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Abstract The recently launched Surface Water and Ocean Topography (SWOT) satellite provides an
unprecedented two‐dimensional measurement of the sea surface height (SSH) down to the oceanic
submesoscale of 1–10 km. Using this measurement to make substantial progress requires the separation of
vortical and wavy motions owing to their contrasting ramifications for the energy transfer; however, the
separation is extremely challenging due to the long‐repeat period of the SWOT satellite. To achieve a practical
separation, here we adopt the linear normal‐mode initialization technique used in numerical weather prediction.
This separation method requires velocity data in addition to SSH. With concurrent measurements of SSH and
velocity respectively from SWOT and the offshore high‐frequency radar (HFR) system, this separation method
proves valid and useful. The present study is expected to stimulate new discoveries associated with oceanic
multiscale interactions and energy transfers.

Plain Language Summary The Surface Water and Ocean Topography (SWOT) satellite measures a
wide area of the sea surface height. These measurements contain two types of oceanic motions. One is the
vortical motion generally including the mesoscale flow and submesoscale processes. The other is the wavy
motion mainly incorporating the (internal) inertial‐gravity wave. In SWOT measurements, one type of motion
could hide the other. For example, the wavy (vortical) signal might become invisible in the oceanic region
characterized by the intense vortical (wavy) motion. This raises the need to separate the two types of motions
from SWOT measurements, which remains a major challenge due to their overlap in horizontal scales. To this
end, this study uses the initialization technique in numerical weather prediction and realizes a practical vortical‐
wavy separation of SWOTmeasurements via additionally introducing concurrent sea surface velocity data from
the land‐based HFR system. The applications highlight the validity and usefulness of this separation approach.

1. Introduction
The Surface Water and Ocean Topography (SWOT) satellite, launched in December 2022, provides the first two‐
dimensional measurement of sea surface height (SSH) with an unprecedented spatial resolution of O(10 km) (Fu
et al., 2024). Compared with the conventional nadir‐looking altimetry, the SWOT satellite has the unique
advantage of accurately measuring barotropic tides in complex coastal regions (Hart‐Davis et al., 2024), internal
gravity waves (Archer et al., 2025; Qiu et al., 2024) and submesoscale processes (Archer et al., 2025; Zhang
et al., 2024). As a result, the measured SSH by SWOT contains combined contributions of vortical (including
large‐scale circulations, mesoscale eddies and submesoscale currents) and wavy (including barotropic tides and
internal gravity waves) motions. It is of necessity to separate vortical and wavy motions due to their contrasting
impact on oceanic energy transfer and turbulent mixing (Klein et al., 2019); a proper removal of wavy signals is
also necessary to achieve an accurate estimation of geostrophic velocities from the SWOT measured SSH
(Morrow et al., 2023). However, such a separation is very challenging owing to the long‐repeat period (i.e., 1 day
during the CalVal phase and 21 days during the science phase) of the SWOT satellite which inadequately captures
the temporal evolution of submesoscale currents and internal gravity waves (Klein et al., 2019; Le Guillou
et al., 2021; Morrow et al., 2019).

Several attempts have been made to address this challenge. One is to exploit the temporal aliasing caused by the
long‐repeat period to recover coherent internal tides. This approach has long been applied to conventional, nadir‐
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looking satellite altimetric data (Carrère et al., 2004; Dushaw, 2015; Kantha & Tierney, 1997; Ray &
Mitchum, 1996; Ray & Zaron, 2016; Zaron, 2019; Zhao, 2017; Zhao et al., 2016) and was recently applied to
SWOT measurements (Tchilibou et al., 2024). However, this approach does not apply to the extraction of
incoherent internal tides and internal gravity waves at non‐tidal frequencies. Another approach, which only works
for the summertime, employs the spatial filtering to separate vortical and wavy SSH with the cutoff chosen as the
slope discontinuity of SSH wavenumber spectra (H. S. Torres et al., 2019). An additional approach is through
assimilating SWOT measured SSH into the numerical ocean model, the output of which is then used to separate
vortical and wavy motions. Le Guillou et al. (2021) and Yadidya et al. (2024) provide preliminary application
examples. More advanced techniques are required to tackle the difficulty of directly assimilating SWOT SSH
which has multiscale characteristics. The machine learning also proves useful (Gao et al., 2024; Lguensat
et al., 2020; H. Wang et al., 2022); nevertheless, its applicability to SWOT measurements remains unknown.

