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A B S T R A C T

Ship trajectory prediction is crucial for maritime trade and navigational safety. In this paper, we present
a deep learning (DL) based trajectory prediction framework that can exploit the navigation pattern of a
reference trajectory, a historical trajectory that resembles the target one, to enhance the prediction accuracy.
A Differential Long Short-Term Memory (DLSTM) model is first proposed for trajectory prediction, which takes
solely the past motion characteristics of the target trajectory as the input. Building on DLSTM, an enhanced
DLSTM with reference trajectory correction (Ref-DLSTM) is proposed to integrate the features of both the
target and the reference trajectory for better prediction accuracy. The DLSTM can be applied when a reference
trajectory is not available, while the Ref-DLSTM is applied when a reference trajectory is present. To reduce
the complexity of reference trajectory identification, a grid-based search algorithm is proposed to restrain the
search in a local area. The efficacy of the proposed framework is evaluated using AIS datasets from the US
Coast Guard and the Danish Maritime Authority. Numerical results demonstrate notable improvement over the
state-of-the-art trajectory prediction methodologies, showcasing reductions in geographical prediction errors
by 19.1% and 33.0% for DLSTM and 34.0% and 35.8% for Ref-DLSTM, respectively.
1. Introduction

The maritime industry holds a pivotal role in global trade facil-
itation, providing impetus to maritime transportation and fostering
economic exchanges among nations through the movement of goods
and passengers (Yu et al., 2021; Xiao et al., 2019). Large-trading
vessels have propelled the growth of maritime trade while concur-
rently introducing complexities to the maritime traffic environment. In
economic and trade globalization, there arises a heightened demand
for improved efficiency and safety within maritime transportation.
Given the multifaceted nature of maritime traffic environments, ship
navigation is influenced by various factors such as weather conditions,
sea states, and vessel presence (Álvarez et al., 2021; Kanazawa et al.,
2022). Consequently, ship trajectory prediction emerges as a critical
domain for ensuring maritime traffic safety and optimizing shipping
operations (Pan et al., 2021; Zhang et al., 2022). For instance, ship
trajectory prediction can facilitate early detection of potential safety
hazards and mitigate ship collisions (Fang et al., 2018; Zhao et al.,
2018), thus contributing to the overall safety and efficiency of maritime
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transportation. Additionally, accurate trajectory prediction plays a cru-
cial role in reducing vessel energy consumption (Chen et al., 2024b)
and improving the efficiency of port operations (Chen et al., 2024a).

In recent years, the Automatic Identification System (AIS) has
emerged as a critical asset in ensuring maritime transportation safety,
presenting novel opportunities for leveraging big data analytics within
the maritime domain Emmens et al. (2021). The widespread adop-
tion of AIS has revolutionized the acquisition of vessel data through
communication technology. AIS captures a plethora of vital informa-
tion, including voyage information, and static and dynamic data of
vessels. Voyage information encompasses essential parameters such
as Maritime Mobile Service Identity (MMSI), destination, and voyage
duration. AIS static data comprises crucial vessel attributes, such as
dimensions, draft, and vessel type. AIS dynamic data includes dynamic
vessel parameters, such as position, heading, and speed. These datasets
offer a rich source of information for research endeavors in ship trajec-
tory prediction. However, the vast amount of data presents formidable
challenges for conventional prediction methodologies. The emergence
of deep learning (DL) has significantly addressed these challenges. DL
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techniques not only unravel intricate spatiotemporal relationships but
also furnish more precise and practical solutions for vessel trajectory
prediction (Feng et al., 2022). Consequently, ship trajectory prediction
methodologies grounded in DL frameworks have steadily acquired
prominence in recent years, becoming the predominant approach in
this area.

