones along the Chinese coast. The pie charts show the composition of the microbial community in the Pearl River 

Estuary,48 Bohai Sea49 and the Yangtze River Estuary (data obtained from NODE database: OER287739, https://www.biosino.org/node/). For this graph 

representative sequences and operational taxonomic units were reconstructed based on the sequence information provided in the respective studies. The 

orange bars indicate the recorded frequency of deoxygenation events (defined as oxygen concentrations <60 μM) in the corresponding regions (or stations).
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in systems such as the Baltic Sea,86 Black Sea,87 and the Santa 

Barbara Basin in the United States,88 which contrasts with the 

Pearl and Yangtze River Estuaries where deoxygenation is pri

marily controlled by terrestrial inputs and hydrodynamics.

MICROBIAL ORGANIC CARBON CYCLING UNDER 

OCEAN DEOXYGENATION

Deoxygenation affects vast regions of the global ocean, conse

quently altering biogeochemical cycles and energy conversion.9

In these regions, the lower presence and thereby activity of larger 

organisms make these microbial comminated systems. The mi

crobial communities are here serving dual roles, acting as both 

contributors and degraders of OC through processes such as 

respiration, fermentation, and anaerobic oxidation.12 Simulta

neously, dark carbon fixation, autotrophic metabolic processes, 

and the microbial carbon pump —which transforms DOC from 

labile to more recalcitrant forms through microbial activity89— 

contribute to carbon storage.26,90 Based on the above, this sec

tion will explore the bioavailability of OC, microbial carbon fixa

tion capabilities, and organic matter sulfurization processes, 

while examining their influence on carbon cycling under hypoxic 

conditions.

Dynamics of organic carbon

In the marine environment, oxygen consumption is intricately 

linked to the supply and degradation of OC by heterotrophic mi

crobes. Heterotrophic bacteria account for approximately 12– 

59% of the total respiration in the open ocean.91 This oxygen 

consumption can be estimated either through direct measure

ments of microbial respiration rates in incubations or indirectly 

through the apparent oxygen utilization (i.e., difference between 

the oxygen concentration at saturation and the actual measured 

concentration in the water).92,93 Microbial utilization of OC in the 

ocean primarily involves the rapid degradation of labile particu

late organic carbon (POC) and DOC in the upper ocean. Com

bined labile DOC (LDOC) and suspended POC can account for 

over 30% of the apparent oxygen utilization in the ocean.94 As 

ocean depth increases, the rate of OC consumption declines 

together with the bioavailability of the organic compounds, mak

ing DO a poor indicator of OC consumption in deeper ocean re

gions.95 Heterotrophic bacteria degrade LDOC within days to 

weeks,96 however, the relationship between heterotrophic bac

teria and recalcitrant DOC (RDOC) —defined as DOC that is 

resistant to microbial utilization and can persist in the ocean 

for thousands of years97— in deoxygenated environments re

mains poorly understood.

In the Yangtze and Pearl River estuaries, deoxygenation is pri

marily sustained by POC derived from phytoplankton-based 

production, accounting for around 60–70% of total oxygen 

consumption.53,70,98,99 Contrary to the Peruvian upwelling sys

tem, studies show that DOC and its labile components, such 

as combined carbohydrates and hydrolysable amino acids, 

contribute up to 38% of the oxygen consumption in the upper 

layer, despite representing only a small fraction of the total 

DOC pool (1–25% for combined carbohydrates and 2–4% for 

hydrolysable amino acids).100 The remaining LDOC, not ac

counted for in these fractions, likely includes other bioavailable 

compounds, such as glycolipids, glycoproteins, and phyto

plankton-derived organic matter. These findings underscore 

the differing roles of POC and DOC in oxygen consumption 

across systems: POC dominates in estuarine environments like 

Table 1. Record of deoxygenated regions along the Chinese coast due to eutrophication, domestic sewage water, and aquaculture

Deoxygenation cause Affected area

Minimum recorded 

DO(μM)-(year) References

Domestic sewage water Pearl River Estuary -Upstream 30 – (2001) 

12 – (2004) 

2 – (2008)

Zhai et al.62; Dai et al.63; He et al.64

Xiaoqing River Estuary - Upstream 3.5a – (2002) Meng et al.65

"Deep Water Bay" in Shenzhen 96a – (1986–2006) Xu et al.66

Eutrophication Yangtze River Estuary 3.3 – (2016) 

49 – (2018)

Zhu et al.67; Sun et al.68; Guo et al.69

Pearl River Estuary 7.0 – (2014) 

<20 – (2010) 

42 – (2017)

Su et al.70; Qian et al.71; Zhao et al.72

Bohai Sea - central part 80.0 – (2014) 

66.0 – (2015) 

69 – (2020)

Zhai et al.73; Zhao et al.74; Chen et al.75

The Mirs Bay <32.0a (1998–2010) Li et al.76

Beibu Gulf in Guangxi 117.76a – (2011) 