Here we hightlight that the initialization technique in numerical weather prediction can inspire a more general and
accurate vortical‐wavy separation that is applicable to SWOT measurements. In the history of weather prediction
using primitive equations models, there exists a long‐standing effort to reduce or arrest the growth of
meteorologically‐unimportant internal gravity waves via defining a balance between the initial pressure and
velocity fields (e.g., Coiffier, 2011). An adequately successful attempt is the linear normal‐mode initialization
(Dickinson & Williamson, 1972; Williamson, 1976). Building on the fact that vortical and wavy modes are
eigenfunctions of the linearized governing equations, this initialization filters out internal gravity waves via
directly setting the wavy mode in the initial fields to be zero. This filtering is exactly consistent with the
fundamental property that wavy motions do not induce any potential vorticity (PV) anomaly relative to the rest
state (Pedlosky, 2003; Zeitlin, 2018). For this reason, this initialization technique is called the PV‐based method
in this study. Recently, C. Wang et al. (2025) formulated the PV‐based method in the rotating shallow water
system and made a proof‐of‐concept application to a concurrent snapshot (i.e.,∼5° × 5° box) of sea surface height
and velocity (SSV) extracted from a high‐resolution numerical simulation. They show that the PV‐based method
is capable of achieving a satisfactory vortical‐wavy separation in contrasting dynamical regimes (i.e., the South
China Sea with strong internal tides but weak eddy activities and the Kuroshio Extension with strong eddy ac-
tivities but weak internal tides). As a follow‐up, this study applies the PV‐based method to SWOT measurements
of the real ocean.

For realistic application, the SSV measurement concurrent with SWOT SSH is required. At the present time, this
requirement is feasible for many parts of the coastal oceans where SSV from the high‐frequency radar (HFR)
system is available on SWOT swaths. The HFR data have shown an encouraging capability in capturing sub-
mesoscale processes (Chavanne et al., 2010; Lai et al., 2017; Payandeh et al., 2023; Soh & Kim, 2018; Yoo
et al., 2018) and internal tides (Kachelein et al., 2024; Lee & Kim, 2022). Here we choose the offshore region of
California, which is well supported with a HFR network, to test the PV‐based method. We will proceed in two
steps. Firstly, SSH and SSV from a realistic tide‐resolving and submesoscale‐admiting numerical simulation (i.e.,
MITgcm LLC4320) are regridded onto the swath‐style grid of SWOT to mimic the real‐ocean observations; then
the PV‐based method is applied to the regridded SSH and SSV and is validated against the baseline separation that
will be described in Section 2.2. Secondly, the SWOTmeasured SSH and HFR measured SSV are remapped onto
the SWOT grid and then vortical and wavy motions are separated.

2. Materials and Methods
2.1. SSH and SSV Data

The SWOT satellite observes SSH over two parallel 50‐km swaths interleaved with a 20‐km nadir gap. The
horizontal resolution of the SWOT SSH product, namely SWOT Level‐3 (L3) SSH Expert, is 2 km over each
swath. The HFR system routinely provides a two‐dimensional measurement of SSV with a horizontal resolution
of 6 km. In this study, we select an oceanic region (i.e., 35°–40°N, 235°–240°E) offshore of California since this
region is well covered by the HFR system, making it easy to match SWOT observations. For illustrative con-
venience, we focus on a pair of SWOT SSH (Figure S1a in Supporting Information S1) and HFR SSV (Figures
S1b–S1c in Supporting Information S1) at∼2023‐09‐11 17:30:00. Figures S1d–S1f in Supporting Information S1
show SSH and SSV which are remapped onto SWOT swaths.

Prior to the application of the PV‐based method to the real‐ocean observations, we employ modeled SSH and SSV
from the MITgcm LLC4320 simulation as a testbed. This global simulation has a horizontal grid spacing of
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∼2 km and outputs hourly snapshot variables from September 2011 to November 2012. In this study, we use the
hourly model output offshore of California during September 2012. Figures S2a–S2c in Supporting Informa-
tion S1 display the simulated SSH and SSV at 2012‐09‐11 17:30:00; SSH and SSV at the same time, which are
remapped onto SWOT swaths, are shown in Figures S2d–S2f in Supporting Information S1. More details about
the LLC4320 simulation can be found in Arbic et al. (2018).