Most existing DL-based ship trajectory prediction techniques can
be categorized based on the inclusion of data beyond the historical
information of vessels to be predicted. The first category (Tang et al.,
2022; Zhang et al., 2021; Xiao et al., 2022; Forti et al., 2020; Guo et al.,
2023; Nguyen and Fablet, 2021; Wu et al., 2023) focuses on the internal
factors (the historical information of the target vessel to be predicted),
predicting solely by analyzing the historical movement patterns of the
vessel. These approaches, however, are limited by the singular data
source, which may lead to lower prediction accuracy and an over-
look of detailed motion traits. Specifically, when trajectories exhibit
sharp turns or when vessel behavior deviates from navigational inertia,
predicting future trajectories becomes significantly more challenging.

To address this issue, the second category (Huang et al., 2022;
Zhang et al., 2023; Mehri et al., 2021; Murray and Perera, 2021, 2020;
Gao et al., 2021) attempts to explore extra trajectory information by
considering external factors like environmental conditions and histor-
ical trajectories of the vessels other than the target one, i.e., the one
to be predicted. Although existing efforts of this kind have somewhat
alleviated the aforementioned problem, the information they provide
tends to be vague and lacks specificity. Therefore, there is still room
for improvement in prediction accuracy.

This paper presents a new solution to vessel trajectory prediction
based on DL. The core idea is to integrate the features from the target
trajectory, extracted before the time of prediction, and the features
from a reference trajectory, a historical trajectory that exhibits similar
behaviors to the target one, for more accurate trajectory predictions.

To account for the possibility that a reference trajectory is not
always available because of the lack of historical data, our proposed
framework introduces two carefully tailored DL models. The first one
is designed to operate solely based on the features extracted from the
target trajectory, aka, the internal features, where a differential Long
Short Term Memory (DLSTM) prediction model is developed to learn
both the instantaneous and average properties of speed and course to
improve the continuity of the predicted vessel motion.

Building on DLSTM, an enhanced DLSTM with reference trajectory
correction (Ref-DLSTM) is developed to integrate the internal features
with the external features obtained from a reference trajectory for
better prediction accuracies. To streamline the identification of suitable
reference trajectories, a Grid-based Reference trajectory Identification
(GRI) algorithm is introduced. The proposed GRI partitions maritime
areas into uniformly sized grids, assigning each target trajectory to a
specific grid for a local reference search. This localized approach avoids
the need for an exhaustive global search, allowing for the efficient
identification of the most analogous reference trajectory within the
same grid as the target trajectory. As a result, GRI not only improves
the efficiency of finding highly similar reference trajectories in adjacent
maritime zones, but also bolsters computational efficiency and stability,
significantly reducing the overall complexity of the prediction process.
The effectiveness of the overall trajectory prediction framework is
evaluated using real AIS datasets.

The remainder of the paper is organized as follows. Section 2
presents a brief review of existing vessel trajectory prediction ap-
proaches. Section 3 explains the proposed methodology. Section 4
presents the numerical results obtained based on real AIS datasets,
while Section 5 draws conclusions and discusses future research direc-

tions.

2 
2. Related work

Ship trajectory prediction has attracted significant interest from
both academia and industry. Prior research has focused on improving
the precision and reliability of ship trajectory forecasts. As highlighted
earlier, DL-based models have played a predominant role in advancing
this field. Consequently, the models examined in this section are ex-
clusively founded on the DL. This discussion focuses on two primary
classes: models that leverage internal data, specifically the historical
trajectory of the vessel under prediction, and models that integrate
external factors, including environmental conditions and the historical
trajectories of other maritime traffic.

2.1. Prediction models based on internal information

The development of trajectory prediction algorithms based on DL
has advanced rapidly, with key models including LSTM (Tang et al.,
2022; Zhang et al., 2021; Xiao et al., 2022; Forti et al., 2020; Wu et al.,
2023), GAN (Generative Adversarial Networks) (Guo et al., 2023),
and transformer (Nguyen and Fablet, 2021). Among these, LSTM and
its variants have emerged as particularly influential in shaping the
landscape of ship trajectory prediction.

The capacity of LSTM for integrating sequence prediction tech-
niques has been explored by Tang et al. (2022), who put force into
a methodology tailored for ship trajectory forecasting. Building upon
LSTM, the Bidirectional LSTM (BiLSTM) variant has been adopted to
enhance the prediction accuracies (Zhang et al., 2021). This approach
is further refined by the integration of segments of past and future
trajectory data as the input feature, enabling a more effective capture
of the contextual information within the trajectory data (Xiao et al.,
2022).

