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Scientific Significance Statement

The (sub)tropical western North Pacific has been hypothesized to be a region of intense nitrogen (N2) fixation. However, the fixa-
tion rate, flux, distribution patterns, and environmental controls are poorly understood. To fill this knowledge gap, high-resolution
observations and machine learning were conducted. The N2 fixation rate observed in this region ranged from below the limits of
detection to nearly 31 nmol N L�1 d�1. Models estimate that this region has a N2 fixation flux of 5.72 to 6.45 Tg N yr�1. Sea surface
temperature, photosynthetically available radiation, and nutrient supply, including iron, phosphate, and nitrogen, were most corre-
lated with the spatiotemporal patterns of N2 fixation, which were estimated by machine learning. Our findings emphasize the
importance of N2 fixation in this region to global ocean N2 fixation and its broader implications for marine productivity.

Abstract
The (sub)tropical western North Pacific is potentially an area of intense nitrogen (N2) fixation in the global ocean,
despite limited understanding of the flux and controlling factors. We conducted high-resolution observations from
2016 to 2021 in this region and used machine learning algorithms to simulate N2 fixation flux. Models estimated an
N2 fixation flux from 5.72 to 6.45 Tg N yr�1, with strong seasonal variation and peak rates in summer. The western
North Pacific Subtropical Gyre and the Kuroshio Current contributed more to N2 fixation flux than did the adjacent
areas. Models suggested that sea surface temperature, photosynthetically available radiation, and nutrient supply were
most strongly correlated with seasonal and spatial variations in N2 fixation. This study provides an improved estima-
tion of N2 fixation in the western North Pacific and advances our understanding of its role in ocean productivity.
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Bioavailable nitrogen is a crucial factor limiting primary pro-
duction in the global ocean (Zehr 2011; Moore et al. 2013).
Nitrogen (N2) fixation can provide new bioavailable nitrogen for
supporting production and carbon sequestration (Karl and
Letelier 2008; Sohm et al. 2011; Bonnet et al. 2016). The North
Pacific Subtropical Gyre (NPSG) is one of the major sinks of car-
bon dioxide in the global ocean (Takahashi et al. 2009), despite
the low nitrate concentrations in surface water (Moore
et al. 2013). This suggests the potentially important role of N2

fixation in fueling primary production in the region (Shiozaki
et al. 2009; Böttjer et al. 2017). Recently, high N2 fixation rates
(> 10 nmol N L�1 d�1 volumetric rate and > 500 μmol N m�2 d�1

depth-integrated rate) were observed in the (sub)tropical western
North Pacific (Wen et al. 2022a), covering approximately one-
third of the NPSG area.

Previous observations have shown spatial variability in N2

fixation rates in the western North Pacific. Specifically, rates
can reach up to 10 nmol N L�1 d�1 between 20� N and 25� N,
while they are typically near 0 nmol N L�1 d�1 in the northern
and southern areas (Kitajima et al. 2009; Shiozaki et al. 2009;
Wen et al. 2022a). The iron-to-nitrogen supply ratio is critical
in regulating the distribution of N2 fixation, and phosphate
availability sets an upper bound on N2 fixation rates (Wen
et al. 2022a). Potential seasonal variations in N2 fixation rates
have also been observed in the western North Pacific along the
Kuroshio Current (Chen et al. 2008). Nonetheless, owing to a
limited number of observations, the spatiotemporal patterns
and environmental controls of N2 fixation rates in the western
North Pacific remain poorly understood, restricting the assess-
ment of regional N2 fixation flux. High-resolution observations
are thus urgently needed to fill this gap.

Although complete spatiotemporal coverage of in situ obser-
vations is currently unavailable, empirical models provide an
effective way to predict N2 fixation rates in under-sampled
areas. However, despite the development of various models for
estimating global marine N2 fixation rates, significant uncer-
tainties remain at the regional level. Taking the (sub)tropical
western North Pacific as an example, some models suggest
higher rates in this region than in other oceans (Paulsen
et al. 2017; Wang et al. 2019), while others indicate the oppo-
site (Landolfi et al. 2015; Jickells et al. 2017; Tang et al. 2019).
These discrepancies are caused by different modeling mecha-
nisms, such as different considerations of the utilization of
organic phosphorus, the nitrogen budget balance, and grazing,
etc. (Séférian et al. 2013; Landolfi et al. 2015; Wang
et al. 2019). Selection of environmental factors and inconsis-
tent values of parameters (e.g., the half-saturation constant of
nutrients) also result in diverse estimates (Paulsen et al. 2017;
Riche and Christian 2018). Additionally, insufficient observa-
tions in this region and the omission of seasonal variation by
some models could attenuate the precision of estimations (Luo
et al. 2014; Tang et al. 2019) (Supporting Information Fig. S1).