2.2. The PV‐Based Separation

In the following, we concisely describe the mathematical formulations of the PV‐based method for a rotating
shallow water system; for further details, we refer to Zeitlin (2018) and C. Wang et al. (2025). That is,

∇2 (
gη
f0
) −

1
L2d

gη
f0
= ζ −

1
L2d

gη
f0

(1)

f0 × u = − g∇η (2)

ηʹ = η − η (3)

uʹ = u − u (4)

where the overbar represents the vortical variable, the prime the wavy variable, u = (u,v) SSV, η SSH,
ζ = ∂v

∂x −
∂u
∂y the vertical component of the relative vorticity (hereafter referred simply to as the relative vorticity),

g the acceleration due to gravity, f0 = (0,0, f0) with f0 being the Coriolis parameter and Ld the deformation
radius. It is emphasized that we adopt a pragmatic manner to define Ld as the effective deformation radius (Figure
S3 in Supporting Information S1) which considers contributions of all vertical modes; detailed introductions to
the determination of Ld can be found in Section S1 of Supporting Information S1. Due to the peculiar domain
geometry of SWOT data, the procedures for solving Equations 1–4 in the present study are quite different from
those in C. Wang et al. (2025); see Section S1 in Supporting Information S1 for details. We also use the
decomposition approach of C.Wang et al. (2023a) to obtain baseline vortical and wavy variables for the LLC4320
simulation and validate the PV‐based separation results against those baseline truth; more information about the
baseline separation is given in Section S2 in Supporting Information S1 where Lagrangian filtering (Shakespeare
et al., 2021) is additionally introduced to demonstrate that the decomposition approach of C. Wang et al. (2023a)
well serves as the baseline.

3. Results
3.1. Decomposed Variables Using the Numerical Model Data

In this section, we apply the PV‐based method to the LLC4320 simulation. The separated wavy SSH, zonal
velocity and meridional velocity are shown in Figures 1a–1c, respectively. Due to the strong incoherence of
baroclinic tides offshore of California (Kachelein et al., 2024), wavy SSH and SSV are dominated by irregular
spatial patterns. Those irregular features essentially follow the dispersion relation curves of internal gravity waves
and tidal frequencies in the frequency‐wavenumber spectra (Figures S4a and S4d in Supporting Information S1)
which are calculated after the PV‐based method is applied to each snapshot of SSH and SSV. Compared with
wavy SSH and SSV, the irregular patterns in wavy horizontal divergence (Figure 2a) and wavy relative vorticity
(Figure 2b) are characterized by much finer horizontal scales since the spatial differentiation tends to amplify the
contributions from high‐wavenumber features (C. Wang et al., 2023b). Constrained by the relative vorticity
equation in spectral space (i.e., Equation 5 below) of internal gravity waves whose frequency is larger than f0, the
magnitude of wavy horizontal divergence (solid red line in Figure 3) is generally larger than that of wavy relative
vorticity (solid blue line) and such magnitude difference generally becomes more pronounced with the increasing
wavenumber.

iωζ̂ʹ + f0χ̂ʹ = 0 (5)
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Figure 1. The decomposed sea surface height (a, d), zonal velocity (b, e) and meridional velocity (c, f) based on the LLC4320 simulation offshore of California. The
upper (a–c) and lower (d–f) panels represent wavy and vortical motions, respectively.
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Figure 2. The decomposed relative vorticity (a, c, d, f) and horizontal divergence (b, e) based on LLC4320 (a–c) and Surface Water and Ocean Topography (SWOT)/
high‐frequency radar (HFR) (d–f) offshore of California. The first two columns (a, b, d, e) and third (c, f) column represent wavy and vortical motions, respectively.
Note the different color scales between LLC4320 and SWOT/HFR.
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where the caret (^) denotes Fourier‐transformed variables, χ is the horizontal divergence and ω2 = c2eK
2 + f 20