In tackling more intricate maritime scenarios, the Sequence to Se-
quence (Seq2Seq) model, composed of an encoder and a decoder, has
been deployed. Forti et al. (2020) leveraged a Seq2Seq architecture
based on LSTM to capture long-term dependencies within AIS data
sequences, thereby amplifying predictive accuracy. Furthermore, the
ConvLSTM-based Seq2Seq model has been proposed to extract spatial
and temporal characteristics embedded in ship trajectories concur-
rently (Wu et al., 2023).

In parallel, innovative approaches such as GAN have been ex-
plored by Guo et al. (2023) to discern ship movement patterns and
establish a bidirectional mapping between modal latent vectors and
anticipated trajectories. Additionally, Nguyen and Fablet (2021) intro-
duced a novel representation of AIS data, coupled with a tailored loss
function, to mitigate challenges associated with data heterogeneity and
multimodality.

Despite these advancements, the focus has predominantly been
on internal dynamics, relying on historical movement patterns for
predictions and thus limiting the breadth of input information. This
has prompted a shift towards integrating external factors into predic-
tive models, broadening the scope and enhancing the robustness of
trajectory predictions.

2.2. Prediction models incorporating external features

This subsection explores advanced ship trajectory prediction models
that use both interval features and external features. Huang et al.
(2022) developed an environment-aware ship trajectory prediction
model that employs a Convolutional Neural Network (CNN) to extract
navigational intention from ship density maps and incorporates this
information into the prediction model. This enables the model to cap-
ture navigational intent from ship density maps, significantly enhancing
both short-term and long-term prediction accuracy. A seq2seq-based
prediction model is proposed by Zhang et al. (2023) that encodes
position, course, speed, and sailing distance separately. Additionally,

it inputs a combined vector of vessel type and departure time into a
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type-oriented decoder to achieve accurate predictions. In Mehri et al.
(2021), a hybrid approach combining curve model (Best and Norton,
1997) and deep neural networks is introduced, and this method uses
coastline data to verify the logical consistency of compressed trajectory
methods, then constructs a context-aware LSTM network based on ship
type and other contextual variables.

Furthermore, leveraging the historical trajectories of other vessels
has proven beneficial for enhancing predictive accuracy (Murray and
Perera, 2021; Xu et al., 2022; Murray and Perera, 2020; Gao et al.,
2021). Common strategies involve clustering historical data and tailor-
ing specific models for each cluster. For instance, Murray and Perera
(2021) employed a variational recurrent auto-encoder alongside hier-
archical clustering for trajectory segmentation, while Xu et al. (2022)
utilized DBSCAN for clustering and directed Hausdorff distance for
trajectory classification based on similarity. Additionally, the use of
Gaussian mixture models and K-Nearest Neighbor (KNN) algorithms
for trajectory clustering and classification was observed in Murray and
Perera (2020).

As another relevant work, Gao et al. (2021) proposed an innovative
method for leveraging historical trajectories by identifying a reference
trajectory for each target trajectory and segmenting the prediction
process into two distinct phases: support points and destination points.
The initial phase employs dual LSTM models for differential prediction
of support points, whereas the subsequent phase utilizes points from the
reference trajectory to predict the destination points, thus introducing
a structured approach to trajectory forecasting.

These methodologies collectively aim to dissect the intricate dynam-
ics governing ship movements to forecast future trajectories with higher
precision. Our research builds upon the concept of employing reference
trajectories but distinguishes itself by implementing a differential-based
LSTM framework as the core predictive mechanism. This approach not
only forecasts ship information across identical time intervals, but also
incorporates the corresponding reference trajectory for each prediction,
facilitating substantial corrections and improvements in the prediction
of future trajectories.