To improve the accuracy of regional N2 fixation assess-
ment, we conducted dense measurements of N2 fixation rates

in the (sub)tropical western North Pacific during various sea-
sons from 2016 to 2021. Our new measurements, along with
published observations, were used to estimate N2 fixation flux
and identify spatiotemporal patterns and environmental regu-
latory mechanisms in the western North Pacific via random
forest (RF) and support vector regression (SVR).

Methods
Data for N2 fixation rates included 273 new measurements

and 64 published observations (Lu et al. 2019; Wen
et al. 2022a,b; Shao et al. 2023). The new data were sampled in
the northern South China Sea (NSCS) (111� E–120� E,
14� N–22� N) and the open ocean region (120� E–158� E,
11� N–33� N). The observations in the open ocean region were
distributed in the western NPSG, the North Pacific Transition
Zone (NPTZ), the North Equatorial Current (NEC), and the
upstream Kuroshio (Fig. 1). Sampling details are given in the
Supporting Information Data S1.

N2 fixation rates were determined using the 15N2 gas disso-
lution method (Mohr et al. 2010) and calculated as described
by Montoya et al. (1996). Limits of detection (LOD) of sam-
ples were calculated following the best practice described by
White et al. (2020). More details of measurement and calcula-
tion were described in Supporting Information Data S1. The
N2 fixation rates, the PN, the 15N atom % of PN, and the LOD
were summarized in a dataset (https://doi.org/10.6084/m9.
figshare.24225457.v4, Yu et al. 2023).

N2 fixation in the western North Pacific predominantly occur
at depths shallower than 100 m (Lu et al. 2019; Wen
et al. 2022a). Therefore, for the depth profile observations in
Fig. 1c–h, 100 m depth-integrated N2 fixation rates (INFRs) were
calculated using the trapezoidal integration method. For the sur-
face N2 fixation observations in Fig. 1i–k, simple linear regression
between surface N2 fixation rates (SNFRs) and INFRs was derived
and used to extrapolate SNFRs to INFRs (Supporting Information
Fig. S2), as their correlation was significant (r = 0.94, r2 = 0.88).
After log-transforming INFRs, the RF and SVR models were used
to predict the distributions of monthly INFRs from 2016 to
2020. Environmental parameters and model constructions are
provided in the Supporting Information Data S1. Detailed infor-
mation on comparing N2 fixation fluxes across different oceans
and calculating the contribution of N2 fixation to primary pro-
ductivity in the western North Pacific are described in Materials
and Methods in the Supporting Information Data S1.

Results and discussion
Spatiotemporal patterns of observed N2 fixation rates

Our observations revealed substantial spatiotemporal variabil-
ity in N2 fixation rates in the (sub)tropical western North Pacific,
which ranged from below the LOD to nearly 31 nmol N L�1 d�1

for all samples. Among the measured rates, 89% were below
5 nmol N L�1 d�1 or even the LOD (n = 457) and 3% were over
10 nmol N L�1 d�1 (n = 13). In the open ocean region
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(including the western NPSG, the NPTZ, the NEC, and the
upstream Kuroshio), both SNFRs and INFRs exhibited greater
intensities during spring–summer than in winter (Fig. 2).
Specifically, average SNFRs and INFRs were 3.77 � 3.95
(mean � standard deviation) nmol N L�1 d�1 (n = 145) and
252.44 � 221.40 μmol N m�2 d�1 (n = 145), respectively, during
spring–summer, and decreased to 1.38 � 1.62 nmol N L�1 d�1

(n = 78) and 75.12 � 78.73 μmol N m�2 d�1 (n = 78) in winter.
These values are numerically similar to previous observations in
the North Pacific (Shiozaki et al. 2009; Chen et al. 2019).
The large standard deviations reflect the inhomogeneous dis-
tribution of SNFRs and INFRs in space. Seasonal variation
aligns with previously observed patterns of rates in the
Kuroshio and the western NPSG (Chen et al. 2008, 2014)
and with basin-scale observations of diazotroph abundance

in the North Pacific (Cheung et al. 2020). In the NSCS, aver-
age INFRs were 156.14 � 184.07 μmol N m�2 d�1 (n = 47)
and 89.90 � 100.31 μmol N m�2 d�1 (n = 3), respectively,
during spring–summer and fall–winter. Despite the uneven
temporal coverage, our observations spanned four seasons
(Fig. 1), enabling us to track seasonal variability in the west-
ern North Pacific, which was previously poorly understood
owing to a lack of in situ measurements.