withK representing the isotropic wavenumber and ce the phase speed corresponding to Ld defined in Section S1 of
Supporting Information S1. Using Equation 5, we can derive wavy horizontal divergence from wavy relative
vorticity; it is found that although there exists a magnitude difference between the target (solid red line in
Figure 3) and derived (solid magenta line) divergence wavenumber spectra, variations of the spectra with the
increasing wavenumber seem to be quite consistent. This tends to suggest the dynamical consistency among wavy
vorticity and divergence. The consistency is re‐confirmed by the joint probability distribution function patterns of
ζʹ − χʹ in Figure S5a in Supporting Information S1 and ζʹ − σʹ (σ is the strain) in Figure S5b in Supporting
Information S1 (Xiao et al., 2023). To further quantitatively assess how well the PV‐based method works, we
validate the separated wavy variables against the baseline truth. For wavy SSH (SSV), the root mean square errors
(Figures S6a–S6c in Supporting Information S1) between the PV‐based and baseline results are generally smaller
than 0.008 m (0.06 m/s) over the entire domain and negligible compared with its typical magnitude (i.e., 0.04 for
wavy SSH and 0.4 for wavy SSV in Figure 1a–1c); the correlation coefficients (Figures S7a–S7c in Supporting
Information S1) are above 0.8 over almost the whole study region. The small root mean square errors and high
correlations suggest that wavymotions derived from the PV‐based method agree well with the baseline in terms of
the magnitude, spatial pattern and temporal evolution.

The vortical SSH, zonal velocity and meridional velocity are displayed in Figure 1d–1f, respectively. Both
mesoscale and submesoscale features are revealed. Submesoscale vorticity filaments are particularly clear in
Figure 2c. The joint probability distribution function pattern of ζ − σ in Figure S5c in Supporting Information S1
is representative of vortical motions (Rocha et al., 2016; Shcherbina et al., 2013; Xiao et al., 2023). The horizontal

Figure 3. The isotropic wavenumber spectra for wavy and vortical motions. The solid and dashed lines are based on LLC4320 and Surface Water and Ocean
Topography/high‐frequency radar, respectively. The blue, red and black lines show wavy relative vorticity, wavy horizontal divergence and vortical relative vorticity,
respectively. The magenta lines represent wavy horizontal divergence derived fromwavy relative vorticity. Note that the plot is cut at 10− 2 and 10− 1 cpkm to remove the
artificial effect of zero‐filling.
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divergence vanishes (not shown) since vortical SSH and SSV are in geostrophic balance by construction. The
wavenumber‐frequency spectra in Figures S4b–S4e in Supporting Information S1 show that vortical motions are
mostly sub‐inertial. Although there exists some spectral energy leakage at the tidal and near‐inertial frequencies,
the extraction of vortical motions is at least satisfactory (Figures S4c–S4f in Supporting Information S1). The
quantitative comparision with the baseline vortical variables, in terms of small root mean square errors in Figures
S6d–S6f in Supporting Information S1 and high correlation in Figures S7d–S7f in Supporting Information S1,
demonstrates a favorable agreement.

Overall, the PV‐based method proves satisfactorily applicable to pseudo‐SWOT data based on the LLC4320
simulation. In the next section, we apply this separation method to the real‐ocean observational data.