3. Methodology

In this section, we describe our proposed methodology for ves-
sel trajectory prediction. Fig. 1 presents a flowchart of the proposed
framework, which has three key components: the DLSTM model, the
Ref-DLSTM model, and the Grid-based Reference Identification (GRI)
module. Both the DLSTM and Ref-DLSTM models are trained using
historical AIS data that has undergone preprocessing steps such as
denoising and interpolation. In the real-time prediction phase, the pro-
posed system initially employs the GRI module to determine whether
there exists a historical reference trajectory that satisfies similarity
check. If such a reference trajectory is found, the system invokes the
Ref-DLSTM model, leveraging the corrective power of the reference
trajectory for trajectory predictions. Otherwise, the system resorts to
the DLSTM model, relying solely on the past trajectory information of
the target vessel to predict its future trajectory.

The proposed framework utilizes a recursive forecasting approach,
repeatedly invoking the DLSTM or Ref-DLSTM model to accomplish
predictions over multiple time steps. Without loss of generality, this
section considers predicting the vessel positions at time instances {𝑡+𝜏 ∶
𝜏 = 1, 2, 3,… , 𝑛}, where 𝑡 is the time instance that the prediction is made
and 𝑛 is the prediction horizon. In the remaining part of this section, we
explain the DLSTM model, the Ref-DLSTM model, and the GRI module.

3.1. Differential LSTM (DLSTM)

Denote a trajectory point at time instance 𝑡 as

𝑥 =
(

𝑙𝑜𝑛 , 𝑙𝑎𝑡 , 𝑆𝑂𝐺 ,𝐶𝑂𝐺 ,𝑆𝑂𝐺 ,𝐶𝑂𝐺
)

, (1)
𝑡 𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

3 
Fig. 1. A flowchart of the proposed trajectory prediction framework: (1) The Grid-
based Reference Identification (GRI) module is used to examine the existence of a
reference trajectory relative to the target vessel; (2) Ref-DLSTM is used to produce
trajectory predictions if a reference trajectory exists; (3) DLSTM is used in the absence
of a reference trajectory.

where 𝑙𝑜𝑛𝑡, 𝑙𝑎𝑡𝑡, 𝑆𝑂𝐺𝑡, 𝐶𝑂𝐺𝑡 represent the longitude, latitude, SOG,
COG at time instance 𝑡, respectively, and 𝑆𝑂𝐺𝑡 and 𝐶𝑂𝐺𝑡 are the
average SOG and COG from time 𝑡 − 1 to 𝑡. Denote further

𝑥̃𝑡 =
(

𝛥𝑙𝑜𝑛𝑡, 𝛥𝑙𝑎𝑡𝑡, 𝑆𝑂𝐺𝑡, 𝛥𝐶𝑂𝐺𝑡, 𝑆𝑂𝐺𝑡, 𝛥𝐶𝑂𝐺𝑡

)

(2)

as the collections of time-differential features, where, e.g., 𝛥𝑙𝑜𝑛𝑡 and
𝛥𝑙𝑎𝑡𝑡 can be obtained as
{

𝛥𝑙𝑜𝑛𝑡 = 𝑙𝑜𝑛𝑡 − 𝑙𝑜𝑛𝑡−1,

𝛥𝑙𝑎𝑡𝑡 = 𝑙𝑎𝑡𝑡 − 𝑙𝑎𝑡𝑡−1.
(3)

Other features can be obtained similarly.
To predict the vessel position for time instance 𝑡 + 𝜏, the DLSTM

model takes a series of historical trajectory points, stored in 𝑋̃𝑡+𝜏−1,
as the input feature, and outputs the predicted value 𝑦̂𝑡+𝜏 . Denote the
predicted output trajectory as

𝑌 = {𝑦̂𝑡+1, 𝑦̂𝑡+2,… , 𝑦̂𝑡+𝑛} (4)

and

𝑌 = {𝑦𝑡+1, 𝑦𝑡+2,… , 𝑦𝑡+𝑛} (5)

as the corresponding true data (the label data used during model
training).

