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A B S T R A C T

Due to its ability to provide day-and-night profiling and high depth resolution, ocean lidar has become an 
important tool for marine remote sensing. However, a lidar system provides time-based measurements of 
backscattered photons, where the distance (or depth for vertical profiling) is a product of light speed in water and 
the time photons pass. When there are significant contributions of multiple scattering in the backscattered signals 
of ocean lidar, the perceived depth of these measured photons will be deeper than the real depth. Therefore, if 
the objective of a lidar system is to sense the vertical profile of particles, the present time-based depth profile will 
not match the real depth profile of particles in the water column. To address this discrepancy, we carried out 
semi-analytical Monte Carlo simulations for a wide range of water properties (represented by scattering coef
ficient, b), focusing on Case-1 water, with platforms including spaceborne, airborne, shipborne, and underwater. 
In the simulation process, it is assumed that the water column is vertically homogeneous, and the influence of sea 
surface fluctuations is ignored. Based on the simulated data, relationships between the discrepancy and b, as well 
as the radius of the received footprint on the water surface (rs), are established. Sensitivity analysis indicates that 
the discrepancy is more sensitive to b than to rs. Further, the impact of the absorption coefficient, scattering phase 
function, rough sea surface, and vertically non-uniform inherent optical properties on this discrepancy is dis
cussed. Our results not only highlight the significance of considering multiple scattering, particularly for airborne 
and spaceborne platforms, in sensing the vertical profiles of particles but also provide guidance for interpreting 
backscattered signals in ocean lidar applications.

1. Introduction

The ocean plays an indispensable role in the global ecosystem, not 
only regulating climate and maintaining biodiversity but also a crucial 
part in global biogeochemical processes such as the carbon and mercury 
cycles (Mason and Sheu, 2002). Therefore, ocean observation data is 
essential for conducting marine research and predicting ocean changes 
(Adkins, 2013; Barry et al., 2011; Mason and Sheu, 2002; Regnier et al., 
2022). Due to their wide coverage, long-term data acquisition capabil
ities and high spatial resolution, satellite remote sensing technologies 
have been widely employed in marine scientific research (Amani et al., 
2022; Rani et al., 2021). Over the past few decades, passive ocean color 
remote sensing has been employed to derive a variety of ocean param
eters, such as chlorophyll-a concentration (Chl) and particulate matter, 
by measuring the water-leaving radiance, providing a sustained synoptic 
view of the distribution of the bio-optical properties of oceanic waters 
and biogeochemical parameters (Blondeau-Patissier et al., 2014; Hu, 

2009). However, passive ocean color remote sensing lacks profiling 
capabilities and is constrained by solar illumination, making observa
tions impossible in conditions such as the absence of sunlight or low sun 
angles (Collister et al., 2024; Joint et al., 2000).

To achieve three-dimensional (3D) ocean observations, active lidar 
technology has been proposed. It can obtain day-and-night profile in
formation of water parameters by detecting the backscattered signal 
generated by the interaction between laser beams and molecules/par
ticles in the upper water column (Churnside and Shaw, 2020; Jamet 
et al., 2019). With advances in laser technology, ocean lidar has been 
applied to various subjects, including optical properties of water 
(Collister et al., 2018; Shangguan et al., 2024a; Yuan et al., 2022), ocean 
temperature and salinity (Bao et al., 2022; Gao et al., 2006; Moisan 
et al., 2024; Spence et al., 2024; Wang et al., 2023; Yang and Shangguan, 
2023; Yu et al., 2014), oil spills (Li et al., 2016; Li et al., 2014; Samberg, 
2005; Shangguan et al., 2023c), internal waves (Churnside et al., 2012; 
Magalhaes et al., 2013), fish schools (Churnside and Hunter, 1996; 
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Churnside et al., 2017), underwater topography (Hickman and Hogg, 
1969; Shangguan et al., 2023a; Steinvall et al., 1993), and underwater 
targets (Maccarone et al., 2023; Shangguan et al., 2024b). To expand the 
detection range, shipborne (Trees, 2014), airborne (Mullen et al., 1995), 
and even spaceborne lidars (Abdallah et al., 2012; Chen et al., 2019a) 
have been proposed. Additionally, to effectively avoid interference at 
the air-sea interface, underwater single-photon lidar has recently been 
introduced for ocean observation (Shangguan et al., 2024c; Shangguan 
et al., 2023b).

For ocean lidar system, detection depth is a crucial metric. Experi
mental studies indicate that the maximum detection depth of ICESat-2 
can reach up to ~40 m (Parrish et al., 2019). Furthermore, dual- 
wavelength airborne ocean lidar has demonstrated a detection depth 
of around 100 m (Li et al., 2020). In contrast, shipborne photon- 
counting ocean lidar has shown a detection depth of 80 m (50 m) in 
clear (turbid) waters (Shen et al., 2022), while underwater lidar has 
been validated to reach up to 105 m (Shangguan et al., 2023b).

However, the depth information (termed as time-based depth pro
file) provided by a lidar system is based on the time that photons pass, 
which does not necessarily match the real depth profile. This discrep
ancy becomes significant when the backscattered signal contains sub
stantial multiple-scattering contributions. For instance, studies have 
shown that there could be an overestimation of cloud optical thickness 
by up to 40 % if multiple scattering is ignored when lidar is used to 
detect ice clouds (Hogan, 2006). Although this phenomenon has been 
widely studied in the fields of cloud-profiling lidar and radar, it has 
received little attention in the field of ocean lidar (Mclean et al., 1998; 
Zege et al., 2003).

To get an in-depth understanding of this issue, this study carries out 
an analysis of the discrepancies between the time-based and real depth 
profiles caused by multiple scattering in ocean lidar. Although several 
methods, including the quasi-single small-angle approximation analytic 
methods (Kopilevich and Surkov, 2008), lidar equations considering 
beam spreading and pulse stretching (Mclean et al., 1998; Zege et al., 
2003), and the Monte Carlo (MC) model, are widely used for simulating 
ocean lidar backscattered signals due to their accuracy and flexibility in 
handling complex scattering processes in water, this study employs the 
semi-analytical MC model. This model, which has been extensively 
applied and experimentally validated in ocean lidar signal simulations 
(Bissonnette et al., 2005; Chen et al., 2019b; Chen et al., 2023; D’ali
monte et al., 2024; Liu et al., 2019a), is adopted here for its efficiency in 
recording both time-based and actual depth profiles.

Moreover, since both the time-based and the real depth profiles can 
be described by the attenuation coefficient and its corresponding 
detection depth, the discrepancy between them is quantified using the 
ratios of these attenuation coefficients (Kz/Kt) and depths (zgt/zd). Here, 
Kt and Kz are the attenuation coefficients of the time-based and real 
depth profiles, respectively, while zgt and zd represent the detection 
depths of the real and time-based depth profiles, respectively. Further
more, for Case-1 water, assuming a vertically homogeneous water col
umn and neglecting the influence of sea surface fluctuations, 
relationships are established between the ratio Kz/Kt and both scattering 
coefficient (b) and the radius of the receiver footprint on the water 
surface (rs), as well as between the ratio zgt/zd and both b and rs.

The structure of this article is as follows: first, the semi-analytical MC 
simulation, which simultaneously records time-based and real depth 
profiles, is introduced, with analysis focusing on six types of oceanic 
lidar systems from two spaceborne, two airborne, one shipborne, and 
one underwater platform. Subsequently, statistical model for Kz/Kt and 
zgt/zd in relation to the b and rs are established for Case-1 water, 
assuming a vertically homogeneous column and ignoring sea surface 
fluctuations. The sensitivity analysis of Kz/Kt and zgt/zd to b and rs is 
subsequently conducted. Moreover, the impacts of the absorption coef
ficient (a), scattering phase function (SPF), rough sea surface, and 
vertically non-uniform inherent optical properties (IOPs) on the dis
crepancies are further discussed. Finally, conclusions are presented.

2. Monte Carlo simulation

2.1. Semi-analytic Monte Carlo simulation

MC simulation is a statistical method used to model and analyze 
complex systems by generating random samples and computing results 
based on probabilistic principles. In lidar applications, MC simulations 
treat photons as particles and simulate their trajectories through water 
media to generate lidar backscattered signals. This approach allows for a 
detailed analysis of photon interactions with the water column, which is 
crucial for accurately modeling lidar backscattered signals. In ocean 
lidar applications, MC has been experimentally validated for simulating 
ocean signals (Liao et al., 2023; Liu et al., 2019a; Liu et al., 2019b), 
including elastic backscattered signals (Chen et al., 2020; Chen et al., 
2018; Liu et al., 2020), inelastic backscattered signals (Spence et al., 
2023), and polarization backscattered signals (Lin et al., 2023; Wu et al., 
2024). To improve the computational efficiency of traditional MC sim
ulations, this paper adopts a semi-analytic MC simulation method. In 
this approach, the emitted photon is treated as a large photon packet. 
During each scattering event, the expected value is computed and 
recorded to obtain the lidar backscattered profile. Here, the process of 
the semi-analytic MC simulation for simultaneously recording both the 
time-based and real depth profiles is briefly introduced. For clarity, a 
flowchart of the semi-analytical MC process is shown in Fig. 1, with 
detailed steps explained below.

First, initialize the photons with the origin of the coordinate system 
at the center of the laser spot incident on the water surface, where the z- 
axis points vertically downward and the x and y axes represent the 
horizontal coordinates. The initial position of the photons is set to (x0, 
y0, 0), where x0 and y0 are random values determined by the energy 
distribution of the incident laser spot on the water surface, which is 
considered uniform. The initial direction of the photons (ux0, uy0, uz0) is 
determined based on the tilt angle of the lidar, accounting for photon 
refraction at the water surface, while the laser beam divergence angle is 
used to initialize the position of the photons on the water surface. The 
initial weight of the photons, W0, is set to 1, and a threshold value, WT, 
with a value of 10− 4, is defined for photon extinction.

During photon movement, both the step length and direction of the 
photons are determined by the absorption and scattering characteristics 

Fig. 1. Flowchart of MC simulation.
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of the water. The step length (s) refers to the distance traveled by a 
photon during each movement, while the direction determines the 
specific path of the photon. The s can be expressed as: 

s = − ln(ξ1)/c, (1) 

where ξ1 is a random number uniformly distributed between 0 and 1, 
and c is the beam attenuation coefficient of the water. During photon 
movement, a portion of the energy is absorbed by the water, resulting in 
a decrease in weight. The updated photon weight (WN) is given by: 

WN = WN− 1⋅b/c, (2) 

where WN-1 is the photon weight from the previous step.
To determine the updated location of the photon, in addition to the 

step length, the scattering direction of the photon also needs to be 
updated. The scattering direction of the photon is determined by the 
azimuth angle (φ) and the scattering angle (θ). The expression for φ is: 

φ = 2πξ2, (3) 

where ξ2 is a random number uniformly distributed between 0 and 1. 
The scattering angle, denoted as θ, is defined as the angle between the 
original direction of motion and the new direction after scattering. It 
ranges from 0 to π and is determined by the SPF β̃(θ). For the discrete 
Petzold SPF, in order to determine the scattering angle of the SPF, a 
lookup table is established between θ and the cumulative distribution 
function F(θ) based on the SPF (Chen et al., 2023). The corresponding 
scattering angle can be obtained through this table. The expression for F 
(θ) is as follows: 

F(θi) = 2π
∑j=i

j=1
β̃
(
θj
)
sin
(
θj
)
Δθj, (4) 

where j represents the index for discretely tabulated angular data and θj 
is the angle at the index j; Δθj is the angular interval between the angles 
from (j − 1) to j. In MC simulation, F(θ) is a random number ξ between 
0 and 1. Find the index value that satisfies F(θj-1) < ξ < F(θj), the value of 
scattering angle θ is obtained through linear interpolation of θj-1 and θj.