During spring–summer, the spatial distribution of N2 fixation
rates in the western North Pacific was inhomogeneous (Fig. 2a,c).
The Kuroshio Current exhibited the highest average SNFR
(6.20 � 5.69 nmol N L�1 d�1, n = 30), followed by the western
NPSG (4.03 � 3.08 nmol N L�1 d�1, n = 86) and the NSCS
(2.54 � 3.36 nmol N L�1 d�1, n = 46). The lowest SNFR was
observed in the NEC (0.44 � 0.47 nmol N L�1 d�1, n = 28).

Fig. 1. (a) The seasonal distribution of the number of observations and (b–k) the spatial pattern of the sampling sites. Red triangles represent new observa-
tions of the depth profile of N2 fixation rates within the upper 100 m, including (c) 4 observations during 05/2016–06/2016, (d) 21 observations during 07/
2017–08/2017, (e) 2 observations in 05/2017, (f) 2 observations in 10/2017, (g) 25 observations during 06/2018–07/2018, and (h) 4 observations in 08/
2018. Red circles represent new surface observations at a depth of 5 m, including (i) 60 observations during 05/2019–06/2019, (j) 76 observations during
07/2020–08/2020, and (k) 79 observations during 12/2020–02/2021. Yellow squares represent published depth profile observations that were acquired pri-
marily in summer. The new observations span four seasons in the (sub)tropical western North Pacific.
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The spatial distribution of INFRs exhibited a similar pattern. Over
60% of the lower-end INFRs (< 30 μmol N m�2 d�1, n = 14) were
from the NEC (n = 9), with others distributed in the NSCS
(n = 4) and the western NPSG (n = 1). The regions affected by
the Kuroshio Current reported the highest average INFR
(393.62 � 310.92 μmol N m�2 d�1, n = 30). The average INFR in
the NPSG (268.59 � 171.64 μmol N m�2 d�1, n = 86) was 70%
greater than that in the NSCS (156.14 � 184.07 μmol N m�2

d�1, n = 47). The observed spatial distribution was consistent
with previous findings (Chen et al. 2008; Kitajima et al. 2009;
Wen et al. 2022a). Additionally, a depth profile showed higher
rates in the eastern NSCS compared to the western NSCS
(Supporting Information Fig. S4), likely reflecting the influence
of inflow from the Kuroshio Current (Lu et al. 2019). Our high-
resolution observations provide a comprehensive understanding
of the spatial gradient across the western North Pacific, under-
lining high N2 fixation rates in this region.

Estimations of N2 fixation rates
By using high-resolution observations and published data,

we obtained accurate RF and SVR models to simulate INFRs,
which enabled us to evaluate spatiotemporal patterns in the

entire region. In the randomly divided testing dataset (20% of
the total data), the estimated and observed INFRs generally con-
verged onto the 1 : 1 line (Supporting Information Fig. S5a,b).
The correlation coefficients reached 0.83 (RF) and 0.82 (SVR),
indicating strong positive correlations between the estimations
and observations. Although the slopes of the fitting curves were
lower than 1, we achieved models with higher correlation coef-
ficients and lower root mean square error (RMSE) compared
with previous data-driven models that were limited by sparse
observations (Luo et al. 2014; Tang et al. 2019) (Supporting
Information Fig. S5c). The mean absolute errors were 1.54
(RF) and 1.50 (SVR) μmol N m�2 d�1, demonstrating the overall
accuracy of the models in predicting INFRs. Furthermore, both
models accurately captured the seasonal and spatial variations
in INFRs as observed in the testing dataset (Supporting
Information Fig. S5d). Our models demonstrated that high-
resolution observations, especially in winter, enhanced the
reliability of estimating spatiotemporal variations of INFRs.