Fig. 2 illustrates the model architecture of the DLSTM. As shown
in the figure, the model comprises three sub-networks: the position
prediction network (POS-Net), the SOG prediction network (SOG-Net),
and the COG prediction Network (COG-Net). The three sub-networks all
take 𝑋̃𝑡+𝜏−1 as the input feature, and predict the position information
𝑝𝑜𝑠𝑡+𝜏 = (𝛥𝑙𝑜𝑛𝑡+𝜏 , 𝛥𝑙𝑎𝑡𝑡+𝜏 ), SOG information 𝑠𝑜𝑔𝑡+𝜏 = (𝑆𝑂𝐺𝑡+𝜏 , 𝑆𝑂𝐺𝑡+𝜏 ),
COG information 𝑐𝑜𝑔𝑡+𝜏 = (𝛥𝐶𝑂𝐺𝑡+𝜏 , 𝛥𝐶𝑂𝐺𝑡+𝜏 ) of the vessel at the time
𝑡+𝜏, respectively. The structures of the three sub-networks are identical,
each employing LSTM as the core architecture. As illustrated in Fig. 2,
the input sequence 𝑋̃𝑡+𝜏−1, after feature extraction through an LSTM
cell, is flattened and passed through a fully connected layer to produce
the output.

In executing multi-step predictions, when 𝜏 = 1, the input feature
sequence is entirely extracted from the trajectory of the target vessel at
and before time instance 𝑡, i.e., 𝑋̃𝑡+𝜏−1 = {𝑥̃𝑡−𝑚,… , 𝑥̃𝑡−1, 𝑥̃𝑡}, where 𝑚 is
the length of input feature; when 𝜏 > 1, we adopt a recursive prediction
method, using the predicted value 𝑦̂ at time 𝑡 + 𝜏 − 1 to update
𝑡+𝜏−1
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Fig. 2. Architecture of the DLSTM model, consisting of three sub-networks: POS-Net,
SOG-Net, and COG-Net.

the input feature sequence 𝑋̃𝑡+𝜏−1. This process can be represented as
follows:

𝑋̃𝑡+𝜏−1 =

{

{𝑥̃𝑡−𝑚,… , 𝑥̃𝑡−1, 𝑥̃𝑡}, 𝜏 = 1

{𝑥̃𝑡−𝑚+(𝜏−1),… , 𝑥̃𝑡,… , 𝑦̂𝑡+𝜏−1}, 𝜏 > 1
(6)

where

𝑦̂𝑡+𝜏 = 𝑐𝑜𝑛𝑐𝑎𝑡
(

𝑝𝑜𝑠𝑡+𝜏 , 𝑠𝑜𝑔𝑡+𝜏 , 𝑐𝑜𝑔𝑡+𝜏
)

, (7)

and

𝑝𝑜𝑠𝑡+𝜏 = 𝑔𝑝𝑜𝑠
(

𝑋̃𝑡+𝜏−1
)

, (8)

𝑠𝑜𝑔𝑡+𝜏 = 𝑔𝑠𝑜𝑔
(

𝑋̃𝑡+𝜏−1
)

, (9)

𝑐𝑜𝑔𝑡+𝜏 = 𝑔𝑐𝑜𝑔
(

𝑋̃𝑡+𝜏−1
)

. (10)

Here, 𝑔𝑝𝑜𝑠(⋅), 𝑔𝑠𝑜𝑔(⋅) and 𝑔𝑐𝑜𝑔(⋅) respectively denote the mapping relation-
ships from 𝑋̃𝑡+𝜏−1 to 𝑝𝑜𝑠𝑡+𝜏 , 𝑠𝑜𝑔𝑡+𝜏 , 𝑐𝑜𝑔𝑡+𝜏 for the POS-Net, SOG-Net, and
COG-Net sub-networks. 𝑐𝑜𝑛𝑐𝑎𝑡(⋅) denotes concatenation operations and
hence 𝑦̂𝑡+𝜏 includes the concatenated vector of prediction results from
the three sub-networks.