After updating φ and θ, the updated propagation direction of the 
photon (ux,k, uy,k, uz,k) can be obtained. If the photon’s movement di
rection is close to the z-axis (i.e., |uz,k-1| > 0.9999), then (ux,k, uy,k, uz,k) 
can be updated as follows: 
⎧
⎨

⎩

ux,k = sin(θ)cos(φ)
uy,k = sin(θ)sin(φ)
uz,k = SIGN

(
uz,k-1

)
⋅cos(θ)

, (5) 

where the SIGN(uz,k-1) function can be expressed as: 

SIGN
(
uz,k-1

)
=

{
1 , uz,k-1 > 0
− 1, uz,k-1 < 0 . (6) 

If the movement direction of the photon is not close to the z-axis (i.e., 
|uz,k-1| ≤ 0.9999), the updated direction components (ux,k, uy,k, uz,k) are 
expressed as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ux,k = sin(θ)⋅
ux,k− 1uz,k− 1cos(φ) − uy,k− 1sin(φ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − u2

z,k− 1

√ + ux,k− 1cos(θ)

uy,k = sin(θ)⋅
uy,k− 1uz,k− 1cos(φ) + ux,k− 1sin(φ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − u2

z,k− 1

√ + uy,k− 1cos(θ)

uz,k = − sin(θ)cos(φ)⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − u2
z,k− 1

√

+ uz,k− 1cos(θ)

. (7) 

Given the photon’s current position (xk-1, yk-1, zk-1), the next step 
length sk, and the movement direction of next step (ux,k, uy,k, uz,k) are 
known, the updated position of the photon (xk, yk, zk) can be expressed 
as: 

⎧
⎨

⎩

xk = xk− 1 + ux,k⋅sk
yk = yk− 1 + uy,k⋅sk
zk = zk− 1 + uz,k⋅sk

. (8) 

Subsequently, based on the updated photon weight and position, it is 
to determine whether the photon has been extinguished and whether it 
is within the receiver full-angle field of view (FOV). The updated photon 
weight WN is further compared with WT, if WN < WT, the photon is 
extinguished, and no further iteration is required; if WN ≥ WT and the 
photon is within the receiver FOV, the photon is recorded. To determine 
if the photon remains within the receiver FOV after scattering, it is 
necessary to first establish the range of the FOV.

When the laser is incident perpendicularly, with the lidar system 
positioned at a vertical height H above the water surface, the relation
ship between the FOV below the water surface (FOV′) and the FOV above 
the surface, after refraction at the water surface, can be expressed ac
cording to Snell’s law as: 

FOVʹ = 2⋅arcsin[sin(FOV/2)/n ], (9) 

where n is the refractive index of water, with a value of 1.33. For a 
photon at coordinates (x, y, z) to be within the FOV, it should satisfy the 
following conditions: 

x2 + y2 ≤ [rs + z⋅tan(FOVʹ/2) ]2. (10) 

The tilt angle of the lidar system is denoted as α, while the laser 
divergence angle (typically ranging from microradians to milliradians) 
is much smaller in comparison. Therefore, in the simulation process, the 
influence of the laser divergence angle on the incident angle is neglec
ted. The photon incident angle is treated as equivalent to the tilt angle α 
of the lidar system. When the lidar system is tilted, the receiver footprint 
on the water surface becomes elliptical. A schematic diagram is shown in 
Fig. 2.

As shown in Fig. 2, O represents the origin of the coordinate system 
on the water surface, with coordinates (0,0,0). The line segment OD is 
the semi-major axis of the ellipse, and its length can be expressed as 
follows: 

m =
Hʹ⋅[tan(α + FOV/2) − tan(α − FOV/2) ]

2
. (11) 

The distance H′ from the apex of the cone, F, to the water surface, can 

Fig. 2. Schematic diagram of a laser obliquely incident on the water surface.
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be expressed as: 

Hʹ = H+ [Dl/2⋅cos(α) ]/tan(FOV/2), (12) 

where Dl is the receiver radius of the telescope, and h, defined as (Dl/ 
2⋅cosα)/tan (FOV/2), is illustrated in Fig. 2.

To determine the specific shape of the ellipse, it is necessary to 
identify the coordinates of any point on the ellipse besides B and D. As 
shown in Fig. 2, point M is a point on the water surface, located at the 
intersection of the circumference of the cone’s base centered at point C 
and the water surface. Therefore, the coordinates of point M can be 
expressed as (xM, yM, 0), where the x-coordinate of point M is equal to 
the x-coordinate of point C, and can be expressed as: 

xM = lBC − m = Hʹ⋅tanα − Hʹ⋅tan(α − FOV/2) − m, (13) 

where lBC represents the length of the line segment BC.
Since point M lies on the circular base of the cone centered at C, the 

length of line segment CM is the radius of the circle. Additionally, line 
segment MN is perpendicular to the x-axis, so the y-coordinate of point 
M can be expressed as: 

yM = Hʹ⋅tan(FOV/2)/cos(α). (14) 

Since point M lies on the ellipse of the receiver footprint on the water 
surface, it satisfies the following equation: 

x2
M

m2 +
y2

M
ne

2 = 1, (15) 

where ne is the semi-minor axis length of the ellipse and can be expressed 
as: 

ne = yM

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − x2
M/m2

√

. (16) 

Assume point E is any point within the boundary of the ellipse on the 
receiver footprint of the water surface, with coordinates (xE, yE, 0). The 
distance L between point A (the projection of point F on the water sur
face) and point E, and the angle of incidence αi at point E can be 
expressed as: 
⎧
⎪⎨

⎪⎩

L =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(m + lAB + xE)
2
+ yE

2
√

αi = arcsin
(

L
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(Hʹ)2
+ L2

√ ) , (17) 

where lAB represents the length of line segment AB. According to Snell’s 
Law, the relationship between the angle of incidence.

αi and the angle of refraction αr is as follows: 

sinαi = n⋅sinαr. (18) 

Utilizing the angle of refraction, when photons at point E propagate 
to point G at a depth zr, the projection of their travel distance along the 
direction of line AE is dL, which can be expressed as: 

dL = zr⋅tan(αr). (19) 

Then, the coordinates of point G (xG, yG, zr), can be expressed as: 
⎧
⎪⎪⎨

⎪⎪⎩

xG = xE + dL⋅cos(ω)

yG = yE − dL⋅sin(ω), y < 0
yG = yE + dL⋅sin(ω), y > 0
zr = zr

, (20) 

where ω is the angle between the line segment AE and the x-axis, and can 
be expressed as: 

ω = arcsin(yE/L). (21) 

Since point E is any point within the boundary of the ellipse on the 
receiver footprint of the water surface, based on this constraint and in 
conjunction with Eq. (20), the boundary of the underwater receiving 

field can similarly be derived as: 

{
[x − dL⋅cosω]

2
/

m2 + [y + dL⋅sinω]
2
/

ne
2 = 1, y < dL⋅sin(ω)

[x − dL⋅cosω]
2
/

m2 + [y − dL⋅sinω]
2
/

ne
2 = 1, y > dL⋅sin(ω)

. (22) 

When photons are within the lidar’s FOV, the expected photon en
ergy E at depth z can be expressed as (Li et al., 2024; Zhou et al., 2021): 

E(z) =
Ar

[(nH + z)/cos(α) ]2
β̃(θ)
4π exp

(

−
∑i

i=1
cidʹ
)

TaTtWN, (23) 

where Ar is the aperture of the telescope; H is the vertical height of lidar 
system; i is the i-th photon layer; ci is the beam attenuation coefficient of 

the i-th layer; dʹ = z/
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − (sinα/n)2
√

is the distance from the current 
scattering point to the sea surface; Ta is the atmospheric transmittance, 
Tt is the sea-air interface transmittance; WN is the weight of currently 
scattered photon. When photons scatter, the expected value E is recor
ded at the corresponding position, and the weight of the photon packet is 
reduced accordingly. The recording method for the photon position is as 
follows: 

sp =

(

d+
∑

i
si

)/

2, (24) 

where si is the actual step length of each photon movement. The signal 
recorded in this manner is the time-based depth profile resulting from 
multiple scatterings with the water column.

However, sp does not represent the actual depth where the lidar hits. 
The depth where the laser hits is zp, which can be expressed as: 

zp =
∑

i
zi. (25) 

where zi is the actual depth of each photon movement, whether it is a 
tilted system or a nadir viewing system. The signal recorded in this way 
is the real depth profile.

Fig. 3. Schematic diagram illustrating the differences between time-based and 
real depth profiles caused by multiple scattering.
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To further illustrate the difference between the two profiles, Fig. 3
provides a schematic diagram, which demonstrates the impact of 
different rs and FOV on the discrepancy. As shown in Fig. 3(a) and Fig. 3
(c), due to the influence of multiple scattering, there is a discrepancy 
between the time-based and real depth profiles. When recording the 
expected photon energy, if the photon position is recorded based on the 
movement step described in Eq. (24), the corresponding backscattered 
signal is the time-based depth profile. If the photon position is recorded 
as the true depth described in Eq. (25), the corresponding signal is the 
real depth profile. The profile diagrams for different FOVs are shown in 
Fig. 3(b) and Fig. 3(d).

As shown in Fig. 3, because of the strong forward scattering of laser 
beams as they travel through water, photons experience multiple scat
tering events during their journey. When the parameter rs is large, as 
demonstrated in Fig. 3(a), the range of motion for photons within the 
receiver FOV increases, particularly with more photons moving later
ally. As a result, the discrepancy between the travel distance of photons 
and their actual depth becomes more pronounced, as shown in Fig. 3(b). 
Consequently, for platforms with a large receiver footprint, such as 
spaceborne or high-altitude airborne platforms, this difference becomes 
significant and cannot be ignored.

For platforms with a smaller rs and a small FOV, such as the under
water platforms and low-altitude airborne platforms, as shown in Fig. 3
(c), the scattering of photons is confined to a limited volume. Photons 
outside this volume cannot be received and recorded by the telescope. 
Consequently, although the backscattered signal contains a significant 
amount of multiple scattering information, the angles of these photons 
are primarily restricted to around 0◦. Therefore, as shown in Fig. 3(d), 
the difference between the time-based and real depth profiles is rela
tively small.

2.2. Influencing factors analysis

As shown in the above analysis, discrepancies between time-based 
and real depth profiles are influenced by multiple factors, including 
the IOPs of the water—namely b, a, and SPF—as well as the illumination 
and reception geometry of the lidar system, such as the receiver FOV, 
laser incident angle, and laser divergence angle. In addition, sea surface 
roughness also plays a role. These factors affect the scattering angles and 
distributions of photons, thereby contributing to the discrepancies. For 
clarity, the influencing factors and their mechanisms are summarized in 

Table 1.
Evidently, constructing a comprehensive model that accounts for all 

these factors is highly challenging. Therefore, this study first simplifies 
the model by focusing on Case-1 water conditions, assuming vertically 
uniform IOPs and neglecting sea surface roughness. Under these as
sumptions, the relationships between the discrepancies and water IOPs 
and receiver FOV are analyzed while considering the effects of laser 
incident angle. Based on this foundation, the impacts of a, SPF, vertical 
variations in IOPs, and sea surface roughness on the discrepancies will 
be further discussed.

2.3. Bio-optical models

To simplify the simulation analysis, the bio-optical models for Case-1 
waters are employed, as listed in Table 2, where λₘ represents the laser 
wavelength, which is set to 532 nm in this simulation. As shown in Eq. 
(1), the step length of photon movement is determined by c, which is the 
sum of a and b. The a consists of the absorption coefficient of pure water, 
aw (Lee et al., 2015), the absorption coefficient of phytoplankton pig
ments, aph (Prieur and Sathyendranath, 1981), and the absorption co
efficient of yellow substances, ay (Lee and Tang, 2022). Additionally, b 
can be expressed as the sum of the scattering coefficient of pure water, 
bw (Zhang and Hu, 2009) and the scattering coefficient of particles, bp 
(Morel, 1988). The specific values of a and b are determined by the laser 
wavelength and Chl.

2.4. Key Parameters of Lidar Systems

To study the impact of multiple scattering on the detection depth, 
this research selected a total of six typical platforms, including space
borne, airborne, shipborne, and underwater. The key parameters of the 
lidar systems for each platform are listed in Table 3.

3. Monte Carlo Results

Based on the lidar parameters from Table 3 and the water bio-optical 
models from Table 2 using the Petzold SPF (Petzold, 1972), with a Chl 
set to 0.1 mg/m3, the simulated time-based and real depth profiles for 
lidar on different platforms are shown in Fig. 4. To illustrate the dif
ference more intuitively between the real and time-based depth profiles, 
the MC lidar profiles in Fig. 4 and Fig. 5 have been normalized, with 
each profile divided by the larger of its respective maximum value.

As shown in Fig. 4, although the Chl is set to only 0.1 mg/m3, there is 
a significant difference between the time-based and real depth profiles 
of lidar on platforms other than the underwater lidar. When the depth is 
shallow, the signal intensity of the real depth profile is greater than that 
of the time-based depth profile. However, as the depth increases, the 
signal intensity of the time-based depth profile surpasses that of the real 
depth profile, and the two profiles intersect at a certain depth. In other 
words, the attenuation rate of the time-based depth profile is slower than 
that of the real depth profile. Consequently, the maximum detection 
depth is overestimated when based on the time-based depth profile, 
meaning the actual penetration depth of ocean lidar is much shallower 
than the detection depth indicated by the time-based depth profile.