63.3a – (2016)

Ma et al.77; Yuan et al.78

Rushan Bay in Shandong 102.7a – (2009) Ran et al.79

Aquaculture Muping marine aquaculture 

area in Yantai

49.9a – (2016) 

31.8 – (2020)

Zhang et al.80; Yang et al.81

Sansha Bay aquaculture area in Fujian 135a – (2011) Wang et al.82

DO, Dissolved oxygen.
aReferencing the original text, DO is calculated in mg/L. For the table, the unit conversion to μM uses formula 1mg/L = 32 μM.
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the Yangtze and Pearl River estuaries, while DOC plays a larger 

role in the Peruvian OMZ. This contrast highlights the distinct 

carbon cycling dynamics of upwelling systems, driven by phys

ical mixing and DOC degradation, compared to estuarine sys

tems, where sedimentation processes prevail. Such differences 

should be considered the varying contributions of DOC and POC 

to oxygen consumption across different systems emphasize the 

importance of considering these differences when studying and 

managing hypoxic events. However, evaluating OC degradation 

and oxygen consumption in OMZs or anoxic environments re

mains a challenge. Despite recent advances in high-sensitivity 

DO detection,101 accurately quantifying trace-level consumption 

remains difficult.

In regions undergoing deoxygenation, the rapid degradation of 

OC generates substantial amounts of CO2, potentially contrib

uting to localized acidification.102 As oxygen becomes increas

ingly limited, however, oxic degradation processes give way to 

anoxic pathways.12 These anoxic processes are generally less 

efficient in degrading OC compared to oxygenated conditions, 

leading to lower overall degradation rate in anoxic water col

umns.103 This transition from oxygenated to anoxic processes 

not only alters the rates of carbon cycling but also impacts the 

balance between carbon sources and sinks, particularly in 

anoxic systems.

Microbial heterotrophic degradation of organic carbon

Under both aerobic and anaerobic conditions, heterotrophic bac

teria communities utilize a variety of OC compounds to meet their 

energy and nutrient demands. Aerobic bacteria, such as Pseudo

monas and Sphingomonas, thrive in oxygen-rich environments but 

exhibit limited growth and activity under deoxygenated conditions, 

resulting in slower DOC degradation.103 Anoxic microbial OC 

degradation is generally slower —by up to a factor of ten— than 

aerobic degradation.104 For instance, studies have demonstrated 

that under hypoxic conditions, the rate of OC degradation can 

decrease by more than 3-fold compared to those in aerobic envi

ronments.20 Additionally, when enzymes with high affinity are pre

sent, close attention must be paid, as their affinity properties may 

change under hypoxic conditions.105

However, in anoxic environments, specialized microbial com

munities adapt to efficiently degrade OC with groups such as 

SAR406, SAR202, ACD39, and PAUC34 being able to efficiently 

degrade complex organic compounds.106 When oxygen con

centrations are low, facultative anaerobes or anaerobic microor

ganisms utilize alternative electron acceptors, such as nitrate, 

manganese (II) ions, ferric (III) ions, and sulfate to degrade 

OC.107 While research on sulfate-reducing bacteria (SRB) in ma

rine systems has primarily focused on sediments, a study in the 

southern Baltic Sea reveals that they can contribute up to 74% of 

the sedimentary OC degradation.108 Recent ecological models 

and metabolic activity studies have further highlighted the wide

spread presence of SRB on POC and the occurrence of sulfate 

reduction in such settings.109–111

In deoxygenated seawater, POC drives high sulfate reduction 

rates, indicating strong SRB activity, complex OC compounds, 

such as volatile fatty acids, hydrocarbons, amino acids, polysac

charides, and aromatic compounds,112 to support their 

growth.113 Due to differences in the bioavailability and abun

dance of various compounds, particles rich in fresh organic 

matter are more readily remineralized. However, some OC com

pounds, such as acetate or short-chain fatty acids, are not 

degraded fully but are instead used by anaerobic microorgan

isms as fermentation substrates,.114 Therefore, accurately as

sessing these degradation patterns are crucial for precisely eval

uating OC degradation and burial.