The function of the three sub-networks within the DLSTM model
is to independently map the input features 𝑋̃𝑡+𝜏−1 to the predicted
values at time 𝑡+ 𝜏. Thus, during the training of the DLSTM model, the
three sub-networks adopt an independent single-step training method.
That is, each network takes 𝑋̃𝑡+𝜏−1 (𝜏 = 1) as input and separately
learns the mapping relationships between 𝑋̃𝑡+𝜏−1 and the vessel position
(𝛥𝑙𝑜𝑛𝑡+𝜏 , 𝛥𝑙𝑎𝑡𝑡+𝜏 ), SOG (𝑆𝑂𝐺𝑡+𝜏 , 𝑆𝑂𝐺𝑡+𝜏 ), and COG (𝛥𝐶𝑂𝐺𝑡+𝜏 , 𝛥𝐶𝑂𝐺𝑡+𝜏 )
at time 𝑡+𝜏, respectively. The training of the model adopts a supervised
learning approach, with the loss function set to Mean Squared Error
(MSE), which is formulated as:

MSE = 1
𝑁

𝑁
∑

𝑖=1

(

𝑧𝑖 − 𝑧𝑖
)2, (11)

where 𝑁 is the number of samples, 𝑧𝑖 and 𝑧𝑖 denote the label and the
predicted values of the 𝑖th sample. For POS-Net, 𝑧 = (𝛥𝑙𝑜𝑛, 𝛥𝑙𝑎𝑡); SOG-
Net, 𝑧 = (𝑆𝑂𝐺,𝑆𝑂𝐺); and for COG-Net, 𝑧 = (𝛥𝐶𝑂𝐺, 𝛥𝐶𝑂𝐺). After
the training, the parameters of the three networks are saved for use
in real-time prediction tasks.

We pause to note that, for the input feature, we have chosen the
change in position at equal time intervals (𝛥𝑙𝑜𝑛, 𝛥𝑙𝑎𝑡) because this form
of prediction can alleviate sudden jumps in position when making
the predictions, hence making the predicted trajectory smoother. The
change of COG can provide useful characteristics of the dynamic be-
havior of the vessel, which can be used as additional information to
predict changes in vessel position. We opt to adopt the SOG directly
as part of the input feature since there is a more direct relationship
4 
Fig. 3. Architecture of the Ref-DLSTM model, consisting of three sub-networks: POS-
Net, SOG-Net, and COG-Net. Each network is composed of two parallel LSTMs, one
receiving input 𝑋̃𝑡+𝜏−1 and the other receiving input 𝑥̃𝑟𝑡+𝜏 .

between the positional changes and the SOG. Additionally, to account
for the changes in navigation states in the time interval that the input
features were extracted, we incorporate both instantaneous and average
attributes of SOG and COG.

3.2. Differential LSTM with reference trajectory correction (ref-DLSTM)

In this subsection, we explain the Ref-DLSTM model constructed
based on DLSTM. As mentioned in Section 1, similar vessels navigating
within the same maritime area often exhibit similar trajectory charac-
teristics, thus the historical trajectories of vessels can serve as reference
trajectories to provide additional useful information when making the
predictions. Following this observation, Ref-DLSTM integrates the fea-
tures of reference trajectories on the base of the DLSTM for more
accurate trajectory predictions.

Fig. 3 illustrates the architecture of Ref-DLSTM. Similar to DLSTM,
Ref-DLSTM also consists of three sub-networks: POS-Net, SOG-Net, and
COG-Net. Their functions are identical to those in DLSTM. The differ-
ence lies in that each sub-network in Ref-DLSTM includes two parallel
LSTM units at the input stage. The first unit takes 𝑋̃𝑡+𝜏−1 as input,
analyzing the historical trajectory characteristics of the target vessel,
while the second unit takes 𝑥̃𝑟𝑡+𝜏 , extracted from the reference trajec-
tory, as the input feature. The outputs of the two LSTM units are then
concatenated and fed to the later parts of the model. Taking POS-Net as
an example, the feature extracted by the first LSTM unit is denoted as
ℎ𝑡+𝜏−1(𝑝𝑜𝑠), and the one extracted from 𝑥̃𝑟𝑡+𝜏 by the second LSTM unit is
ℎ𝑟𝑡+𝜏 (𝑝𝑜𝑠). The Ref-DLSTM model concatenates ℎ𝑡+𝜏−1(𝑝𝑜𝑠) and ℎ𝑟𝑡+𝜏 (𝑝𝑜𝑠),
the result of which is flattened and fed to a fully connected layer to
produce the prediction output. As previously mentioned, the approach
to multi-step prediction in the Ref-DLSTM model is the same as that in
DLSTM. Its training also employs single-step independent training for
the three sub-networks, with the supervised learning loss function also
being MSE.