Using these models, we predicted continuous spatiotempo-
ral patterns of INFRs throughout the entire region. The esti-
mated regional N2 fixation fluxes were 5.72 Tg N yr�1 (SVR)
and 6.45 Tg N yr�1 (RF). The estimates consistently showed

Fig. 2. Spatiotemporal patterns of observed N2 fixation rates. The SNFRs are displayed in (a, b), and the INFRs are displayed in (c, d). The SNFRs and INFRs
in (a, c) spring–summer (April to August) and in (b, d) fall–winter (October and December to February) are shown. The INFRs in the NSCS are calculated
using the trapezoidal integration method based on the measurements of N2 fixation rates at different depths. The INFRs in the open ocean region are extrap-
olated from SNFRs based on the linear relationships between SNFRs and INFRs as reported in this region (Supporting Information Fig. S2).
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higher rates and fluxes during warm seasons compared with
cold seasons (Fig. 3a–e). This seasonal variation was missing
in previous estimations (Supporting Information Fig. S6a),
emphasizing the importance of high-resolution observations
across different seasons. No significant interannual variation
was found, indicating that repeated observations over longer
time scales are needed. Although the SVR estimates were
lower than the RF estimates, both models concurred that the
Kuroshio Current and the western NPSG were major contribu-
tors to regional N2 fixation flux (Fig. 3f,g). This result contra-
dicts previous models that indicated homogeny across the
region and attributed greater flux to the NSCS than to
the western NPSG and the Kuroshio Current (Luo et al. 2014;
Tang et al. 2019) (Supporting Information Fig. S6b–d).
Furthermore, our estimates of annual N2 fixation flux in the
entire region almost doubled the previous estimates
(Supporting Information Table S2).

The (sub)tropical western North Pacific presented N2 fixa-
tion fluxes that were notably greater than those in globally
recognized ocean hotspots. Specifically, the tropical North
Atlantic, the eastern NPSG, and the western tropical South
Pacific reported average N2 fixation fluxes per unit area of
3.36 � 10�7, 4.47 � 10�7, and 2.91 � 10�7 Tg N km�2 yr�1,
respectively, per the SVR and RF models (Tang et al. 2019). In
comparison, the western North Pacific had greater fluxes of
5.72 � 10�7 (SVR) and 6.45 � 10�7 (RF) Tg N km�2 yr�1

(Supporting Information Table S3). This difference emphasizes
the global importance of N2 fixation in the western North
Pacific. Additionally, in the western NPSG, N2 fixation was
estimated to contribute up to 9.2% (RF) or 6.7% (SVR) to net
primary production (Supporting Information Fig. S7). These
findings highlight the critical role of N2 fixation in supporting
productivity in oligotrophic (sub)tropical oceans (Raimbault
and Garcia 2008; Shiozaki et al. 2013; Benavides et al. 2013a).

Environmental controls of N2 fixation rates
Our study identified the best predictors for estimating

INFRs with minimum RMSE using the RF algorithm, including
Coordinate1, Month1, PAR, iron deposition flux (Fedep), Coor-
dinate3, surface dissolved oxygen (DO), and sea surface tem-
perature (SST) (Fig. 4a). The Month1 component comprised
sampling months converted by Supporting Information
eq. S3, and the Coordinate1 and Coordinate3 components
comprised sampling latitudes and longitudes converted by
Eq. S4. These predictors were selected from 30 environmental
parameters (Supporting Information Table S1) and explained
68% of the variability in actual INFRs in both RF and SVR
models (Supporting Information Fig. S5a,b), suggesting that
they controlled the spatiotemporal variation in INFRs.

In the western North Pacific, SST and PAR are expected to
be related to seasonal variation in INFRs (Figs. 2 and 4b–e). A
higher SST and PAR (29.6 �C and 829.6 μmol m�2 s�1,
regional average) during spring–summer than during fall–win-
ter (26.6 �C and 596.5 μmol m�2 s�1, regional average) can

enhance the activity of nitrogenase and provide favorable
conditions for cellular metabolic energy production in
diazotrophs, which are essential for N2 fixation (Staal
et al. 2003; Fu et al. 2014; Lu et al. 2018). Month1 served as a
composite indicator reflecting seasonal variation in SST and
PAR (Fig. 4f,g).

The mechanism by which DO in seawater affects N2 fixa-
tion has not been determined (Tang et al. 2019). We hypothe-
size that DO serves as a combined predictor that primarily
represents SST, as these two predictors exhibit a strong correla-
tion (r = �0.70, p < 0.001) (Supporting Information Fig. S8a).
Additionally, DO was also related to the supply ratio of iron
to nitrogen (Fetotal : Ntotal) (r = 0.36, p < 0.001), sea surface
salinity (SSS) (r = 0.33, p < 0.001), Fedep (r = 0.30, p < 0.001),
and the subsurface supply rate of phosphate (Pup) (r = �0.23,
p < 0.001). Although some of these regulators were not identi-
fied individually by the RF algorithm, they may also be impor-
tant to N2 fixation. For instance, the gradient of Fetotal : Ntotal

was found to be consistent with that of diazotroph abun-
dances and N2 fixation rates in the upper ocean of this region
(Wen et al. 2022a). Pup was positively correlated with the sub-
surface supply rate of nitrogen (Nup) (r = 0.87, p < 0.001),
thereby exhibiting a negative correlation with INFRs
(Supporting Information Table S1). The spatial pattern of SSS
distinguished different intensities of INFRs in the NSCS and
the open ocean region (Supporting Information Fig. S8d).