The microbial carbon pump

Marine microbial communities convert a portion of the labile com

ponents into DOC through the microbial carbon pump.89 Anoxia 

can lead to changes in the DOC composition by promoting the 

accumulation of sulfurized compounds, carboxyl-rich alicyclic 

molecules (CRAM) and highly unsaturated molecules.21,115 These 

changes are mediated by redox shifts, which changes the micro

bial community degrading the OC and can promote sulfur incor

poration into polysaccharides and lipids thereby enhancing 

RDOC production.116 The processes contributing to the persis

tence in the environment are complex, particularly regarding the 

role of abiotic sulfurization in stabilizing DOC. While it is primarily 

derived from biological processes, microbially produced sulfide 

can under anoxic conditions directly react with OC, and thereby 

potentially lower its bioavailability (discussed further in Section 

sulfur cycling and organic carbon preservation). The importance 

of the microbial carbon pump dependents on the rate at which mi

crobes degrade or convert OC. Under hypoxic conditions, the ac

tivity of some heterotrophic microbial groups is limited, which in 

turn affects the conversion of labile compounds into recalcitrant 

compounds.117 Deoxygenation influences substrate availability, 

microbial community composition, and their metabolic products, 

leading to shifts in the process rates.118–121 For example, a decline 

in oxygen concentrations has been shown to reduce LDOC degra

dation rates,103 while also reducing the release of RDOC. Although 

these findings primarily focus on heterotrophic bacteria, the role of 

anaerobic microbes in the water column and sediments, as well as 

their contributions to RDOC production, deserve further investiga

tion. To advance our understanding of these processes, it would 

be beneficial to include available data in a global coastal DOM 

database for comprehensive discussion and analysis,122 which 

could reveal broader patterns and variations in microbial contribu

tions to OC in relation to oxygen availability.

Building upon this, the dynamic interplay between hypoxia 

and OC cycling reveals a series of feedback mechanisms that 

could regulate carbon dynamics in marine ecosystems. Hypoxic 

zones depend on their stability, and environmental conditions 

act as both OC sources and long-term sinks. In seasonal and un

stable hypoxic zones, influenced by e.g., climate change and 

eutrophication, OC can be rapidly degraded.123 In contrast, sta

ble, anoxic environments, such as the Black Sea, have overall 

lower degradation rates and enhanced OC storage through pro

cesses such as sulfurization.20 These different roles of hypoxic 

and anoxic zones underscore the complex feedback between 

microbes and OC cycling.

Dark carbon fixation

In deoxygenated waters, dark carbon fixation (i.e., chemoauto

trophs conversion of inorganic to OC) plays a critical role, espe

cially through chemolithoautotrophic processes mediated by 
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specific microbial taxa. In these aphotic waters, ammonia- 

oxidizing archaea (AOA) such as Nitrosopumilus and nitrite- 

oxidizing bacteria (NOB) such as Nitrospinae, utilize ammonia 

and nitrite, respectively, as electron donors to fuel their carbon fix

ation.124,125 Global estimates of CO2 fixation rates in the dark 

ocean range from 1.2 to 11.0 Pg C y− 1, which accounts for be

tween 5% and 22% of the total marine primary production, with ni

trifiers (includes AOA and NOB etc.) contributing up to ∼8.8% of 

the carbon fixation, as observed at Station ALOHA.126 This high

lights the significant role of AOA and NOB in carbon fixation in 

dark, deoxygenated waters and underscores the importance of 

the 3-hydroxypropionate-4-hydroxybutyrate (3-HP/4-HB) cycle 

and reductive tricarboxylic acid cycle (rTCA), respectively.49

However, in core regions of OMZs, the near absence of 

oxygen may limit carbon fixation, via the 3-HP/4-HB cycle, as 

it is less energy-efficient than anaerobic pathways such as 

the rTCA or reductive acetyl-CoA pathway (Wood-Ljungdahl 

pathway: WL) (Table 2). Based on multiple measurements of 

nitrification rates, NOB are likely to play a more important role 

in carbon fixation compared to ammonia-oxidizing microbes.136

Experiments have shown that Nitrospinae contribute 14%–35% 

of inorganic carbon fixation in the mesopelagic zone, surpassing 

the traditionally dominant Thaumarchaeota in deep-ocean car

bon fixation.137

Furthermore, genes associated with the rTCA cycle reductive 

tricarboxylic acid cycle (rTCA) have been identified in members 

of Nitrospinae within OMZs. The rTCA cycle employed by Nitro

spinae is considerably more energy-efficient than the 3-HP/4-HB 

cycle used by the ammonia-oxidizing microbe Thaumarchaeota, 

resulting in 2 compared to 6–9 ATP molecules.137–139 This effi

ciency is also high when compared to oxygen-tolerant cycles 

such as the Calvin-Benson-Bassham (CBB) cycle, which 

consumes 3 ATP molecules per carbon fixed under aerobic con

ditions. Anaerobic autotrophs in OMZs also utilize other oxygen- 

sensitive pathways, such as the WL and the 3HP/4HB, which de

mand only 0.5–2 ATP molecules per fixed carbon molecule (CO2 

or HCO3
− ), making them energetically advantageous under 

anoxic conditions (Table 2).140 This efficiency gives AOA and 

NOB a competitive advantage in OMZs, where the availability 

of oxygen is minimal or absent.