Additionally, as shown in Fig. 4, the differences between the time- 
based and real depth profiles vary across platforms, even under the 
same water IOPs. For the underwater platform, the time-based and real 
depth profiles almost completely overlap. For the airborne lidar at a 
flight altitude of 0.35 km, the difference between the time-based and 
real depth profiles is minimal. However, for platforms like CALIPSO, the 
differences between the time-based and real depth profiles are sub
stantial. This indicates that the lidar parameters on different platforms 
influence the distribution of these discrepancies.

By decomposing the multiple scattering (MS) components in the 
backscattered profiles of the time-based and real depth profiles across 
four different platforms, the results are presented in Fig. 5. The figure 

Table 1 
Factors affecting discrepancy.

Parameter Effect Included

Laser incident 
angle

Larger angles increase path length and scattering, 
enhancing multiple scattering.

Yes

Laser divergence 
angle

A wider beam increases the spatial distribution of 
photon paths, promoting path variability and 
contributing to multiple scattering.

Yes

Receiver FOV
A larger FOV allows the receiver to collect more 
photons, including those from higher-order 
scattering events.

Yes

Scattering 
coefficient b

A higher scattering coefficient increases the 
number of scattering events, enhancing the 
multiple scattering effect.

Yes

Sea surface 
roughness

Surface waves modify the entry angles and spatial 
spread of photons, altering their underwater 
trajectories and increasing path variability.

Discussed

Absorption 
coefficient a

In highly absorbing waters, photons are rapidly 
attenuated, reducing the contribution from 
multiple scattering.

Discussed

SPF
Determines the angular distribution and intensity 
of scattered photons, influencing the 
directionality and range of scattering paths.

Discussed

Depth-dependent 
IOPs

Vertical variations in absorption and scattering 
properties affect photon propagation paths and 
signal shape.

Discussed
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shows that, regardless of the platform, the distribution of single scat
tering in both the time-based and real depth profiles is identical. The 
difference lies in the multiple scattering signal profiles. Therefore, it can 
be concluded that multiple scattering is the primary cause of the 
discrepancy between the time-based and real depth profiles.

Additionally, for both the time-based and real depth profiles, the 
proportion of multiple scattering components in the total signal in
creases with depth. For the time-based depth profile, except for the 
underwater lidar, the distribution of multiple scattering initially in
creases and then decreases. However, for the real depth profile, the 
profile of multiple scattering components is monotonically decreasing. 
Furthermore, as depth increases, the proportion of higher-order scat
tering components in the time-based depth profile increases more 
rapidly.

Additionally, to test the MC simulations, the simulated time-based 
depth profiles and real-photon profiles were further analyzed as fol
lows. For vertically homogeneous water, the lidar equation for elastic 
scattering can be expressed as: 

Pm(z) =
BmQm(z)T2

aT2
t

[(nH + z)/cosα ]
2⋅βm⋅exp( − 2Klidar⋅z), (26) 

where Pm represents the signal of backscattered photon at depth z 
received by a lidar receiver at altitude H, Bm is a constant in the elastic 
lidar system that does not vary with detection distance, including the 
pulse energy of the laser, the quantum efficiency of the detector, the 
telescope’s receiving area, and the transmission efficiency of the optical 
system for both emission and reception, Qm is the geometric overlap 
factor, H is the height of the lidar above the water surface, α is the tilt 
angle of the lidar system, βm represents the volume scattering function at 

180◦ at 532 nm, Klidar represents the lidar attenuation coefficient at 532 
nm. For a homogeneous water body, βm can be considered constant 
values that do not change with depth. Although Klidar exhibits slight 
depth dependence even within a homogeneous water column because of 
multiple scattering (Walker and Mclean, 1999; Zhou et al., 2019), as 
shown in Fig.4, to simplify the analysis, the column-averaged lidar 
attenuation coefficient Klidar will be used in the subsequent discussions. 
Therefore, after obtaining the MC simulated signals, Klidar can be 
determined using the slope method (Churnside et al., 2018).

To facilitate comparisons between different platforms, the mea
surement dynamic range of the lidar is limited to 60 dB, corresponding 
to 10− 6. When the time-based depth profile decays by 60 dB, the cor
responding detection depth is defined as zd, and the true depth of the 
photon at that point is defined as zgt for vertically incident systems. The 
time-based and real depth profiles are truncated based on zd and zgt, 
respectively. Then, the lidar attenuation coefficients for the time-based 
depth profile (Kt) and the real depth profile (Kz) are calculated using the 
slope method. For the lidar system with an inclination angle of α, it is 
necessary to first correct the photon positions (xi) of the time-based 
depth profile. The corrected photon positions (xi’) can be expressed as: 

xi
ʹ = xi⋅cos(αʹ), (27) 

where α’ is the underwater refraction angle corresponding to the incli
nation angle α, which can be expressed as: 

αʹ = arcsin[sin(α)/n ]. (28) 

The time-based depth profile, after tilt angle correction, will be used 
for further calculation of zd and Kt. Previous simulation studies show 
that when backscattered signals are dominated by single scattering, the 

Table 2 
Bio-optical models of MC simulation.

Parameter Empirical relationships References

Beam attenuation coefficient c(λm,Chl) = a(λm,Chl)+ b(λm,Chl) –

Absorption coefficient
⎧
⎪⎨

⎪⎩

a(λm,Chl) = aw(λm) + 0.06A(λm)⋅Chl0.65
+ ay(λm,Chl)

ay(λm,Chl) = ay(440,Chl)exp[ − 0.014(λm − 440) ]
ay(440,Chl) = 0.2

[
aw(440) + 0.06A(440)⋅Chl0.65

]

Lee and Tang (2022)

Lee et al. (2015)

Prieur and Sathyendranath (1981)

Scattering coefficient
⎧
⎨

⎩

b(λm,Chl) = bw(λm) + bp(λm,Chl)
bw(λm) = 0.0046(450/λm)

4.32

bp(λm,Chl) = 0.3⋅Chl0.62
(550/λm)

Morel (1974)

Morel (1988)

Diffuse attenuation coefficient
⎧
⎨

⎩

Kd = m0a + m1[1 − m2exp( − m3a) ]bb
m0 ≈ 1 + 0.005α

m1 = 4.18,m1 = 0.52,m1 = 10.8
Lee et al. (2005)

Table 3 
Key parameters of lidar systems.

Parameter CALIPSO ICESat-2 Airborne 
3 km

Airborne 
0.35 km

Shipborne Underwater

Wavelength of laser 532 nm 532 nm 532 nm 532 nm 532 nm 532 nm
Photon counts 108 108 108 108 108 108

Beam spot radius of the emitted 
laser

2.5 mm 2.5 mm 25 mm 3.25 mm 10 mm 2 mm

Laser divergence angle 0.1 mrad 0.035 mrad 2.4 mrad 0.25 mrad 1 mrad 0.5 mrad
Laser beam spot radius on water 

surface 35 m <8.7 m 3.6 m 0.4375 m 0.005 m None

Aperture of the telescope 1000 mm 800 mm 200 mm 200 mm 50.8 mm 6 mm
FOV of the receiver 0.13 mrad 0.0884 mrad 25 mrad 6 mrad 200 mrad 3.8 mrad
Receiver footprint 92 m 45 m 75.2 m 2.3 m 2.06 m None
Vertical height 701,000 m 500,000 m 3000 m 350 m 10 m None
Tilt angle 8.2176◦ 2.0002◦ 3◦ 15◦ 60◦ None

References
Winker et al. 
(2004)

Neumann et al. 
(2019)

Chen et al. 
(2021)

Chen and Pan (2019); Gordon 
(1982)

Zhou et al. 
(2022)

Shangguan et al. 
(2023b)
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lidar attenuation coefficient, name Klidar, approaches c. In contrast, 
when multiple scattering dominates, Klidar approximates the diffuse 
attenuation coefficient (Kd) (Gordon, 1982). Thus, Kt and Kz should lie 
between c and Kd, and this conclusion has been validated based on MC 
simulation (D’alimonte et al., 2024). To further test the MC simulations, 
Kt and Kz are compared with c and Kd for the six platforms, as shown in 
Fig. 6. The model of the Kd at 532 nm is determined by a and the 
backscattering coefficient bb (Lee et al., 2005). The bb can be calculated 
using b(532) when the SPF is defined. Note that the wavelength used in 
all simulations in this work is 532 nm. For simplicity, Kz, Kt, b, a, and Kd 
refer to the parameters at 532 nm, respectively, with the same notation 
used thereafter.

From Fig. 6(b), it can be observed that except for the underwater 
platform, the backscattered signals from the other five platforms contain 
a large amount of multiple scattering components, resulting in Kt being 
close to Kd. Although there are slight differences among the platforms 
due to variations in lidar hardware parameters, the relationship between 
Kt and Kd generally follows the 1:1 line. In contrast, for the underwater 
platform, Kt is significantly larger than Kd. On the other hand, from Fig. 6
(a), the Kt for the underwater platform is close to the c, while Kt for the 
other platforms is much smaller than c. This is consistent with the pre
vious MC simulation results (Eidam et al., 2024; Shangguan et al., 
2024d; D’alimonte et al., 2024).

Additionally, as shown in Fig. 6(c) and Fig. 6(d), the Kz values for the 
underwater platform are still larger than the Kz of the other five plat
forms. Furthermore, from the comparison between Fig. 6(b) and Fig. 6
(d), it can be observed that except for the underwater platform, where 
the difference between Kz and Kt is not significant, the Kz for the other 
five platforms is approximately twice as large as Kt. As shown in Fig. 6
(c), the Kz value for the underwater platform is closer to the 1:1 line with 
c, and compared to the relationship between Kt and c in Fig. 6(a), the 

difference between Kz and c is smaller. Moreover, the differences be
tween Kz and c for the other five platforms are also smaller than those 
between Kt and c. These results suggest that the differences between Kz 
and Kt require further analysis.

4. Analysis of Discrepancies

4.1. Kz/Kt

To enhance simulation efficiency and emphasize the influence of 
multiple scattering on subsurface signals, the air-sea interface effects 
were neglected in the simulations. To quantitatively investigate the 
discrepancies between the real and time-based depth profiles, the ratios 
Kz/Kt and zgt/zd are introduced. According to the analysis in the previous 
sections, the difference is related to both water IOPs and the lidar’s FOV.

To simplify the analysis, the simulation adopts the Case-1 water, 
where Chl can simultaneously determine a and b. Therefore, the greater 
the value of Chl, resulting in greater contributions of multiple scattering 
signals to the total lidar backscattered signal due to that there are 
relatively more increase in b than in a for the 532 nm wavelength. To 
facilitate the analysis, b is initially used to represent the contribution of 

Fig. 4. Normalized MC simulated time-based depth profiles (solid lines) and 
real depth profiles (dashed lines) for different platforms with Chl at 0.1 mg/m3: 
(a) CALIPSO, (b) ICESat-2, (c) Airborne at 3 km, (d) Airborne at 0.35 km, (e) 
Shipborne, and (f) Underwater.

Fig. 5. Normalized MC simulated time-based depth profiles and real depth 
profiles for different platforms with Chl at 0.1 mg/m3, showing profiles of 
multiple scattering: (a-b) ICESat-2, (c-d) Airborne at 3 km, (e-f) Shipborne, and 
(g-h) Underwater. In panels (a), (c), (e), and (g), solid lines represent the time- 
based depth profiles, while corresponding real depth profiles are shown with 
dashed lines in panels (b), (d), (f), and (h). MS-1, MS-2, MS-3, and MS-4 
represent single scattering, double scattering, triple scattering, and four or 
more scattering signals, respectively.
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multiple scattering caused by water IOPs, and an analysis of the impact 
of a on the results will be conducted subsequently. Additionally, the 
difference between the time-based and real depth profiles is also influ
enced by rs. When the value of rs is small, the multiple scattering angles 
of photons are limited to approximately 0◦, and in this case, even if a 
significant amount of multiple scattering signal is included in the 
backscattered signal, it does not cause a notable difference between the 
time-based and real depth profiles. However, when rs is large, the 
probability of lateral transmission of the laser increases, which, in turn, 
increases the difference between the time-based and real depth profiles. 
Therefore, the difference between the time-based and real depth profiles 
becomes significant only when both rs and b are large.

To simplify the study, the simulation assumes a vertically homoge
neous distribution of the water, allowing the slope method to calculate 
Kt and Kz from the MC-simulated time-based and real depth profiles. In 
the simulation process, the range of Chl is set from 0.01 to 10 mg/m3 to 
cover a broad range of water conditions. Subsequently, the lidar pa
rameters listed in Table 3 are input into the MC simulation, using the 
Petzold SPF to obtain lidar time-based and real depth profiles under 
different Chl values, from which Kt and Kz are calculated.