High Fedep could stimulate the growth of diazotrophs and also
promote N2 fixation rates (Moore et al. 2009; Sohm et al. 2011;
Benavides et al. 2013b). Fedep, the main source of dissolved iron
in the western North Pacific (Supporting Information Fig. S8e–h)
(Brown et al. 2005; Hsu et al. 2009; Wen et al. 2022a), is a crucial
nutrient for nitrogenase to function (Schindelin et al. 1997).
Although Fedep was higher during fall–winter than during
spring–summer (Supporting Information Fig. S8e,f), there may
be a time lag in the conversion of iron from atmospheric deposi-
tion to bioavailability and absorption by diazotrophs (Tan and
Wang 2014; Tang et al. 2021). Furthermore, the spatial distribu-
tions of Fedep and the observed INFRs were not always consistent
(Fig. 4h,i), indicating that although Fedep is hypothesized to play
an important role, it was not the only factor controlling the spa-
tial pattern of INFRs.

Coordinate1 was a location predictor and was correlated with
depth-integrated phosphate (IDIP) (r = �0.40, p < 0.001), mixed
layer depth (MLD) (r = �0.37, p < 0.001), SST (r = �0.36,
p < 0.001), SSS (r = 0.34, p < 0.001), and Nup (r = �0.34,
p < 0.001) (Supporting Information Fig. S8b). The negative corre-
lation between INFRs and IDIP indicates that phosphate reflects
the residual effect of nutrient consumption caused by N2 fixa-
tion rather than the facilitating effect of nutrient supply
(Supporting Information Table S1) (Shiozaki et al. 2018).

Coordinate3 primarily reflected nitrate-related information
and was strongly correlated with the depth of chlorophyll
maximum (DCM) (r = 0.71, p < 0.001) and the nitracline
(r = 0.70, p < 0.001) (Supporting Information Fig. S8c). A
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Fig. 3. The estimated N2 fixation rates and fluxes. (a, b) The RF model and (c, d) the SVR model effectively reproduced INFRs in the entire region. INFRs
shown in (a, c) represent average estimates from April to August, while those shown in (b, d) represent average estimates from October and December
to February. (e) The regional monthly fluxes from 2016 to 2020 estimated by the two models showed consistent seasonal variation. (f, g) The spatial dis-
tributions of fluxes were calculated by summing the estimated monthly fluxes.
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deeper nitracline could limit the subsurface supply of nitrate to
the sea surface, potentially hindering nondiazotrophic phyto-
plankton growth but providing an advantage for diazotrophs.
Combined with Fedep, it has been suggested that regions with
high iron and low nitrate are particularly suitable for N2 fixation
(Ward et al. 2013; Wen et al. 2022a). The spatial distribution of
the DCM was consistent with that of the nitracline, character-
ized by shallower values in the NSCS and deeper values in the
open ocean region. Coordinate3 was also correlated with the
ratio of depth-integrated nitrogen to phosphorus (IDIN : IDIP)
(r = �0.69, p < 0.001), MLD (r = 0.69, p < 0.001), and depth-
integrated dissolved iron (IdFe) (r = �0.64, p < 0.001). The com-
bined predictors, such as Coordinate1, Coordinate3, and
Month1, may reflect the complex coupling relationships
between different environmental factors, which should have
important impacts on N2 fixation in real oceanic conditions.

Conclusions
This study expanded our existing knowledge of N2 fixation

rates in the (sub)tropical western North Pacific by providing

high-resolution observations. N2 fixation rates showed signifi-
cant spatiotemporal patterns, with the highest rates occurring
in summer. The N2 fixation fluxes across the entire region were
estimated to reach 5.72 (SVR) and 6.45 (RF) Tg N yr�1, higher
than other globally recognized ocean N2 fixation hotspots. The
western NPSG and the Kuroshio Current contributed more to
N2 fixation fluxes than did adjacent areas. Sea surface tempera-
ture, photosynthetically available radiation, and nutrient sup-
ply (iron, phosphate, and nitrogen) were identified as the key
environmental factors that related to the spatiotemporal varia-
tions estimated by the RF algorithm. These findings have
important implications for studies of ocean biogeochemistry
and global carbon cycles.
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