Previous work has also demonstrated that dark carbon fixa

tion is closely associated with sulfide-rich environments, such 

as those found in the Peruvian upwelling zone. In these regions, 

carbon fixation rates can reach 900–1400 nM C d− 1, which is 

approximately three times lower than global average phyto

plankton carbon fixation rates.141 These rates are primarily 

attributed to sulfur-oxidizing bacteria (SOB),142 such as SUP05 

and specific sulfur-oxidizing Epsilonproteobacteria, which ac

count for 11–51% of the total dark carbon fixation.143,144 When 

sulfide concentration exceeds 20 μM, SOB such as Campylo

bacterota, which exhibit high carbon fixation rates,144 begin to 

dominate. These bacteria fix inorganic carbon through the 

rTCA cycle, with reported fixation rates being as high as 

2500 nM C d− 1 in some anoxic basins.145,146 This large variation 

in carbon fixation rates among SOB groups underscores the 

important impact of both community composition and environ

mental factors in controlling these rates.

LINKING CYCLING OF NITROGEN, SULFUR, AND 

PHOSPHORUS WITH CARBON

Despite multiple observational and modeling studies showing 

clear impacts of microbial metabolisms on ocean deoxygen

ation,29,36,147 direct coupling of the nitrogen,45 sulfur,148 and 

phosphorus149 cycles to this deoxygenation remains elusive. 

Based on our current knowledge of microbial processes in deox

ygenated water, this section will provide an in-depth discussion 

of key studies on these elemental cycling processes and their 

impact on the dynamic changes of OC components (Figure 3).

The deoxygenation of microbially driven nitrogen,45 sulfur,148

and phosphorus149 elemental processes has been reported indi

vidually and in detail. Hypoxia alters microbial nitrogen cycling. 

While hypoxia promotes processes such as denitrification 

and anammox, these processes occur alongside dissimilatory 

nitrate reduction to ammonium (DNRA), maintaining nitrogen 

cycling under deoxygenated conditions.41 Concurrently, sulfate 

reduction generates sulfide.150 These denitrification and sulfate 

reduction processes can use OC as an electron donor to release 

protons or acids into the environment, impacting the marine car

bon cycle (Figure 3).151,152 Based on current understanding of 

Table 2. Overview of carbon fixation mechanisms in chemolithoautotrophic processes within OMZs

Pathway

Oxygen 

Requirement

Key Carbon 

Fixation Enzymes

Relative ATP 

Cost (to CBB)

Major Chemolithoautotrophic 

Pathways in OMZs References

WL Pathway Strictly 

anaerobic

FDH, CODH/ACS, 

FTHFS, MTHFC

0.167 Anammox/Sulfur oxidation/ 

Denitrification/Sulfate reduction

Ljungdahl127; Ragsdale128

rTCA Facultative 

anaerobic

OGS, IDH, ACL, FR 0.333 Nitrite oxidation/Sulfur oxidation Kim et al.129; Evans et al.130

3HP/4HB 

cycle

Microaerobic ACC, PCC, SCR, 4-HBD 0.667 Ammonium oxidation/Sulfur oxidation Berg et al.131

3HP cycle Microaerobic ACC, PCC, MCR, HPCS 0.557 Sulfur oxidation/Denitrification Herter et al.132; Strauss et al.133

CBB Aerobic RuBisCO, PRK 1 Ammonium oxidation/Nitrite oxidation Bar-Even et al.134; Liang et al.135

FDH, Formate Dehydrogenase; CODH/ACS, Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase; FTHFS, Formyl-Tetrahydrofolate Synthetase; 

MTHFC, Methenyl-Tetrahydrofolate Cyclohydrolase; OGS, 2-Oxoglutarate Synthase; IDH, Isocitrate Dehydrogenase; ACL, ATP-Citrate Lyase; FR, 

Fumarate Reductase; ACC, Acetyl-CoA Carboxylase; PCC, Propionyl-CoA Carboxylase; SCR, Succinyl-CoA Reductase; 4-HBD, 

4-Hydroxybutyryl-CoA Dehydratase; MCR, Malonyl-CoA Reductase; HPCS, Hydroxypropionyl-CoA Synthetase; RuBisCO, Ribulose-1,5-bisphos

phate carboxylase/oxygenase; PRK, Phosphoribulokinase.
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microbial ecological processes in deoxygenated water, this sec

tion will provide an in-depth discussion of key studies on nitro

gen, sulfur, and phosphorus elemental cycling processes driven 

by microorganisms and their impact on the dynamic changes of 

OC components.