3.2. Decomposed Variables Using SWOT/HFR Measurements

Figure 4 shows vortical and wavy SSH and SSV separated from SWOT/HFR measurements. The corresponding
horizontal divergence and relative vorticity are shown in Figure 2d–2f. The irregular spatial distributions of wavy
variables (Figures 2d and 2e and 4a–4c) indicate the dominant contribution of incoherent baroclinic tides offshore
of California, which has been recently confirmed by HFR data (Kachelein et al., 2024). As explained in Sec-
tion 3.1, the wave dynamics requires that wavy relative vorticity (Figure 2d) is dominated by a larger horizontal
scale but a smaller magnitude than wavy horizontal divergence (Figure 2e); again, this magnitude distinction
becomes clearer as the wavenumber increases, as shown by the dashed blue and red lines in Figure 3. The spectra
of the derived wavy horizontal divergence (dashed magenta line in Figure 3) expectedly follow that of the target
one (dashed red line). It is interesting to note that compared with SWOT/HFR, the LLC4320 simulation well
reproduces the spectral energy level of wavy horizontal divergence but underestimates that of wavy relative
vorticity. These results appear to agree with the previous finding that LLC4320 lies close to McLane profiling
observations in the supertidal band (Savage et al., 2017) which is more dominated by horizontal divergence than
relative vorticity. For vortical variables (Figures 2f and 4d–4f), abundant mesoscale features in geostrophic
balance and without horizontal divergence are revealed. The submesoscale processes with high relative vorticity
are also identifiable, especially in Figure 2f. However, filamentary structures present in LLC4320 (i.e., Figure 2c)
are lacking in SWOT/HFR (i.e., Figure 2f); there are many potential reasons but one could be the spatial reso-
lution contrast (i.e., 6 vs. 2 km) between the HFR and LLC4320 data. Otherwise, LLC4320 and SWOT/HFR
vortical relative vorticity fields have the same energy across all scales as shown by solid and dashed black lines in
Figure 3; this highlights the usefulness of the high‐resolution simulation in interpreting SWOT/HFR data.
Comparatively, vortical and wavy variables in this oceanic region have the same magnitude. As a result, wavy
SSH could distort or overwhelm vortical SSH, re‐emphasizing the importance of removing the wavy signal prior
to utilizing SWOT SSH for (sub)mesoscale‐related studies. Therefore, it is informative to compare the vortical
SSH extracted from SWOT data with the nadir‐looking altimetric SSH (i.e., AVISO SSH). For comparison, we
use the nearest‐neighbor interpolation to remap AVISO SSH onto the finer grid of SWOT vortical SSH since this
interpolation method does not introduce artificial submesoscale features. It is found that after the removal of the
wavy signal, the general pattern of SWOT vortical SSH (Figure 4d or Figure S8a in Supporting Information S1)
qualitatively agrees with that of AVISO SSH (Figure S8b in Supporting Information S1). However, their
quantitative difference reaches a non‐negligible magnitude of ∼0.04 m (Figure S8c in Supporting Informa-
tion S1); importantly, the difference contains both mesoscale (i.e., pixel scale in Figure S8c in Supporting In-
formation S1) and submesoscale (i.e., sub‐pixel scale in Figure S8c in Supporting Information S1) features. This
indicates that the SWOT satellite not only improves the accuracy of observing mesoscale eddies but also achieves
the intention of capturing submesocale currents.

4. Summary and Discussion
Realizing the concurrent availability of HFR SSV and SWOT SSH, we use a PV‐based method to address the
challenge of separating vortical and wavy motions intermingled in those observations. This PV‐based separation
is exactly the linear normal mode initialization which has played an important role in the history of numerical
weather prediction. When applied to concurrent SSH and SSV extracted from the LLC4320 simulation and
remapped onto SWOT swaths offshore of California, the PV‐based method shows good performance compared
with the baseline truth. The performance supports the utility of this method to swath‐style data and motivates its
application to real‐ocean observations. With SSH and SSV respectively from the SWOT satellite and the HFR
system offshore of California, the separated results confirm the capability of the SWOT satellite to capture
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Figure 4. Same as Figure 1 but based on Surface Water and Ocean Topography/high‐frequency radar measurements.
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submesoscale processes, highlight the necessity of removing the wavy signal before conducting (sub)mesoscale‐
oriented studies and reveal the general pattern agreement between vortical SSH observed by SWOT and SSH by
the conventional satellite altimeter.

Since separating vortical and wavy motions in SWOT measurements is a challenging difficulty, we regard this
study as a first‐step attempt towards a more accurate separation; therefore, it is necessary to clearly discuss the
limitations of the present study and potential improvements in future studies.

Firstly, the present study particularly applies to the regime where (a) Rossby and Froude numbers are small and
(b) vortical and wavymotions have comparable magnitude. Beyond that parameter regime, the theoretical basis of
this study that wavy motions carry no PV anomaly breaks down. For example, the stronger internal gravity waves
can non‐negligibly modulate the PV anomaly of the weaker vortical motions (Bühler & McIntyre, 1998; Rocha
et al., 2018; Wagner & Young, 2015; Xie & Vanneste, 2015). The gravity‐wave‐induced forcing can even
resonantly trigger Rossby waves (Bühler & McIntyre, 1998). More complicated initialization techniques, such as
nonlinear normal mode initialization (Baer & Tribbia, 1977; Chouksey et al., 2018; Machenhauer, 1977), digital
filtering (Lynch et al., 1997; Lynch & Huang, 1992), quasi‐geostrophic theory with a next‐order correction (Dù &
Smith, 2024; Spall & McWilliams, 1992; Vallis, 1996; Warn et al., 1995), optimal PV balance (Viúdez &
Dritschel, 2004) and optimal balance (Chouksey et al., 2023; Masur & Oliver, 2020; Rosenau et al., 2025), have
the potential to consider most/all parameter regimes and merit a future pursuit.