The relationship between Kz/Kt and b⋅rs obtained from the MC 
simulation is shown in Fig. 7(a). It can be seen from the figure that the 
relationships between Kz/Kt and b⋅rs differ across platforms. However, 
for the five typical platforms—CALIPSO, ICESat-2, airborne 3 km, 
airborne 0.35 km, and shipborne—Kz/Kt increases with increasing b, 

with values ranging from 1 to between 3 and 4.5. When the natural 
logarithms of Kz/Kt and b⋅rs are taken, the results, shown in Fig. 7(b), 
indicate a linear relationship between the two variables. The fitting is 
performed using the linear function ln(Kz/Kt) = m1⋅ln(b⋅rs) + n1, where 
m1 is the slope of the fitted line, and n1 is the intercept, with all fits 
having an R-squared (R2) value exceeding 0.96.

Considering that the differences between the time-based and real 
depth profiles across different platforms under the same water IOPs are 
primarily attributed to rs, the relationships between rs and m1, as well as 
between rs and n1, are established. Additionally, to provide more 
comprehensive data, the FOV of the lidar systems listed in Table 3 is 
respectively increased and decreased by a factor of two, followed by 
additional MC simulations. This increases the number of simulations, 
making the data on the relationships between rs and m1, and rs and n1 
more comprehensive and generalized. The final relationships between rs 
and m1, and between rs and n1 are shown in Fig. 8.

As shown in Fig. 8(a), when rs ranges from 1 m to 100 m, the vari
ation in m1 is small, remaining between 0.25 and 0.35. Specifically, 
when rs increases from 1 to about 10 m, m1 increases rapidly, but as rs 
continues to increase, m1 exhibits a trend of gradual change. For the 
relationship between n1 and rs, as shown in Fig. 8(b), n1 decreases 
rapidly with increasing rs, following a logarithmic trend. After fitting m1 
and rs, as well as n1 and rs using logarithmic functions, the R2 values are 
0.66 and 0.98, respectively. The fitting results are as follows: 

m1 = 0.29+0.01⋅ln(rs − 0.17). (29) 

n1 = 1.00 − 0.24⋅ln(rs +0.07). (30) 

By substituting Eq. (29) and Eq. (30) into the linear relationship 
between ln(Kz/Kt) and ln(b⋅rs), an expression for Kz/Kt applicable to 
different lidar platforms can be derived as: 

Kz/Kt = exp[m1⋅ln(b⋅rs)+ n1 ]. (31) 

Furthermore, Kz can be expressed as a function of Kt: 

Kz = exp[m1⋅ln(b⋅rs)+ n1 ]⋅Kt (32) 

After modifying the x-axis of Fig. 7(a) to m1⋅ln(b⋅rs) + n1–1.00, a 
relationship between Kz/Kt and both b and rs applicable to different lidar 
platforms can be obtained, as shown in Fig. 9(a). Furthermore, the 
relationship between Kz/Kt and m1⋅ln(b⋅rs) + n1–1.00 can be well fitted 
using a quartic polynomial, with an R2 of 0.98. It can be expressed as: 

Kz

Kt
= 2.83+3.25⋅xK +0.69⋅xK

2 − 1.70⋅xK
3 − 0.89⋅xK

4 (33) 

where xK is defined as m1⋅ln(b⋅rs) + n1–1.00.
Through the above process, the statistical model for Kz/Kt in terms of 

both b and rs, specifically for Case-1 water, are established. Using Eq. 
(33), the distribution of Kz/Kt under varying b and rs conditions can be 
plotted, as shown in Fig. 9(b). To clearly illustrate the relationship be
tween Kz/Kt and both b and rs, the variation of Kz/Kt with b (i.e., Chl) 

Fig. 6. Relationships of Kt and Kz, with Kd and c for six platforms: (a) c vs. Kt; 
(b) Kd vs. Kt; (c) c vs. Kz; (d) Kd vs. Kz.

Fig. 7. Relationship between Kz/Kt and b⋅rs across the range of Chl from 0.01 to 
10 mg/m3: (a) linear scale and (b) natural logarithmic scale for CALIPSO, 
ICESat-2, airborne 3 km, airborne 0.35 km, and shipborne platforms.

Fig. 8. Results from fitting a linear function to the curve of ln(Kz/Kt) vs. ln(b⋅rs) 
in Fig. 7(a) the relationship between the slope m1 obtained from the fit and rs, 
and (b) the relationship between the intercept n1 obtained from the fit and rs.
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under different platforms in Case-1 water is shown in Fig. 10(a), while 
its variation with rs under different Chl conditions is shown in Fig. 10(b). 
Symbols represent MC simulation results, and the lines represent results 
calculated using Eq. (33). It can be seen from the figures that the results 
from Eq. (33) are consistent with the simulation results. For shipborne 
platform, despite the rs is relatively small, the larger FOV causes the 
receiver footprint to expand rapidly with increasing depth. This in
creases the probability of scattered photons moving sideways, resulting 
in a certain degree of error between the fitting relationship and the 
simulation results. Additionally, both Fig. 10(a) and Fig. 10(b) indicate 
that the ratio Kz/Kt increases monotonically with both b and rs. For the 
shipborne platform and the airborne 0.35 km platform, where rs is 
relatively small, the range of Kz/Kt is between 1 and 3.5. In contrast, for 
the airborne 3 km, ICESat-2, and CALIPSO platforms, where rs is larger, 
the range of Kz/Kt is broader, spanning from 1 to 4.5. Moreover, a 
comparison of Fig. 10(a) and Fig. 10(b) shows that Kz/Kt is more sen
sitive to changes in b than to changes in rs. Furthermore, when Chl is 
low, such as 0.01 mg/m3 and 0.1 mg/m3, the effect of rs on Kz/Kt is 
minimal. Fig. 10(b) shows that the minimum value of Kz/Kt is deter
mined by b. As Chl increases, Kz/Kt becomes more sensitive to changes in 
rs, particularly when rs ≤ 50 m, where Kz/Kt increases monotonically 
with rs. As rs continues to increase, the changes in Kz/Kt begin to saturate 
and stabilize.

4.2. zgt/zd

The detection depth of lidar is an important metric. From the above 
analysis, the attenuation coefficient Kt of the time-based depth profile is 
smaller than the attenuation coefficient Kz of the real depth profile. It 

indicates that the attenuation rate of the time-based depth profile is 
slower than that of the real depth profile, causing the calculated 
detection depth (zd) from the time-based profile to be greater than the 
real detection depth (zgt), thus leading to an overestimation of the 
detection depth. Since the attenuation rate of the lidar signal determines 
the detectable depth, zgt/zd can be calculated from Kz/Kt. As shown in 
Fig. 11(a), there is a negative correlation between zgt/zd and Kz/Kt. Based 
on this relationship, zgt/zd can be obtained from Kz/Kt using the 
following equation: 

zgt
/

zd = (Kz/Kt)
− 1 (34) 

Through the above process, the expressions for zgt/zd are established, 
for Case-1 waters. Using Eq. (34), the distribution of zgt/zd under varying 
b and rs conditions can be plotted, as shown in Fig. 11(b). To clearly 
illustrate the relationship between zgt/zd and both b and rs, the variation 
of zgt/zd with b under different platforms is shown in Fig. 12(a), while its 
variation with rs under different Chl conditions is shown in Fig. 12(b). 
Symbols represent MC simulation results, and the lines represent results 
calculated using Eq. (34). It can be seen from the figures that the results 
from Eq. (34) are consistent with the simulation results.

As shown in Fig. 12, similar to the relationship between Kz/Kt and 
both b and rs in Fig. 10, zgt/zd is more sensitive to changes in b than to 
those in rs. When b is less than 0.3 m− 1, zgt/zd is particularly sensitive to 
b. For example, when b increases from 0 to 0.3 m− 1, zgt/zd decreases from 
nearly 1 to 0.5, indicating that the actual detection depth is only 50 % of 
the time-based depth. As b increases, the changes in zgt/zd become more 
stable. In contrast, as shown in Fig. 12(b), the effect of rs on zgt/zd is 
relatively small; zgt/zd decreases slowly as rs increases from about 1 m to 
100 m. The minor fluctuations in zgt/zd with rs may be attributed to a 
lower signal-to-noise ratio (SNR) in the MC simulation.

For the underwater lidar with parameters listed in Table 3, due to the 
small FOV and the system is submerged underwater, the difference be
tween the time-based and real depth profiles is minimal. As Chl varies 
from 0.01 to 10 mg/m3, the relationships between Kz/Kt and b, and 
between zgt/zd and b for the underwater lidar are shown in Fig. 13(a) and 
Fig. 13(b), respectively. As shown in Fig. 13, when the Chl is low, e.g., 
less than 5 mg/m3, the Kz/Kt and zgt/zd values for the underwater lidar 
approach 1. This indicates that the difference between the time-based 
and real depth profiles is minimal. However, as the Chl increases, the 
differences between Kt and Kz, as well as between zgt and zd, become 
more pronounced. When the Chl reaches 10 mg/m3, Kz/Kt is about 1.35, 
and zgt/zd is about 0.62. Therefore, in most oceanic regions where Chl <
5 mg/m3, the measurements from the underwater lidar closely represent 
the distribution of photons at different depths. However, when Chl ex
ceeds 5 mg/m3, the underwater lidar measurements deviate signifi
cantly from the real depth profile and require correction.

4.3. Analysis of the statistical models

To validate the accuracy of Eq. (33) and Eq. (34), MC simulations 

Fig. 9. (a) Distribution of Kz/Kt after modifying the x-axis of Fig. 7(a) to m1⋅ln 
(b⋅rs) + n1–1.00. Symbols represent simulated results, and the red line repre
sents the fitted curve using a polynomial function. (b) The relationship between 
Kz/Kt and both b and rs, calculated using Eq. (33). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web 
version of this article.)

Fig. 10. (a) Variation of Kz/Kt with b (i.e., Chl) for CALIPSO, ICESat-2, airborne 
3 km, airborne 0.35 km, and shipborne platforms. (b) Variation of Kz/Kt with rs 
under different Chl. Symbols represent MC simulation results, and the lines 
represent results calculated using Eq. (33).

Fig. 11. (a) The relationship between zgt/zd and Kz/Kt. Symbols represent 
simulated results, and the black line represents the reciprocal of Kz/Kt. (b) The 
relationship between Kz/Kt and both b and rs, calculated using Eq. (34).
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were conducted using Chl not included in the model construction. The 
Kz/Kt and zgt/zd results from the re-run MC simulations were compared 
with the corresponding model-predicted values to quantify the model’s 
prediction errors. Specifically, Kz/Kt and zgt/zd derived from the MC 
simulation are denoted as Ks and zs, respectively, while the corre
sponding model-predicted values are denoted as Kp and zp. The predic
tion errors for Kz/Kt and zgt/zd, denoted as ErrorK and Errorz, 
respectively, are calculated using the following equations: 

ErrorK =
⃒
⃒Ks − Kp

⃒
⃒
/
Kp ×100% (35) 

Errorz =
⃒
⃒zs − zp

⃒
⃒
/
zp ×100% (36) 

As shown in Fig. 14, the model exhibits strong predictive accuracy 
across different platforms, with the prediction errors (ErrorK and Errorz) 
remaining below 15 % even across a wide range of Chl variations.

To assess the model’s sensitivity, partial derivatives of Eq. (33) and 
Eq. (34) with respect to b and rs were carried out, and the results are 
shown in Fig. 15 and Fig. 16. As illustrated in Fig. 15(a)and Fig. 16(a), as 
b increases, ∂(Kz/Kt)/∂(b) and ∂(zgt/zd)/∂(b) decrease. This indicates that 
Kz/Kt and zgt/zd are more sensitive to changes in b when b is small, but as 

b increases, the sensitivity weakens, leading to the stabilization of Kz/Kt 
and zgt/zd. A similar pattern is observed for rs, as shown in Fig. 15(b) and 
Fig. 16(b). Comparing Fig. 15(a) with Fig. 15(b) and Fig. 16(a) with 
Fig. 16(b), it can be concluded that Kz/Kt and zgt/zd are much more 
sensitive to changes in b than to changes in rs, meaning that Kz/Kt and 
zgt/zd are more strongly influenced by b.