Coupled nitrogen and carbon processes

In deoxygenated waters, heterotrophic bacteria can express 

transport proteins, such as ATP-binding cassette (ABC) and 

TonB-dependent transporters, which are widely distributed 

among Gram-negative bacteria and mediate the uptake of com

pounds containing both carbon and nitrogen such as amino acids 

and peptides.153 This uptake supports both AOA and NOB which 

can sustain nitrification under hypoxic conditions.153 In contrast, 

one study has suggested that some AOAs can release LDOC, 

mainly dissolved organic nitrogen, possibly as a by-product of their 

metabolism or as a strategy to shape surrounding microbial com

munities which could support heterotrophic bacterial growth.154

Under oxygenated conditions, ammonium released through 

the degradation of nitrogen-rich organic matter, such as amino 

acids, can be utilized by ammonia-oxidizing microorganisms 

including archaea. This process links heterotrophic OC degrada

tion with autotrophic nitrification.45,155 AOA are the main chemo

lithoautotrophic microorganisms involved in nitrification and they 

belong to the phylum Thaumarchaeota which are prevalent in 

coastal seasonal hypoxic zones.46 During hypoxic events, these 

AOA show increased transcriptional activity and elevated 

expression of key enzymes (e.g., glutamine synthetase and 

ammonia monooxygenase) involved in organic and inorganic ni

trogen metabolism.49 Certain AOA strains, such as the Nitroso

pumilus maritimus strain SCM1, are capable of maintaining 

high ammonia oxidation activity in hypoxic environments.156 Un

der hypoxic conditions, Nitrosopumilus maritimus SCM1 can 

also maintain high ammonia oxidation activity while producing 

increased amounts of nitrous oxide (N2O), potentially enhancing 

greenhouse gas emissions, which thereby weakens the positive 

carbon sink effect in certain marine areas.

In OMZs, nitrite oxidation occurs across the entire redox 

gradient, including within the oxygen-depleted core. The rate 

of nitrite oxidation in this zone can exceed (up to 50 times) that 

of ammonia oxidation, with these processes being active at 

very low oxygen concentrations (<1 μM).157,158

Figure 3. The microbially-driven cycling of carbon, nitrogen, sulfur, and phosphorus in hypoxic environments 

The green arrows represent microbial nitrogen transformation processes, the purple arrows represent sulfur processes, and the brown arrow represents the 

organic-inorganic carbon processes. Additionally, the figure highlights the regulatory enzymes, potentially contributing microbial species, and the main metabolic 

processes that occur under deoxygenation. 

SR, sulfate reduction; AOM, anaerobic oxidation of methane; NXR, Nitrite Oxidoreductase; NRF, Cytochrome Nitrite Reductase; NAR, Nitrate Reductase; NIR, 

Nitrite Reductase; NOR, Nitric Oxide Reductase; NOS, Nitrous Oxide Reductase; AMO, Ammonia Monooxygenase; HAO, Hydroxylamine Oxidoreductase; HZS, 

Hydrazine Synthase; CYN, Cyanase; URE, Urease; SOX, Sulfur Oxidation Complex; SQR, Sulfide Quinone Reductase; FCC, Flavocytochrome Sulfide Dehy

drogenase; SAT, Sulfate Adenylyltransferase; APR, Adenosine 5′-Phosphosulfate Reductase; DSR, Dissimilatory Sulfite Reductase; ASR, Assimilatory Sulfite 

Reductase; SIR, Sulfite Reductase; SOR, Sulfite Oxidoreductase; SOE, Sulfite Oxidizing Enzyme; MCR, Methyl-Coenzyme Reductase; pMMO, Particulate 

Methane Monooxygenase; sMMO, Soluble Methane Monooxygenase; AP, Alkaline Phosphatase.
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When oxygen is absent, microbes first use NO3
− as an alterna

tive electron acceptor. Numerous studies have investigated the 

role of denitrification, anaerobic ammonium oxidation, and 

DNRA.31,159,160 These processes affect the microbial turnover 

of OC by affecting the redox status and energy availability. In 

these hypoxic environments, active denitrification can produce 

large amounts of N2O.161 In suboxic zones, such as the Eastern 

Tropical North Pacific, incomplete denitrification produces N2O, 

while anammox converts ammonium and nitrite into N2. A recent 

study has revealed that N2O cycling in these regions is tightly 

coupled to OC and oxygen availability.84 Other studies have 

also shown that denitrification occurring in large particles can 

release N2O in eutrophic, high-turbidity estuaries susceptible 

to seasonal hypoxia.159,162 Such active denitrifies can regulate 

nitrogen turnover, which not only reduces the seawater NO3
−

content but also increases N2O greenhouse gas emissions.163

Simultaneous with denitrification, DNRA can also contribute to 

nitrogen removal by reducing nitrate to ammonium using 

different electron donors, such as OC or sulfide.164 DNRA can 

compete with denitrification, particularly in environments with 

limited nitrate supply or high OC concentrations, such as sedi

ments in the land-sea transition zones or sulfide rich re

gions.165,166 In OMZs, the expression of the nrfA gene (encoding 

cytochrome c nitrite reductase, a key enzyme in the DNRA 

pathway) and flux measurements suggest that the contribution 

of DNRA to overall nitrogen fluxes may have been underesti

mated.41,167 However, the limited availability of genetic evidence 

and flux measurements hampers a comprehensive unders

tanding of the ecological importance and spatial variability of 

DNRA, particularly in oxygen-depleted environments.44,168,169

Additionally unlike denitrification, DNRA does not produce 

N2O, and therefore has a lower direct impact on greenhouse 

gas emissions.