Compared to DLSTM, the key additional information in Ref-DLSTM
is 𝑥̃𝑟𝑡+𝜏 . We now explain the method of extracting 𝑥𝑟𝑡+𝜏 from the refer-
ence trajectory. Suppose that the reference trajectory identified by the
GRI module in Section 3.3 is denoted as 𝐻𝑝∗ (refer to Section 3.3 for a
detailed explanation of the method for reference trajectory identifica-
tion), which also consists of a set of trajectory points as defined by (1).
To obtain the reference feature 𝑥̃𝑟𝑡+𝜏 from 𝐻𝑝∗ , it is necessary to use the
anchor point, which is the point on 𝐻𝑝∗ that is closest to the current
position of the target vessel:

𝑥𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝑑𝑖𝑠
(

𝑢, 𝑥
)

, 𝑢 ∈ 𝐻 }, (12)
𝑡 𝑡 𝑝∗
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where 𝑑𝑖𝑠(⋅) represents the great-circle distance between two trajectory
points on the Earth’s surface. Based on the information of 𝑥𝑟𝑡 , a set
f interpolated points is obtained from trajectory 𝐻𝑝∗ , with the inter-
olation time interval matching the time interval of each prediction
tep. After the interpolation, 𝑛 + 1 interpolated points, i.e., 𝑟(𝑡) =
𝑥𝑟𝑡 , 𝑥

𝑟
𝑡+1,… , 𝑥𝑟𝑡+𝑛}, are used to calculate the differential information

𝑟(𝑡) = {𝑥̃𝑟𝑡+1, 𝑥̃
𝑟
𝑡+2,… , 𝑥̃𝑟𝑡+𝑛}, following similar operations as (3). We note

hat 𝑟(𝑡) only needs to be computed once for each prediction task,
.e., prediction 𝑛 steps at time instance 𝑡. When making predictions for
ifferent values of 𝜏(𝜏 = 1,… , 𝑛), the reference feature 𝑥̃𝑟𝑡+𝜏 is taken
irectly from 𝑟(𝑡).

.3. Grid-based reference trajectory identification (GRI)

In this subsection, we explain identifying 𝐻𝑝∗ , based on our pro-
osed GRI algorithm. Denote the trajectory of the target vessel up to
ime instance 𝑡 as 𝑋𝑡. The most direct method to find the reference
rajectory is to compare 𝑋𝑡 with each trajectory stored in the historical
rajectory database, using similarity measures such as Dynamic Time

arping (DTW) (Li et al., 2017; Yuan et al., 2017; Li et al., 2020;
hao and Shi, 2019) or Hausdorff Distance (HD) (Wang et al., 2021)
o calculate the degree of match. However, this approach encounters
wo issues: 1) the trajectories in the database may significantly differ
n length from the target trajectory 𝑋𝑡. This mismatch may lead to

unstable similarity measures that do not accurately reflect the real
similarity between trajectories; 2) there may exist many historical
trajectories. An exhaustive search for matching may incur a significant
computational burden.

To address these issues, the GRI algorithm is proposed, which
leverages grid-based attribution information and the corresponding
navigational statistical data of the historical trajectories in order to
rapidly filter and reduce the number of candidate trajectories to be
compared. The key steps of the proposed GRI algorithm are listed as
follows.