5. V. Discussion of the Influence of Other Parameters

5.1. Effect of Absorption Coefficient

For Case-1 waters, the IOPs can be calculated using Chl, which allows 
b to effectively represent the IOPs of the water, thereby establishing 
statistical models for Kz/Kt and zgt/zd. However, as the a is a key 
component of c, it is evident from Eq. (1) that the absorption coefficient 
a influences the average photon path length (s) and also affects the single 
scattering albedo (b/c), which in turn impacts photon attenuation and 
the distribution of multiple scattering. Therefore, it is necessary to 
analyze the effect of changes in a on Kz/Kt and zgt/zd. To investigate the 
model’s applicability in non-Case-1 waters and evaluate the impact of 
the absorption coefficient a on Kz/Kt and zgt/zd, two sets of MC simula
tion experiments were conducted under three Chl: 0.01 mg/m3, 0.1 mg/ 
m3, and 1 mg/m3. In the first set, the scattering coefficient b was held 
constant while varying a from 0 to 2 times the Case-1 water model value. 
In the second set, a was fixed while b was varied within the same range. 
The corresponding simulation results are presented in Fig. 17 and 
Fig. 18. Two representative lidar platforms are selected for the analysis. 
The first is the spaceborne ICESat-2, which features a small incident 
angle and a large rs. The second is a 0.35 km airborne platform, char
acterized by a large incident angle and a small rs. These two platforms 
are also employed in the subsequent analyses to discuss the effects of 
different SPFs, sea surface roughness, and depth-dependent IOP varia
tions on the discrepancies.

As shown in Fig. 17 and Fig. 18, for both spaceborne and airborne 

Fig. 12. Similar to Fig. 10, but (a) shows zgt/zd vs. b and (b) shows zgt/zd vs. rs 
instead of Kz/Kt with b and rs.

Fig. 13. (a) Kz/Kt vs. b⋅rs and (b) zgt/zd vs. b⋅rs as Chl ranges from 0.01 to 10 
mg/m3, for the underwater platform.

Fig. 14. ErrorK(a) and ErrorK(a) for different Chl and platform, where L1 ~ L5 
represent CALIPSO、ICESat-2、Airborne 3 km、Airborne 0.35 km、Shipborne 
respectively.

Fig. 15. (a) Partial derivative of Kz/Kt with respect to b using Eq. (33) for 
CALIPSO, ICESat-2, airborne 3 km, airborne 0.35 km, and shipborne platforms. 
(b) Partial derivative of Kz/Kt with respect to rs under different Chl using 
Eq. (33).

Fig. 16. Similar to Fig. 15, but (a) shows ∂(zgt/zd)/ ∂(b) vs. b and (b) shows 
∂(zgt/zd)/ ∂(rs) vs. rs.
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lidar platforms, and regardless of the value of b, an increase in a, with b 
held constant, causes Kz/Kt and zgt/zd to converge towards 1. This is 
because the increase in a leads to a rise in c, thereby reducing the photon 
step length (s), and also lowers the b/c ratio, which accelerates photon 
weight attenuation. Both factors limit the penetration depth of photons, 
suppressing the multiple scattering effect, which reduces the difference 
between the time-based depth signal and the real depth signal, ulti
mately causing Kz/Kt and zgt/zd to converge towards 1.

However, when a remains constant, increasing b causes Kz/Kt and 
zgt/zd to gradually deviate from 1. This is because a higher b increases 
the ratio b/c, leading to slower photon attenuation and more scattering 
events. As a result, multiple scattering effects are intensified, thereby 
enlarging the discrepancy between the time-based depth signal and the 
actual depth.

Finally, for Case-1 waters, where both a and b are determined by Chl, 
Kz can be evaluated using Eq. (33), and zgt can be assessed based on Eq. 
(34). For other waters, the effect of the absorption coefficient a should 

be considered.

5.2. Effect of scattering phase function

The SPF determines the distribution of the light field underwater 
(Churnside and Shaw, 2020), which in turn affect the distribution of Kz/ 
Kt and zgt/zd. To investigate the influence of different SPFs on Kz/Kt and 
zgt/zd, this work incorporates the Henyey-Greenstein (HG) SPF, which 
significantly differs from the previously used Petzold SPF, for con
ducting the MC study. The HG function can be expressed as (Henyey and 
Greenstein, 1941): 

β̃p =
1
4π

1 − g2

[1 + g2 − 2gcos(θ) ]3/2 (37) 

where g is the asymmetry factor, ranging from − 1 to 1. When g = 0.919, 
this function yields the same backscattering ratio (BP) as the Petzold SPF 
(Churnside and Shaw, 2020). BP is a key parameter in ocean optics, 
closely related to the optical properties of water, and represents the 
probability of photon backscattering (θ ≥ 90◦). It is calculated as follows 
(Liu et al., 2020): 

BP = bbp
/
bp, (38) 

where bbp is the particulate backscattering coefficient, and bp is the total 
particulate scattering coefficient. For the HG SPF, BP depends on the 
value of the asymmetry factor g (Mobley et al., 2002): 

BP =
1 − g

2g

(
1 + g
̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + g2

√ − 1

)

. (39) 

In typical ocean waters, the BP generally ranges from 0.005 to 0.03 
(Mobley et al., 2002). To examine the impact of different SPFs on the 
simulation results, the ICESat-2 platform was used as an example. Three 
g values were selected: 0.919, 0.880, and 0.975, corresponding to BP 
values of 0.0183, 0.0280, and 0.0053, respectively. These SPFs are 
referred to as HG1, HG2, and HG3.

Fig. 19(a) compares the Petzold SPF with the HG SPFs under 
different g values. For forward scattering angles less than 5◦, HG1 and 
HG2 show significantly lower values than the Petzold SPF, while dif
ferences in the backward direction are relatively small. HG3 exhibits 
more substantial deviations from the Petzold SPF: at angles below 1◦ and 
from 8◦ to 180◦, the Petzold SPF is noticeably stronger. Furthermore, the 
Petzold SPF increases monotonically from 135◦ to 180◦, whereas HG3 
decreases monotonically.

The cumulative distribution functions F(θ) for each SPF are shown in 
Fig. 19(b). According to Eq. (4), in each scattering event, a random value 
between 0 and 1 is drawn for F(θ), which determines the photon’s 
scattering angle. As shown in the figure, for the same F(θ), HG2 yields the 
largest θ, followed by HG1. When θ < 1◦, HG3 produces larger angles 
than the Petzold SPF, while for θ > 1◦, HG3 yields the smallest angles.

To demonstrate the influence of different SPFs on the lidar back
scattered signal, photon scattering trajectories for the ICESat-2 platform 
were compared for Chl of 0.10 mg/m3 and 1.00 mg/m3, as shown in 
Fig. 19(c) and (d). Note that the single photon trajectory is inherently 
random and is presented here solely to clearly illustrate the underlying 
principles. During the simulation, all SPFs shared the same photon step 
length and F(θ) for each scattering event, with only the scattering angle 
varying to reflect the angular characteristics of different SPFs. As shown 
in Fig. 19(c) and (d), since HG3 generally produces smaller scattering 
angles, the corresponding photon paths are longer.

The resulting MC signals for the two Chl conditions of ICESat-2 and 
Airborne 0.35 km platforms are shown in Fig. 19(e-h). For all cases, HG3 
yields the largest zgt and zd, indicating the longest signal propagation and 
greatest penetration depth. However, the differences in zgt/zd among 
different SPFs are minimal, with deviations from the Petzold SPF 
remaining below 10 %, as shown in Table 4. Although different SPFs 

Fig. 17. Effect of a on Kz/Kt (a) and zgt/zd (b), and effect of b on Kz/Kt (c) and 
zgt/zd (d) under three b and a value, respectively, for the ICESat-2 platform.

Fig. 18. Similar to Fig. 17, but for the airborne 0.35 km platform.
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cause variations in lidar penetration depth, when using the HG SPF with 
BP values ranging from 0.005 to 0.03, the impact on the ratio zgt/zd is 
relatively small.

To specifically compare the differences in the statistical models 
under different SPFs, the HG1 model was used, and the relationship 
between Kz/Kt and both b and rs is recalculated as follows: 

Kz/Kt = exp[m2⋅ln(b⋅rs)+ n2 ], (40) 

where m2 and n2 are functions of rs, and can be expressed as follows: 

m2 = 0.32+2.16×10− 3⋅ln(rs − 0.28). (41) 

n2 = 0.96 − 0.22⋅ln(rs − 0.13). (42) 

Similarly, the relationship between zgt/zd and Kz/Kt under the HG1 
can also be represented by Eq. (34).

To quantitatively analyze the MC results obtained with the Petzold 

and HG1 SPFs, the relative errors between Kz/Kt and zgt/zd obtained 
using the Petzold SPF and those obtained using the HG1 SPF are defined 
as Δ(Kz/Kt) and Δ(zgt/zd), respectively. The equations are as follows: 

Δ(Kz/Kt) =

⃒
⃒
⃒
⃒
⃒

(Kz/Kt)p − (Kz/Kt)hg

(Kz/Kt)p

⃒
⃒
⃒
⃒
⃒
×100%, (43) 

Δ(zgt/zd) =

⃒
⃒
⃒
⃒
⃒

(zgt/zd)p − (zgt/zd)hg

(zgt/zd)p

⃒
⃒
⃒
⃒
⃒
×100%, (44) 

where the subscripts p and hg represent the simulation results obtained 
using Petzold SPF and HG1 SPF, respectively.

Their distributions of Δ(Kz/Kt) and Δ(zgt/zd) with respect to both b 
and rs are shown in Fig. 20. The results in Fig. 20 indicate that the dif
ferences between the results from the two SPFs are minimal. For Chl 
ranging from 0 to 10 mg/m3 and rs ranging from 0 to 100 m, Δ(Kz/Kt) 
and Δ(zgt/zd) remain within 10 %. Overall, whether the water is repre
sented by the Petzold or HG1, despite some differences between them, 
the conclusion remains consistent: when the rs and water’s b are large, 
the differences between the time-based profile and the real depth profile 
are significant.

5.3. Effect of sea surface roughness

Surface waves alter the laser incident angle and the transmittance 
and reflectance at the air–sea interface, thereby affecting the under
water photon paths, the incident energy, and the strength of the surface 
backscatter. To analyze the impact of a rough sea surface on subsurface 
profile signals, a rough surface model is established in this section, 
focusing on the effects of transmittance variation and incident angle 
changes, while excluding the simulation of surface backscatter. First, the 
Pierson–Moskowitz (PM) spectrum is used to describe the energy dis
tribution of ocean waves. The PM spectrum is a complex sinusoidal wave 
model, and the variation of energy spectral density with angular fre
quency can be expressed as (Pierson Jr and Moskowitz, 1964): 

Fig. 19. Comparison four different SPFs (a) and their corresponding F(θ) 
functions (b), where solid line represents Petzold, while dashed lines represent 
HG with different g. (c)-(d): schematic photon trajectories under different SPFs 
for ICESat-2 at Chl = 0.10 mg/m3 and 1.00 mg/m3, respectively. (e)-(f): MC 
results under different SPFs for ICESat-2 at Chl = 0.10 mg/m3 and 1.00 mg/m3, 
where solid lines indicate time-based signals and dashed lines indicate real 
depth signals. (g)-(h): As in (e)-(f), but for Airborne 0.35 km platform.

Table 4 
Simulation results of different SPF.

Platform Chl (mg/m3) SPF zgt/zd Relative deviation vs. Eq. (34)

ICESat-2

0.1

Petzold 0.702 1.30 %
HG1 0.704 1.59 %
HG2 0.695 0.29 %
HG3 0.716 3.32 %

1.0

Petzold 0.398 0.25 %
HG1 0.395 0.50 %
HG2 0.392 1.26 %
HG3 0.396 0.25 %

Airborne 
0.35 km

0.1

Petzold 0.874 5.62 %
HG1 0.868 4.91 %
HG2 0.825 0.28 %
HG3 0.870 5.16 %

1.0

Petzold 0.507 6.66 %
HG1 0.490 9.92 %
HG2 0.475 12.61 %
HG3 0.526 3.20 %

Fig. 20. (a) Δ(Kz/Kt) and (b) Δ(zgt/zd) distribution with respect to both b and rs.
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P(w) =
A⋅g0

2

w5 exp
[

− B
( g0

U⋅w

)4
]

, (45) 

where w denotes the angular frequency of ocean waves; A and B are 
constants of the Pierson–Moskowitz (P-M) spectrum, with values of 8.1 
× 10− 3 and 0.74, respectively. g0 is the gravitational acceleration, taken 
as 9.81 m/s2. U represents the wind speed at 19.5 m above the sea 
surface (unit: m/s) and is the only variable parameter in the P-M 
spectrum.