Sulfur cycling and organic carbon preservation

In suboxic water columns, dissimilatory sulfate reduction is 

confined to localized microenvironments, such as anoxic micro

sites within sinking particles or microaerophilic zones,109

whereas sulfide oxidation occurs preferentially within the che

mocline (oxycline and/or nitricline) of stratified systems such as 

the Black Sea.170,171 Microbial sulfur cycling causes a pro

nounced isotope fractionation, primarily favoring the lighter 32S 

isotope. Previous work has also demonstrated that microbial 

sulfate reduction produces sulfide significantly depleted in the 
34S isotope.171 Recent enzymatic studies have revealed that 

this isotope effect is predominantly governed by the enzyme Ad

enylyl-sulfate reductase, which causes an fractionation factor of 

approximately 20%.172 When SRB oxidize OC using sulfate as 

an electron acceptor, complete oxidation of the substrate typi

cally results in the production of hydrogen sulfide with a negative 

δ34S signature. However, under non-limiting conditions, there is 

no simple relationship between sulfate reduction rates and 

isotope fractionation.173 Earlier studies proposed that this high 

isotope fractionations may reflect the high metabolic capacity 

of SRB.174 Opposite to this more recent work with the sulfate 

reducer Desulfovibrio sp. show that similarly large 34S values 

can also result from a slow metabolism.175 These findings imply 

that 34S fractionations do not uniquely indicate high metabolic 

control or energy availability, but may instead reflect low-energy 

states in which reversibility of enzymatic steps governs the 

extent of isotope partitioning.

In contrast, sulfur oxidation, traditionally assumed to produce 

minimal isotope effects, has more recently been shown under ni

trate-reducing conditions to enrich 34S relative to sulfide.175

Moreover, sulfide oxidation via the enzymes sarcosine oxidase 

(Sox) and Sulfide:quinone reductase (SQR) pathways yields 

modest negative isotope fractionation.176 Therefore, both the 

reductive and oxidative branches of the sulfur cycle can impart 

diagnostic isotopic signatures, which is shaped by metabolic 

pathway-specific isotope effects, enzymatic control points (e. 

g., SQR), and ecological constraints such as redox zonation 

and electron donor/acceptor availability.

In the metabolism of SOB, sulfide serves as an electron donor, 

transferring electrons via intermediates such as reduced qui

nones to terminal electron acceptors, typically O2 or NO3
− . In 

this process, DOC is the primary OC source and it is therefore 

not directly involved in the electron transfer chain.148 This pro

cess results in the production of elemental sulfur (S0) and thio

sulfates (S2O3
2− ), which are further utilized by microbes 

through defined pathways such as the dissimilatory sulfite (Dsr) 

and Sulfide: quinone reductase (Sox) systems, or disproportion

ation reactions, to synthesize and transform organic sulfur 

compounds.177,178

Experimental evidence indicates that the sulfur-containing 

molecular structures formed via sulfurization of OC under anoxic 

conditions closely resembles the composition of dissolved 

organic sulfur found in sediment pore waters.179 These sulfurized 

compounds can contribute to nucleophilic addition reactions, 

which involve the reaction of a nucleophile with an electron-defi

cient carbon atom, such as olefins, carboxylic acids, and other 

organic compounds that contain aldehydes and ketones.180

These reactions result in the formation of compounds such as 

thioethers, thioesters, and sulfates.179 The CRAM, with unsatu

rated carbon-carbon double bonds, are a representative 

component produced by the microbial carbon pump, and it 

can further be modified by e.g., bisulfide (HS− ) to form sulfur- 

containing carboxyl-rich alicyclic molecules.

However, only a limited number of microbes are capable of 

tolerating and utilizing sulfide,181,182 as high concentrations are 

generally toxic which implies that most OC will not be immedi

ately degraded in these environments.183 Concurrently, sulfites, 

which are intermediates products in the microbial sulfur cycle, 

can, through nucleophilic addition reactions with OC, produce 

molecules that can resist microbial and chemical degradation, 

thereby persisting in anoxic environments.184

Even though SRB utilize a relatively low-energy electron 

acceptor they are highly efficient in extracting energy from the 

environment. Sulfate reduction produces intermediates such 

as polysulfides, sulfites, and elemental sulfur, which are involved 

in OC degradation and can here be used as indicators of dy

namic sulfur–OC interactions in anoxic zones.185 Anoxic waters 

harbor a diverse community of sulfur-metabolizing microbial 

groups however these show varying activity. One example of 

this is sulfate reduction rates which generally are around 2.3 

times higher in the Black Sea than those in the Eastern Tropical 

South Pacific OMZs,185,186 which may be explained by the more 
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stable and persistent euxinia (i.e., free hydrogen sulfide) in the 

waters of the Black Sea. Stable anoxic conditions have been 

found to enhance the activity of some SRB genera, especially 

Desulfatiglans and Desulfuromonas.187 Such high sulfate reduc

tion rate can enhance OC degradation in marine sediments, re

sulting in the production of bicarbonate ions and an increase in 

alkalinity,188,189 thereby facilitating CO2 uptake and carbonate 

precipitation.