Secondly, that the PV anomaly is zero is a necessary rather than sufficient condition for wavy motions. Typical
examples of PV‐free vortical motions include the surface quasi‐geostrophic current in particular (Held
et al., 1995; Guillaume Lapeyre, 2017) and the Eady‐like flow in general (e.g., Callies et al., 2015; Molemaker
et al., 2010). As can be seen in Section 2.2, Equation 1 is exactly the interior quasi‐geostrophic theory; conse-
quently, vortical motions driven by the surface and/or bottom buoyancy anomaly might be misclassified into the
wavy category. However, this misclassification might not pose a serious problem in the present study region with
low mesoscale kinetic energies since buoyancy‐driven vortical motions are most active in oceanic regions with
intense mesoscale activities (Gonzalez‐Haro & Isern‐Fontanet, 2012, 2014). To consider the boundary buoyancy
effects and thus improve the vortical‐wavy separation, it is necessary to additionally invoke the surface quasi‐
geostrophic theory which involves a third variable, namely sea surface density.

Thirdly, the main drawback of the PV‐based method might be to assume that all vortical motions are in
geostrophic balance and thus do not have horizontal divergence. This assumption can be problematic for sub-
mesoscale currents (Archer et al., 2025; Tranchant et al., 2025) and even for∼100‐km rings (Penven et al., 2014).
The abovementioned advanced initialization techniques, which do not a priori assume the geostrophic balance,
are capable of addressing this drawback.

Fourthly, given that our main goal is to test the usefulness of the PV‐based method, we assume a rotating shallow
water system with an effective deformation radius to simplify the challenging vortical‐wavy separation. Com-
bined with well‐established subsurface reconstruction methods for (sub)mesoscale processes (Klein et al., 2009;
LaCasce &Mahadevan, 2006; Lapeyre & Klein, 2006; Liu et al., 2019; Qiu et al., 2016; J. Wang et al., 2013) and
internal gravity waves (Ray & Cartwright, 2001; Zhao, 2017; Zhao et al., 2016), the present study easily extends
to the continuously stratified system.

Fifthly, we use the decomposition approach of C. Wang et al. (2023a) as the baseline. As mentioned in C. Wang
et al. (2023a), this approach has some limitations. For example, the Gibbs phenomenon occurs due to the spectral
cutoff characteristic of the 0/1‐type filter; that vortical and wavy motions are mutually exclusive in spectral space
is assumed. How these limitations affect the validation of the vortical‐wavy separation in the present study re-
mains unknown. We plan to pursue this in the future.

Finally, HFR data usually suffer from observational errors (Clary et al., 2019) whose adverse effects on the
physical processes of interest remain to be explored in detail. In future studies, a realistic tide‐resolving and
submesoscale‐admitting simulation simultaneous with SWOT and HFR observations could be made in order to
quantify to what extent measurement limitations or inaccuracies contaminate the vortical‐wavy separation.

Overall, this study suggests a promising research direction involving SWOT/HFR measurements. At the present
time, the HFR system provides SSV observations over the coastal ocean; in the future, the Doppler scatterometric
satellite will measure a wide swath of SSV over the global ocean (Du et al., 2021; H. Torres et al., 2023).
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Hopefully, this study would help understand multiscale ocean dynamics invigorated by those wide‐swath satellite
missions.

Data Availability Statement
The SWOT Level‐3 SSH Expert product is available at https://doi.org/10.24400/527896/A01‐2023.018 (AVISO/
DUACS, 2024). The high‐frequency radar SSV data can be downloaded at https://doi.org/10.48670/moi‐00041
(E.U. Copernicus Marine Service Information, 2024a). The nadir‐looking satellite altimeter data are available
from https://doi.org/10.48670/moi‐00148 (E.U. Copernicus Marine Service Information, 2024b). The model
output of the LLC4320 simulation can be accessed from https://data.nas.nasa.gov/ecco/data.php?dir=/eccodata/
llc_4320 (ECCO Consortium, 2025). The PV‐based separation code adapted for SWOT and HFR data is
accessible at https://doi.org/10.5281/zenodo.14088311 (C. Wang, 2024).
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