Additionally, the directional spreading function ψ(θ) is expressed as: 

ψ(θ) = 2
πcos2(θ), −

π
2
< θ <

π
2

(46) 

where θ is the angle between the wave propagation direction and the 
wind direction. The distribution of θ is independent of the angular fre
quency w. The wave spectrum function includes both wave direction and 
wave frequency, represented as the product of these two independent 
functions (Chen et al., 2022): 

S(w, θ) = P(w)⋅ψ(θ)

=
A⋅g2

0
w5 exp

[

− B
( g0

U⋅w

)4
]

×
2
πcos2(θ).

(47) 

To fully characterize the sea surface elevation in three-dimensional 
space, each wave component must incorporate spatial propagation 
terms. For a given frequency wn and direction θn, the wavenumber kn is 
determined by the dispersion relation as follows: 

kn = w2
n
/
g0. (48) 

The projections of the x-coordinate and y-coordinate are given as 
follows, respectively: 
{

kx,n = kncosθn
ky,n = knsinθn

(49) 

The ocean surface can be considered as the linear superposition of 
multiple wave components with different frequencies, directions, am
plitudes, and phases. The resulting linear wave function represents the 
surface elevation at each point. In practical applications, the wave 
spectrum is expressed as (Chen et al., 2022): 

ζ(x, y, t) =
∑∞

n=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2S(wn, θn)δw

√
⋅cos

(
kx,nx+ ky,ny − wnt+ εn

)
, (50) 

where x and y are the two-dimensional plane coordinates along the wind 
speed direction and perpendicular to the wind speed direction, respec
tively, δw = wn − wn− 1 denotes the frequency interval, wn is the wave 
angular frequency, and εn is a random phase.

To investigate the influence of sea surface roughness on Kz/Kt and 
zgt/zd, the ICESat-2 platform is taken as an example. The wave frequency 
wn is set from 0.01 to 3 rad/s to cover wave characteristics from long to 
short wavelengths, with a frequency interval δw of 0.02 rad/s. Wind 
speeds U are set to 0 m/s, 10 m/s, and 20 m/s, and sea surface wave
forms at t = 0 are randomly generated, and the wave cross-section along 
the x-axis direction is shown in Fig. 21(a) and (b). When photons 
penetrate the sea surface at random positions, their propagation di
rections change due to refraction at the rough interface.

During the simulation, the initial horizontal positions of photons (x0, 
y0) and the movement step length in each scattering event are set to be 
the same under different wind speeds U, while the initial vertical posi
tion z0 and the initial refraction angle vary according to the corre
sponding sea surface slope. Taking Chl of 0.10 mg/m3 and 1.00 mg/m3 

as examples, representative photon scattering trajectories for ICESat-2 
are shown in Fig. 21(c) and (d). Under calm sea conditions (U = 0 m/ 
s), photons exhibit the longest propagation paths, while under U = 20 
m/s, the penetration depth is the shallowest. The MC signals from both 
ICESat-2 and the Airborne 0.35 km platform, as shown in Fig. 21(e–f) 

and (g–h), respectively, also confirm that lidar penetration becomes 
shallower with increasing wind speed U, due to the enhanced sea surface 
roughness. Nevertheless, the variations in zgt/zd under different wind 
speeds U are minor, with deviations from the statistical model (Eq. (34)) 
remaining below 10 %, as shown in Table 5. Therefore, it can be inferred 

Fig. 21. Sea surface roughness patterns under different wind speeds: (a) U = 0 
m/s and 10 m/s, (b) U = 20 m/s; arrows indicate refracted photon paths at 
different incident positions. (c), (d) Photon trajectory diagrams at Chl = 0.10 
mg/m3 and 1.00 mg/m3 of ICESat-2, respectively. (e), (f) Corresponding MC 
signals of ICESat-2, where solid lines represent time-based signals and dashed 
lines represent real-depth signals. Note that surface backscatter is not included 
in this simulation. (g)-(h): As in (e)-(f), but for Airborne 0.35 km platform.

Table 5 
Simulation results of different wind speed.

Platform Chl (mg/m3) U (m/s) zgt/zd Relative deviation vs. Eq. (34)

ICESat-2

0.1
0 0.705 1.73 %
10 0.710 2.45 %
20 0.709 2.31 %

1.0
0 0.392 1.26 %
10 0.398 0.25 %
20 0.395 0.50 %

Airborne 
0.35 km

0.1
0 0.849 2.62 %
10 0.869 4.99 %
20 0.803 2.94 %

1.0
0 0.477 9.96 %
10 0.500 5.66 %
20 0.486 8.38 %
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that although sea surface roughness affects the absolute detection depth, 
its impact on the ratio zgt/zd is limited.

5.4. Effects of depth-dependent IOP variations

When the IOPs of the water column are vertically non-uniform, light 
propagation in the stratified water body becomes more complex. The 
presence of stratification alters the propagation path of light and en
hances multiple scattering effects, thereby increasing the discrepancy 
between time-based signals and real depth signals.

To investigate the impact of vertically non-uniform IOPs on the ratios 
Kz/Kt and zgt/zd, lidar backscattered signals under different Chl distri
butions were simulated using the ICESat-2 and Airborne 0.35 km plat
forms as examples, as shown in Fig. 22. In the simulations, the 
background Chl was set to 0.1 mg/m3, with a peak value of 0.5 mg/m3. 

The position and thickness of the peak layer were varied accordingly.
To facilitate comparison, the MC results for uniform Chl distribution 

(Fig. 22(a)) are shown in Fig. 22(a)-(b). For cases involving a thin, high- 
concentration Chl layer with a full width at half maximum (FWHM) of 5 
m, the peak positions were set at 10 m and 40 m, respectively, as shown 
in Fig. 22(c) and (e). The corresponding MC results are presented in 
Fig. 22(c)-(f). The results show that, for the same platform, the zgt/zd 
values are nearly identical under thin Chl layers with different peak 
depths. Since the increase in multiple scattering caused by the thin Chl 
layer is limited, the deviation of zgt/zd from the statistical model (Eq. 
(33)) remains within 10 %.

When the Chl layer becomes thicker (FWHM of 20 m), as shown in 
Fig. 22(g), the corresponding MC results are presented in Fig. 22(g) and 
(h). For the ICESat-2 platform, where the rs is relatively large, the 
thickened Chl layer significantly enhances multiple scattering, leading 
to a decrease in zgt/zd from 0.65 to 0.55—a reduction of approximately 
15.4 %. In contrast, for the airborne platform, under the same IOP dis
tribution, the smaller rs limits the reception of multiple-scattered pho
tons, resulting in a smaller decrease in zgt/zd from 0.85 to 0.75—a 
reduction of about 11.8 %. To further analysis the influence of vertical 
Chl distribution on zgt/zd, the vertically integrated chlorophyll concen
tration, Chlsum, was calculated as defined by the following equation: 

Chlsum =

∫ 100

0
Chl(z)dz. (51) 

The relationships between Chlsum and zgt/zd of ICESat-2 and Airborne 
0.35 km platforms are shown in Fig. 22(i) and 22(j), respectively. The 
results reveal that as Chlsum increases, the discrepancy between time- 
based signals and real-depth signals becomes more pronounced. Spe
cifically, 1/(zgt/zd) exhibits an approximately linear positive correlation 
with Chlsum, which corresponds to an inverse relationship with zgt/zd. 
Moreover, for platforms with larger rs, zgt/zd changes more rapidly with 
Chlsum.

In summary, the vertical distribution of IOPs affects the magnitude of 
the discrepancy between time-based signals and real depth signals. 
When the vertical distribution of IOPs is non-uniform, the values of zgt/ 
zd deviate from those derived by statistical models that assume vertically 
uniform IOPs, as expressed in Eq. (34). When stratification is pro
nounced, particularly with a significant increase in Chlsum, the discrep
ancy becomes especially notable. In addition, this effect becomes more 
significant for platforms with larger rs. Therefore, when applying sta
tistical models, the actual vertical distribution of IOPs should be 
considered, such as through retrieval from ocean lidar backscattered 
signals (Chen et al., 2021; Churnside and Donaghay, 2009). Further
more, even with the vertical distribution of IOPs available, quantita
tively assessing their impact on discrepancies remains challenging and 
requires a comprehensive consideration of the influencing factors listed 
in Table 1.

6. Conclusions

The detection depth of lidar has long been a subject of significant 
interest. In comparison to previous studies, this article is the first to 
propose that the subsurface signals measured by ocean lidar (i.e., the 
time-based profile) do not correspond to the actual profile of photons 
penetrating the water (i.e., the real depth profile). Specifically, because 
of multiple scattering during laser transmit in the water, the actual 
signal measured by lidar—recorded based on the arrival time of back
scattered photons, does not accurately represent the actual depth dis
tribution of photons. The work investigates the differences between 
these profiles across six typical platforms. These discrepancies are 
characterized by the ratio of the lidar attenuation coefficients (Kz/Kt) 
and the ratio of detection depths (zgt/zd) between the two profiles.

For Case-1 water, assuming a vertically homogeneous water column 
and neglecting sea surface fluctuations, and under the Petzold SPF, the 

Fig. 22. Analysis of the effect of vertical IOPs distribution on statistical models. 
Vertical Chl distributions: (a) uniform, (c) shallow thin scattering layer, (e) 
deep thin scattering layer, and (g) thick scattering layer. Corresponding MC 
signals for ICESat-2 are shown in (a), (c), (e), and (g), while MC signals of the 
Airborne 0.35 km platform are shown in (b), (d), (f), and (h), where solid lines 
represent time-based signals and dotted lines represent real depth signals. Re
lationships between the vertical integral of Chl and 1/(zgt/zd) for (i) ICESat-2 
and (j) the Airborne 0.35 km platform.

M. Shangguan et al.                                                                                                                                                                                                                            Remote Sensing of Environment 329 (2025) 114910 

14 



results show that, both b and rs jointly influence the differences between 
the two profiles. As b and rs increase, Kz/Kt rises, while zgt/zd decreases. 
These trends indicate that the differences between the two profiles 
intensify, highlighting a greater discrepancy between the time-based 
and real depth profiles. Based on the analysis of MC simulation data, 
this work establishes statistical models for Kz/Kt and zgt/zd as functions 
of b and rs, with a focus on Case 1 waters.

Specifically, for platforms with smaller rs, such as shipborne and 
airborne 0.35 km, when Chl ranges from 0.01 to 10 mg/m3, Kz/Kt values 
range from 1 and 3.5, while zgt/zd ranges from 1 to 0.3. For platforms 
with larger rs, such as airborne 3 km, ICESat-2, and CALIPSO, the dif
ferences between the time-based and real depth profiles are more pro
nounced. In these cases, Kz/Kt ranges from 1 to 4.5, and zgt/zd ranges 
from 1 to 0.25. This indicates that with larger Chl, the real depth rep
resents only 25 % of the depth estimated by the time-based depth 
profile.

For underwater lidar, due to its smaller rs, the time-based depth 
profile closely approximates the real depth profile when Chl is less than 
5 mg/m3 and under the Case-1 conditions. Among the six platforms 
analyzed, only the backscattered signal from underwater lidar accu
rately represents the real depth distribution. This finding also highlights 
the potential of underwater lidar for calibrating the lidar backscattered 
signals from other platforms. Overall, when using time-based depth 
profiles to evaluate other parameters or assess lidar penetration depth, 
the effects of multiple scattering must be accounted for.

In addition, sensitivity analysis of the statistical model reveals that 
Kz/Kt and zgt/zd are more sensitive to variations in water optical 
parameter b than to changes in rs. The study also investigates the effect 
of the absorption coefficient a on the statistical model in non-Case-1 
waters (i.e., when a and b are not solely determined by Chl). The re
sults show that when a increases while b remains constant, the photon 
penetration depth is limited, suppressing multiple scattering effects. As a 
result, both Kz/Kt and zgt/zd approach 1. In contrast, when a remains 
constant and b increases, enhanced multiple scattering leads to greater 
deviations of Kz/Kt and zgt/zd from 1, indicating a larger discrepancy 
between the time-based and real depth signals.

A systematic analysis of SPF effects reveals that SPFs with stronger 
forward scattering correspond to longer photon paths and deeper 
penetration depths. Under Chl of 0.10 mg/m3 and 1.00 mg/m3, the 
differences between Kz/Kt and zgt/zd and the statistical models in Eq. 
(33) and Eq. (34) remain below 10 % across different SPFs. Within the 
range of BP at fixed values, Chl = 0–10 mg/m3, and rs = 0–100 m, the 
errors in Kz/Kt and zgt/zd for both Petzold and HG1 remain within 10 %, 
demonstrating the applicability of the statistical models (Eq. (33) and 
Eq. (34)) under varying SPFs. Furthermore, analysis of sea surface 
roughness effects shows that while surface roughness affects the detec
ted depth, its influence on the ratio zgt/zd is minimal. Under sea condi
tions with wind speed U < 20 m/s, the differences between Kz/Kt, zgt/zd, 
and the statistical models (Eq. (33) and Eq. (34)) remain below 10 %.