Sediment column records reveal large amounts of OC and 

pyrite in black shale layers.110 The Sulfur:Carbon ratio of 

organic matter in these layers are similar to those in modern 

near-anoxic oceans, suggesting that OC sulfurization in these 

regions could contribute to the OC storage.110,190 An experi

mental study supports this, as they show that microbial sul

fate-reduction enhances OC preservation by forming sulfurized 

OM.110 Additionally, have field studies in the Black Sea shown 

that recently produced dissolved organic sulfur, accumulated in 

the water column.21 With intensifying ocean deoxygenation, 

such organic sulfur compounds may increase OC storage 

with some studies suggesting a 1.5–3 times increase.191 Sulfo

nates represent one form of organic sulfur which are commonly 

found at the interface between oxygenated and anoxic environ

ments. The conversion of organic sulfides into sulfonates, 

involving electron loss or oxidation, has garnered significant 

scientific attention. Examples include key organic sulfur com

pounds such as dimethylsulfoniopropionate, 2,3-dihydroxypro

pane-1-sulfonate, and sulfoquinovose, which play crucial roles 

in the marine sulfur cycle.150,192,193 these compounds being 

typically rapidly degraded in oxygenated environments and 

thereby contributing to oxygen consumption. This degradation 

is hypothesized to occur preferentially in environments that 

possess elevated pH levels, with organic sulfides potentially 

being oxidized to sulfonates.194

Phosphate release and organic phosphorus dynamics

In the ocean, phosphorus serves as a critical limiting factor for 

primary productivity. Most phosphorus initially enters sediments 

as organic detritus, and part of it precipitates in situ as authigenic 

minerals (e.g., apatite) before potential storage.195 In these envi

ronments, iron oxides exert a strong control on the phosphorus 

cycle: under oxic conditions, phosphate is adsorbed to Fe(III) ox

ides; under anoxic conditions microbial dissimilatory iron reduc

tion (e.g., by Geobacter or Shewanella)196,197 reduces Fe(III) to 

Fe(II), dissolves iron oxides and thereby releases previously ad

sorbed phosphate into porewaters and the overlaying waters.198

At the same time, biologically mediated iron oxidation can coun

teract this release process under suboxic or oxic condi

tions.199,200 For instance, filamentous sulfur-oxidizing cable bac

teria (family Desulfobulbaceae) perform electrogenic sulfur 

oxidation by connecting deeper, sulfidic sediments with surface 

oxic layers.201 All these processes influence phosphate regener

ation in bottom waters, which can in turn influence oxygen con

sumption and OC degradation.

Beyond metal-associated processes, microbes are also active 

parts of the phosphorus cycle and these links are crucial for 

determining the impact of deoxygenation on OC sources and 

sinks.202 However, the relationship between phosphorus and mi

crobes ocean deoxygenation has not been investigated in detail. 

In general, heterotrophic bacteria utilize alkaline phosphatase to 

hydrolyze organic phosphorus, thereby releasing inorganic 

phosphate to meet their nutritional needs.203 Some large bacte

ria that reside in sediments, such as Thiomargarita namibiensis 

and cable bacteria, promote the production of phosphate min

erals in the environment through their own preserved polyphos

phates.201,204 Studies have also suggested that bacteria in deox

ygenated environments have a higher relative content of organic 

phosphorus compared to oxic environments.205 This difference 

may reflect an adaptive strategy with microbes accumulating 

phosphorus within their cells, releasing phosphate or forming 

phosphate minerals upon organic matter degradation.201,204 In 

addition with hypoxic conditions microbial degradation of 

organic matter leads to the preferential release of organic phos

phorus into bioavailable inorganic phosphorus.206 Re-oxygena

tion or disturbance of the environment can also release phos

phate-rich water which might stimulate new OC production 

and degradation (i.e., respiration) and delay the return of higher 

oxygen concentrations.

Stoichiometry of organic matter

Organic matter stoichiometry is critical for understanding poten

tial sources and degradation pathways. Here, the Redfield ratio 

(marine phytoplankton Carbon:Nitrogen:Phosphorus ratio = 

106:16:1) is suggestion a balance between oceanic biological 

productivity and the chemical composition of seawater.207 The 

microbial degradation and transition from labile to recalcitrant 

DOC has been shown to result in large changes in the C:N:P stoi

chiometry, changing from 199:20:1 to 3511:202:1.208 Anoxic mi

crobial and chemical processes under anoxic conditions alter 

the elemental and molecular composition of organic matter, 

which can lead to the preservation of OC. In anoxic environ

ments, microbial OC degradation and the prevalence of sulfuri

zation can result in the production of organic matter rich in sulfur 

but deficient in nitrogen (Figure 4).116 Because nitrogen and 

phosphorus are essential yet frequently limiting nutrients, het

erotrophic microorganisms preferentially hydrolyze bio

molecules that contain abundant N or P—such as proteins, nu

cleic acids and phospholipids—to satisfy their anabolic 

demand for amino acids, nucleotides and membrane phospho

lipids,155,209,210 leading to the direct release of phosphate. In 

addition, the peptide and phospho-ester bonds in these sub

strates are chemically more labile than the C–C or aromatic 

bonds dominating N- and P-poor compounds (e.g., carbohy

drates or lignin-derived aromatics).211,212 Microbial degradation 

preferentially targets organic matter that is rich in nitrogen and 

phosphorus,155,209,210 This series of processes not only reduces 

the nitrogen and phosphorus content in DOC, resulting in a 17.6- 

fold decrease in the P:C ratio, a 1.7-fold decrease in the N:C ra

tio, and a 3.7–6.85-fold increase in the S:C ratio,179,208 but also 

alters the bioavailability of DOC.213,214

Additionally, the P:C ratio of sulfidic environments are around 

49 times lower than the global average for particulate organic 

matter and 80 times lower than that found for phytopla

nkton.215,216 Anaerobic microbial processes and chemical reac

tions under anoxic conditions can alter the elemental and molec

ular composition of organic matter. For instance, these 

processes can lead to sulfurization and the preservation of highly 
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reduced organic molecules. Such transformations are evident in 

marine sediments which are analogous to geochemical changes 

observed during past Oceanic Anoxic Events, where widespread 

anoxia triggered large-scale sulfurization and OC storage (e.g., 

Mesozoic Ocean about 252 to 66 million years ago).217 The par

allels between modern anoxic marine environments and paleo

ceanographic conditions underscore the role of anoxia in 

shaping both short-term elemental composition and long-term 

OC storage in the ocean.

SUMMARY AND FUTURE DIRECTIONS

This review examines the impacts of ocean deoxygenation on 

microbial communities and OC cycling, emphasizing their poten

tial contributions to global carbon dynamics and climate change. 

Ocean deoxygenation is altering the composition and function

ality of microbial communities and affecting the degradation 

and transformation pathways of OC. A singular focus on the car

bon cycle is however insufficient to fully elucidate the mecha

nisms taking place under deoxygenation. Microbes demonstrate 

remarkable metabolic flexibility, employing diverse pathways to 

sustain their survival and activity in deoxygenated environments. 

Despite considerable progress in understanding the effects of 

ocean deoxygenation on microbial metabolism and OC transfor

mation, several critical issues remain unresolved. One example 

being the precise quantification of OC degradation rates and mi

crobial metabolic pathways under varying oxygen conditions. 

Determining such complex links will require the development 

of advanced high-resolution measurement techniques and the 

integration of multi-omics approaches, including transcriptom

ics and metabolomics.

Future research should also prioritize understanding the inter

actions among microbial communities and their response mech

anisms in these complex environments, especially in regions un

dergoing alternating long-term and seasonal hypoxia. Rising 

ocean temperatures and the expanding extent of deoxygenation 

are expected to drive changes in marine OC storage and the 

dynamics of carbon source-sink relationships, with clear impli

cations for global climate. Understanding the role of ocean deox

ygenation in microbial ecology and carbon cycling is therefore of 

critical importance for future marine management and under

standing impacts of climate change. Therefore, should studies 

prioritize the integration of multidimensional data to investigate 

the feedback mechanisms linking microbial communities and 
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Figure 4. Microbial degradation and storage of OC in hypoxic coastal waters 

This figure illustrates seasonal hypoxic water masses, microbial metabolism in both oxygenated surface and hypoxic bottom layers predominantly driven 

by POC inputs from terrestrial sources and the upper ocean. Heterotrophic processes, denitrification, and the sulfate reduction in contribute to the 

transformation of POC,110,159 which can subsequently be transported offshore. Concurrently, dark carbon fixation and sulfur oxidation produce POC. In 

shallow nearshore regions, POC burial is furthermore influenced by resuspension, which can transport POC and sulfurized OC into bottom waters.187 The 

physical and chemical properties of a water column profile in the Yangtze River Estuary (august 2022) is also shown to the right. DOC,dissolved organic 

carbon; RDOC, recalcitrant dissolved organic carbon; POC,particulate organic carbon; RPOC, recalcitrant particulate organic carbon; SRB,sulfate- 

reducing bacteria; SOB,sulfur-oxidizing bacteria; AOA,ammonia-oxidizing archaea; DO,dissolved oxygen; C: N: P: S, Molar ratio of carbon, nitrogen, 

phosphorus, and sulfur.
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carbon cycling under deoxygenated conditions. While the mech

anisms of deoxygenation in open-ocean and coastal environ

ments are well understood, challenges remain in integrating 

ecological processes to develop precise predictive models. 

Consequently, future research should address not only current 

environmental changes but also anticipate emerging trends, 

providing critical scientific insights to tackle global climate 

change and manage ecological systems.
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