Finally, the study examines the impact of vertically inhomogeneous 
IOPs. Results indicate that 1/(zgt/zd) exhibit a linear relationship with 
the vertical integral of Chl. As Chlsum increases, multiple scattering ef
fects become stronger, and the deviation from the statistical models (Eq. 
(34)) increases accordingly.

Moreover, there are areas for improvement in this work, including 
deriving more comprehensive statistical models that account for addi
tional influencing factors (such as the absorption coefficient a and the 
vertical distribution of IOPs), and experimentally validating the appli
cability of the derived statistical models. These aspects will be addressed 
in future research. Finally, this study enhances our understanding of 
ocean lidar backscattered signals and is significant for detecting seabed 
depth, terrain, and Chl in ocean lidar applications. Moreover, it estab
lishes an important foundation for improving the accuracy and precision 
of ocean parameter inversion from ocean lidars, thereby expanding the 
role of lidar in biogeochemical research.

CRediT authorship contribution statement

Mingjia Shangguan: Writing – review & editing, Writing – original 
draft, Visualization, Validation, Supervision, Software, Project admin
istration, Methodology, Investigation, Funding acquisition, Formal 
analysis, Data curation, Conceptualization. Yirui Guo: Writing – orig
inal draft, Visualization, Software, Methodology, Formal analysis, Data 
curation. Zhuoyang Liao: Software, Investigation, Formal analysis, 
Data curation. Zhongping Lee: Writing – review & editing, Writing – 
original draft, Methodology, Investigation, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the National Natural Science Foundation 
of China (Grant No. 42476184), the Natural Science Foundation of 
Xiamen, China (Grant No. 3502Z202473033), the National Key 
Research and Development Program of China (Grant No. 
2022YFB3901704), and the Fundamental Research Funds for the Cen
tral Universities (Grant No. 20720200107).

References

Abdallah, H., Bailly, J.S., Baghdadi, N.N., Saint-Geours, N., Fabre, F., 2012. Potential of 
space-borne LiDAR sensors for global bathymetry in coastal and inland waters. IEEE 
J. Selected Top. Appl.Earth Observations Remote Sensing. 6, 202–216.

Adkins, J.F., 2013. The role of deep ocean circulation in setting glacial climates. 
Paleoceanography 28, 539–561.

Amani, M., Moghimi, A., Mirmazloumi, S.M., Ranjgar, B., Ghorbanian, A., Ojaghi, S., 
Ebrahimy, H., et al., 2022. Ocean remote sensing techniques and applications: a 
review (part i). Water 14, 3400.

Bao, D., Wang, J., Hua, D., 2022. Investigation on inversion method of ocean salinity 
based on high spectra resolution lidar, eighth symposium on novel photoelectronic 
detection technology and applications. SPIE 2887–2897.

Barry, J.P., Widdicombe, S., Hall-Spencer, J.M., 2011. Effects of ocean acidification on 
marine biodiversity and ecosystem function. Ocean Acidification. 192–209.

Bissonnette, L.R., Roy, G., Roy, N., 2005. Multiple-scattering-based lidar retrieval: 
method and results of cloud probings. Appl. Opt. 44, 5565–5581.

Blondeau-Patissier, D., Gower, J.F., Dekker, A.G., Phinn, S.R., Brando, V.E., 2014. 
A review of ocean color remote sensing methods and statistical techniques for the 
detection, mapping and analysis of phytoplankton blooms in coastal and open 
oceans. Prog. Oceanogr. 123, 123–144.

Chen, P., Pan, D., 2019. Ocean optical profiling in South China Sea using airborne LiDAR. 
Remote Sens. Environ. 11, 1826.

Chen, P., Pan, D., Mao, Z., Liu, H., 2018. Semi-analytic Monte Carlo model for 
oceanographic lidar systems: lookup table method used for randomly choosing 
scattering angles. Appl. Sci. 9, 48.

Chen, G., Tang, J., Zhao, C., Wu, S., Yu, F., Ma, C., Xu, Y., et al., 2019a. Concept design of 
the “Guanlan” science mission: China’s novel contribution to space oceanography. 
Front. Mar. Sci. 6, 194.

Chen, P., Pan, D., Mao, Z., Liu, H., 2019b. Semi-analytic Monte Carlo radiative transfer 
model of laser propagation in inhomogeneous sea water within subsurface plankton 
layer. Opt. Laser Technol. 111, 1–5.

Chen, P., Jamet, C., Mao, Z., Pan, D., 2020. OLE: A novel oceanic LiDAR emulator. IEEE 
Trans. Geosci. Remote Sens. 59, 9730–9744.

Chen, P., Jamet, C., Zhang, Z., He, Y., Mao, Z., Pan, D., Wang, T., et al., 2021. Vertical 
distribution of subsurface phytoplankton layer in South China Sea using airborne 
lidar. Remote Sens. Environ. 263, 112567.

Chen, X., Zhou, L., Zhou, M., Shao, A., Ren, K., Chen, Q., Gu, G., et al., 2022. Infrared 
ocean image simulation algorithm based on Pierson–Moskowitz spectrum and 
bidirectional reflectance distribution function. Photonics. MDPI 166.

Chen, S., Chen, P., Ding, L., Pan, D., 2023. A New semi-analytical MC model for oceanic 
LIDAR inelastic signals. Remote Sens. Environ. 15, 684.

Churnside, J.H., Donaghay, P.L., 2009. Thin scattering layers observed by airborne lidar. 
ICES J. Mar. Sci. 66, 778–789.

M. Shangguan et al.                                                                                                                                                                                                                            Remote Sensing of Environment 329 (2025) 114910 

15 

http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0005
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0005
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0005
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0010
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0010
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0015
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0015
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0015
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0020
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0020
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0020
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0025
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0025
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0030
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0030
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0035
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0035
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0035
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0035
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0040
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0040
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0045
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0045
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0045
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0050
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0050
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0050
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0055
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0055
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0055
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0060
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0060
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0065
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0065
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0065
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0070
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0070
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0070
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0075
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0075
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0080
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0080


Churnside, J.H., Hunter, J.R., 1996. Laser remote sensing of epipelagic fishes, CIS 
selected papers: laser remote sensing of natural waters: from theory to practice. SPIE 
38–53.

Churnside, J.H., Shaw, J.A., 2020. Lidar remote sensing of the aquatic environment. 
Appl. Opt. 59, C92–C99.

Churnside, J.H., Marchbanks, R., Lee, J.H., Shaw, J.A., Weidemann, A., Donaghay, P., 
2012. Airborne lidar sensing of internal waves in a shallow fjord. Ocean Sens. 
Monitori. IV. SPIE 199–204.

Churnside, J.H., Wells, R., Boswell, K.M., Quinlan, J.A., Marchbanks, R.D., Mccarty, B.J., 
Sutton, T.T., 2017. Surveying the distribution and abundance of flying fishes and 
other epipelagics in the northern Gulf of Mexico using airborne lidar. Bull. Mar. Sci. 
93, 591–609.

Churnside, J.H., Hair, J.W., Hostetler, C.A., Scarino, A.J., 2018. Ocean backscatter 
profiling using high-spectral-resolution lidar and a perturbation retrieval. Remote 
Sens. Environ. 10, 2003.

Collister, B.L., Zimmerman, R.C., Sukenik, C.I., Hill, V.J., Balch, W.M., 2018. Remote 
sensing of optical characteristics and particle distributions of the upper ocean using 
shipboard lidar. Remote Sens. Environ. 215, 85–96.

Collister, B., Hair, J., Hostetler, C., Cook, A., Ibrahim, A., Boss, E., Scarino, A.J., et al., 
2024. Assessing the utility of high spectral resolution lidar for measuring particulate 
backscatter in the ocean and evaluating satellite ocean color retrievals. Remote Sens. 
Environ. 300, 113898.

D’alimonte, D., Liberti, G.L., Di Paolantonio, M., Kajiyama, T., Franco, N., Di 
Girolamo, P., Dionisi, D., 2024. In-water lidar simulations: the ALADIN ADM-Aeolus 
backscattered signal at 355 nm. Opt. Express 32, 22781–22803.

Eidam, E., Bisson, K., Wang, C., Walker, C., Gibbons, A., 2024. ICESat-2 and ocean 
particulates: a roadmap for calculating Kd from space-based lidar photon profiles. 
Remote Sens. Environ. 311, 114222.

Gao, W., Lv, Z., Dong, Y., He, W., 2006. A new approach to measure the ocean 
temperature using Brillouin lidar. Chin. Opt. Lett. 4, 428–431.

Gordon, H.R., 1982. Interpretation of airborne oceanic lidar: effects of multiple 
scattering. Appl. Opt. 21, 2996–3001.

Henyey, L.G., Greenstein, J.L., 1941. Diffuse radiation in the galaxy. Astrophys. J. 93, 
70–83.

Hickman, G.D., Hogg, J.E., 1969. Application of an airborne pulsed laser for near shore 
bathymetric measurements. Remote Sens. Environ. 1, 47–58.

Hogan, R.J., 2006. Fast approximate calculation of multiply scattered lidar returns. Appl. 
Opt. 45, 5984–5992.

Hu, C., 2009. A novel ocean color index to detect floating algae in the global oceans. 
Remote Sens. Environ. 113, 2118–2129.

Jamet, C., Ibrahim, A., Ahmad, Z., Angelini, F., Babin, M., Behrenfeld, M.J., Boss, E., 
et al., 2019. Going beyond standard ocean color observations: lidar and polarimetry. 
Front. Mar. Sci. 6, 251.

Joint, I., Groom, S.B., Ecology, 2000. Estimation of phytoplankton production from 
space: current status and future potential of satellite remote sensing. J. Exp. Mar. 
Biol. 250, 233–255.

Kopilevich, Y.I., Surkov, A., 2008. Mathematical modeling of the input signals of 
oceanological lidars. J. Opt. Technol. 75, 321–326.

Lee, Z., Tang, J., 2022. The two faces of “Case-1” water. J. Rem. Sens. 2022, 9767452.
Lee, Z.P., Du, K.P., Arnone, R., 2005. A model for the diffuse attenuation coefficient of 

downwelling irradiance. J. Geophys. Res. Oceans 110.
Lee, Z., Wei, J., Voss, K., Lewis, M., Bricaud, A., Huot, Y., 2015. Hyperspectral absorption 

coefficient of “pure” seawater in the range of 350–550 nm inverted from remote 
sensing reflectance. Appl. Opt. 54, 546–558.

Li, X., Zhao, C., Ma, Y., Liu, Z., 2014. Field experiments of multi-channel oceanographic 
fluorescence lidar for oil spill and chlorophyll-a detection. J. Ocean Univ. China 13, 
597–603.

Li, X., Chen, Y., Li, J., Jiang, J., Ni, Z., Liu, Z., 2016. Time-resolved fluorescence 
spectroscopy of oil spill detected by ocean lidar. In: Optical Measurement 
Technology and Instrumentation. SPIE, pp. 181–188.

Li, K., He, Y., Ma, J., Jiang, Z., Hou, C., Chen, W., Zhu, X., et al., 2020. A dual-wavelength 
ocean lidar for vertical profiling of oceanic backscatter and attenuation. Remote 
Sens. 12, 2844.

Li, C., Zhou, G., Zhang, D., 2024. Analysis of affecting factors for laser underwater 
transmission echo signals based on semi-analytic Monte Carlo. Int. J. Remote Sens. 
45, 7185–7211.

Liao, Y., Shangguan, M., Yang, Z., Lin, Z., Wang, Y., Li, S., 2023. GPU-accelerated Monte 
Carlo simulation for a single-photon underwater lidar. Remote Sens. 15, 5245.

Lin, Z., Shangguan, M., Cao, F., Yang, Z., Qiu, Y., Weng, Z., 2023. Underwater single- 
photon lidar equipped with high-sampling-rate Multi-Channel data acquisition 
system. Remote Sens. Environ. 15, 5216.

Liu, D., Xu, P., Zhou, Y., Chen, W., Han, B., Zhu, X., He, Y., et al., 2019a. Lidar remote 
sensing of seawater optical properties: experiment and Monte Carlo simulation. IEEE 
Trans. Geosci. Remote Sens. 57, 9489–9498.

Liu, Q., Cui, X., Chen, W., Liu, C., Bai, J., Zhang, Y., Zhou, Y., et al., 2019b. 
A semianalytic Monte Carlo radiative transfer model for polarized oceanic lidar: 
experiment-based comparisons and multiple scattering effects analyses. J. Quant. 
Spectrosc. Radiat. Transf. 237, 106638.

Liu, Q., Cui, X., Jamet, C., Zhu, X., Mao, Z., Chen, P., Bai, J., et al., 2020. A semianalytic 
Monte Carlo simulator for spaceborne oceanic lidar: framework and preliminary 
results. Remote Sens. 12, 2820.

Maccarone, A., Drummond, K., Mccarthy, A., Steinlehner, U.K., Tachella, J., Garcia, D.A., 
Pawlikowska, A., et al., 2023. Submerged single-photon LiDAR imaging sensor used 
for real-time 3D scene reconstruction in scattering underwater environments. Opt. 
Express 31, 16690–16708.

Magalhaes, J., Da Silva, J., Batista, M., Gostiaux, L., Gerkema, T., New, A., Jeans, D., 
2013. On the detectability of internal waves by an imaging lidar. Geophys. Res. Lett. 
40, 3429–3434.

Mason, R.P., Sheu, G.R., 2002. Role of the ocean in the global mercury cycle. Glob. 
Biogeochem. Cycles 16, 40-41-40-14. 

Mclean, J.W., Freeman, J.D., Walker, R.E., 1998. Beam spread function with time 
dispersion. Appl. Opt. 37, 4701–4711.

Mobley, C.D., Sundman, L.K., Boss, E., 2002. Phase function effects on oceanic light 
fields. Appl. Opt. 41, 1035–1050.

Moisan, J.R., Rousseaux, C.S., Stysley, P.R., Clarke, G.B., Poulios, D.P., 2024. Ocean 
temperature profiling lidar: analysis of technology and potential for Rapid Ocean 
observations. Remote Sens. 16, 1236.

Morel, A., 1974. Optical properties of pure water and pure seawater. In: Optical Aspects 
of Oceanography.

Morel, A., 1988. Optical modeling of the upper ocean in relation to its biogenous matter 
content (case I waters). J. Geophys. Res. Oceans 93, 10749–10768.

Mullen, L.J., Vieira, A.J., Herezfeld, P., Contarino, V.M., 1995. Application of RADAR 
technology to aerial LIDAR systems for enhancement of shallow underwater target 
detection. IEEE Transact. Microwave Theory Techniq. 43, 2370–2377.

Neumann, T.A., Martino, A.J., Markus, T., Bae, S., Bock, M.R., Brenner, A.C., Brunt, K.M., 
et al., 2019. The ice, cloud, and land elevation satellite–2 Mission: a global 
geolocated photon product derived from the advanced topographic laser altimeter 
system. Remote Sens. Environ. 233, 111325.

Parrish, C.E., Magruder, L.A., Neuenschwander, A.L., Forfinski-Sarkozi, N., Alonzo, M., 
Jasinski, M., 2019. Validation of ICESat-2 ATLAS bathymetry and analysis of 
ATLAS’s bathymetric mapping performance. Remote Sens. 11, 1634.

Petzold, T.J., 1972. Volume Scattering Functions for Selected Ocean Waters.
Pierson Jr., W.J., Moskowitz, L., 1964. A proposed spectral form for fully developed wind 

seas based on the similarity theory of SA Kitaigorodskii. J. Geophys. Res. 69, 
5181–5190.

Prieur, L., Sathyendranath, S., 1981. An optical classification of coastal and oceanic 
waters based on the specific spectral absorption curves of phytoplankton pigments, 
dissolved organic matter, and other particulate materials 1. Limnol. Oceanogr. 26, 
671–689.

Rani, M., Masroor, M., Kumar, P., 2021. Remote sensing of ocean and coastal 
environment–overview. Remote Sens. Ocean Coastal Environ. 1–15.

Regnier, P., Resplandy, L., Najjar, R.G., Ciais, P., 2022. The land-to-ocean loops of the 
global carbon cycle. Nature 603, 401–410.

Samberg, A., 2005. Advanced oil pollution detection using an airborne hyperspectral 
lidar technology, laser radar technology and applications X. SPIE 308–317.

Shangguan, M., Weng, Z., Lin, Z., Lee, Z., Shangguan, M., Yang, Z., Sun, J., et al., 2023a. 
Day and night continuous high-resolution shallow-water depth detection with single- 
photon underwater lidar. Opt. Express 31, 43950–43962.

Shangguan, M., Yang, Z., Lin, Z., Lee, Z., Xia, H., Weng, Z., 2023b. Compact long-range 
single-photon underwater lidar with high spatial-temporal resolution. IEEE 
Geoscience Remote Sensing Letters. 20, 1–5.

Shangguan, M., Yang, Z., Shangguan, M., Lin, Z., Liao, Z., Guo, Y., Liu, C., 2023c. Remote 
sensing oil in water with an all-fiber underwater single-photon Raman lidar. Appl. 
Opt. 62, 5301–5305.

Shangguan, M., Guo, Y., Liao, Z., 2024a. Shipborne single-photon fluorescence oceanic 
lidar: instrumentation and inversion. Opt. Express 32, 10204–10218.

Shangguan, M., Liang, Y., Li, Y., Mo, Y., 2024b. Time-multiplexing single-photon 
imaging lidar with single-pixel detector. Appl. Phys. Lett. 124.

Shangguan, M., Liao, Z., Guo, Y., 2024c. Simultaneous sensing profiles of beam 
attenuation coefficient and volume scattering function at 180◦ using a single-photon 
underwater elastic-Raman lidar. Opt. Express 32, 8189–8204.

Shangguan, M., Yang, Z., Lin, Z., Weng, Z., Sun, J., 2024d. Full-day profiling of a beam 
attenuation coefficient using a single-photon underwater lidar with a large dynamic 
measurement range. Opt. Lett. 49, 626–629.

Shen, X., Kong, W., Chen, P., Chen, T., Huang, G., Shu, R., 2022. A shipborne photon- 
counting lidar for depth-resolved ocean observation. Remote Sens. 14, 3351.

Spence, D.J., Neimann, B.R., Pask, H.M., 2023. Monte Carlo modelling for elastic and 
Raman signals in oceanic LiDAR. Opt. Express 31, 12339–12348.

Spence, D., Kitzler, O., Taylor, C., Curtis, S., Neimann, B., Dawes, J., Downes, J., et al., 
2024. Depth-resolved water temperature measurements using Raman LiDAR, 63, 
pp. 4366–4371.

Steinvall, O.K., Koppari, K.R., Karlsson, U.C., 1993. Experimental evaluation of an 
airborne depth-sounding lidar. Opt. Eng. 32, 1307–1321.

Trees, C.C., 2014. Beyond bathymetry: probing the ocean subsurface using ship-based 
lidars. Ocean Sensing and Monitoring VI. SPIE 188–197.

Walker, R.E., Mclean, J.W., 1999. Lidar equations for turbid media with pulse stretching. 
Appl. Opt. 38, 2384–2397.

Wang, Y., Zhang, J., Zheng, Y., Xu, Y., Xu, J., Jiao, J., Su, Y., et al., 2023. Brillouin 
scattering spectrum for liquid detection and applications in oceanography. Opto- 
Electron. Adv. 6, 220016.

Winker, D., Hostetler, C., Hunt, W., 2004. Caliop: the Calipso lidar, 22nd Internation 
laser radar conference (ILRC 2004), p. 941.

Wu, D., Chen, P., Kong, W., Pan, D., 2024. A novel semi-analytical method for Modeling 
polarized oceanic profiling lidar multiple scattering signals. IEEE Trans. Geosci. 
Remote Sens. 62, 3369099.

Yang, Y., Shangguan, M., 2023. Inversion of seawater temperature, salinity, and sound 
velocity based on Brillouin lidar. J. Mod. Opt. 70, 470–482.

Yu, Y., Ma, Y., Li, H., Huang, J., Fang, Y., Liang, K., Zhou, B., 2014. Simulation of 
simultaneously obtaining ocean temperature and salinity using dual-wavelength 
Brillouin lidar. Laser Phys. Lett. 11, 036001.

M. Shangguan et al.                                                                                                                                                                                                                            Remote Sensing of Environment 329 (2025) 114910 

16 

http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0085
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0085
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0085
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0090
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0090
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0095
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0095
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0095
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0100
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0100
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0100
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0100
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0105
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0105
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0105
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0110
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0110
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0110
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0115
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0115
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0115
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0115
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0120
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0120
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0120
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0125
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0125
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0125
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0130
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0130
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0135
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0135
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0140
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0140
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0145
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0145
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0150
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0150
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0155
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0155
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0160
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0160
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0160
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0165
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0165
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0165
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0170
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0170
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0175
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0180
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0180
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0185
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0185
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0185
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0190
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0190
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0190
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0195
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0195
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0195
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0200
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0200
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0200
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0205
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0205
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0205
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0210
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0210
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0215
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0215
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0215
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0220
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0220
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0220
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0225
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0225
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0225
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0225
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0230
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0230
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0230
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0235
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0235
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0235
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0235
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0240
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0240
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0240
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0245
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0245
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0250
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0250
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0255
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0255
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0260
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0260
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0260
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0265
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0265
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0270
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0270
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0275
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0275
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0275
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0280
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0280
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0280
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0280
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0285
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0285
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0285
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0290
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0295
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0295
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0295
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0300
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0300
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0300
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0300
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0305
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0305
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0310
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0310
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0315
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0315
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0320
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0320
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0320
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0325
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0325
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0325
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0330
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0330
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0330
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0335
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0335
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0340
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0340
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0345
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0345
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0345
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0350
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0350
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0350
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0355
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0355
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0360
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0360
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0365
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0365
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0365
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0370
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0370
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0375
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0375
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0380
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0380
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0385
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0385
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0385
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0390
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0390
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0395
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0395
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0395
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0400
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0400
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0405
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0405
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0405


Yuan, D., Mao, Z., Chen, P., He, Y., Pan, D., 2022. Remote sensing of seawater optical 
properties and the subsurface phytoplankton layer in coastal waters using an 
airborne multiwavelength polarimetric ocean lidar. Opt. Express 30, 29564–29583.

Zege, E.P., Katsev, I.L., Prikhach, A.S., Ludbrook, G.D., Bruscaglioni, P., 2003. Analytical 
and computer modeling of oceanic lidar performance, 12th international workshop 
on lidar multiple scattering experiments. SPIE 189–199.

Zhang, X., Hu, L., 2009. Scattering by pure seawater at high salinity. Opt. Express 17, 
12685–12691.

Zhou, Y., Chen, W., Cui, X., Malinka, A., Liu, Q., Han, B., Wang, X., et al., 2019. 
Validation of the analytical model of oceanic lidar returns: comparisons with Monte 
Carlo simulations and experimental results. Remote Sens. 11, 1870.

Zhou, G., Li, C., Zhang, D., Liu, D., Zhou, X., Zhan, J., 2021. Overview of underwater 
transmission characteristics of oceanic LiDAR. IEEE J. Selected Top. Applied Earth 
Observat. 14, 8144–8159.

Zhou, Y., Chen, Y., Zhao, H., Jamet, C., Dionisi, D., Chami, M., Di Girolamo, P., et al., 
2022. Shipborne oceanic high-spectral-resolution lidar for accurate estimation of 
seawater depth-resolved optical properties. Light: Sci. Applicat. 11, 261.

M. Shangguan et al.                                                                                                                                                                                                                            Remote Sensing of Environment 329 (2025) 114910 

17 

http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0410
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0410
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0410
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0415
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0415
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0415
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0420
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0420
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0425
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0425
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0425
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0430
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0430
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0430
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0435
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0435
http://refhub.elsevier.com/S0034-4257(25)00314-1/rf0435

	Discrepancies between time-based and real depth profiles in ocean lidar due to multiple scattering
	1 Introduction
	2 Monte Carlo simulation
	2.1 Semi-analytic Monte Carlo simulation
	2.2 Influencing factors analysis
	2.3 Bio-optical models
	2.4 Key Parameters of Lidar Systems

	3 Monte Carlo Results
	4 Analysis of Discrepancies
	4.1 Kz/Kt
	4.2 zgt/zd
	4.3 Analysis of the statistical models

	5 V. Discussion of the Influence of Other Parameters
	5.1 Effect of Absorption Coefficient
	5.2 Effect of scattering phase function
	5.3 Effect of sea surface roughness
	5.4 Effects of depth-dependent IOP variations

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	datalink3
	Acknowledgments
	References