Step-1: Maritime area gridification.
Define the maritime area of interest using the maximum and min-

imum longitude (𝐿𝑂𝑁𝑚𝑎𝑥, 𝐿𝑂𝑁𝑚𝑖𝑛) and latitude (𝐿𝐴𝑇𝑚𝑎𝑥, 𝐿𝐴𝑇𝑚𝑖𝑛),
and set the grid dimensions to 𝛼 and 𝛽 for longitude and latitude,
respectively. Suppose that the entire maritime area is divided into 𝐼
rids, each with its unique identification number, and the area of the
th grid is denoted as 𝑖.
Step-2: Grid attribution collection of historical trajectories.
We first denote a historical trajectory 𝐻𝑝 ∈ 0, where 0 is the

ntire set of historical trajectories. The grid association indications of
𝑝 are represented by a vector 𝐚𝑝 ∈ {0, 1}𝐼×1, where 𝑎𝑝(𝑖) = 1 indicates

that the trajectory 𝐻𝑝 has an association relationship with grid 𝑖, and
𝑎𝑝(𝑖) = 0 indicates there is no association. The association between
trajectory 𝐻𝑝 and grid 𝑖 is determined by the number of points that
trajectory 𝐻𝑝 falls within 𝑖:

𝑎𝑝(𝑖) =

⎧

⎪

⎨

⎪

⎩

1, ||
|

𝐻𝑝 ∈ 𝑖
|

|

|

≥ 𝛾ℎ,

0, ||
|

𝐻𝑝 ∈ 𝑖
|

|

|

< 𝛾ℎ,
(13)

where 𝛾ℎ is the minimum number of trajectory points required to have
an association and |

|

|

𝐻𝑝 ∈ 𝑖
|

|

|

denotes the number of trajectory points
of 𝐻𝑝 that fall within the 𝑖th grid.

In addition to the associated vector, the algorithm also records
the SOG and COG statistics for each trajectory associated with a grid.
Specifically, it calculates the SOG vector, 𝐯𝑝 = {0, 𝑆𝑂𝐺𝑖

𝑎𝑣𝑒}
𝐼×1, and the

COG vector, 𝐮𝑝 = {0, 𝐶𝑂𝐺𝑖
𝑎𝑣𝑒}

𝐼×1, where 𝑆𝑂𝐺𝑖
𝑎𝑣𝑒 and 𝐶𝑂𝐺𝑖

𝑎𝑣𝑒 denote
the average SOG and COG, respectively, for the trajectory segment
ℎ𝑖 ∈ 𝐻𝑝 within the 𝑖th grid. These vectors are populated with 0 for
grids without a trajectory association.
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The above process in this step is executed for all the historical
trajectories 𝐻𝑝 ∈ 0.

Step-3: Grid-based metadata organization.
Upon obtaining the association indicators and the corresponding

statistics for all the trajectories, the collected information, including 𝐚𝑝,
𝐯𝑝 and 𝐮𝑝, is gathered and re-arranged on a per-grid basis. Specifically,
for the 𝑖th grid, the re-arranged information stored for grid 𝑖 is a set of
tuples, each of which contains the corresponding trajectory index, the
SOG and COG statistics:

𝑖 = {
(

𝑝, 𝑣𝑝(𝑖), 𝑢𝑝(𝑖)
)

∥𝑎𝑝(𝑖) = 1}, (14)

where 𝑝 is the trajectory index. The collections of 𝑖 for the 𝐼 grids are
stored as the metadata to accelerate the trajectory-matching process.

Step-4: Reference trajectory matching.
We now explain the method of leveraging the grid-based meta-

data for reference trajectory matching, which contains the following
4 sub-steps.

(1) Identify the grid association of the target trajectory. Suppose the
length of the target trajectory segment 𝑋𝑡 is 𝐿. 𝑋𝑡 is deemed
associated with grid 𝑖 if the number of points that 𝑋𝑡 falls in 𝑖
satisfies

|𝑋𝑡 ∈ 𝑖| > 𝜀𝐿, (15)

where 𝜀 ∈ (0, 1) is a threshold. The metadata of the grids
satisfying condition (15) is then unioned to form a candidate
metadata set 𝑐 to identify the candidate trajectory set:

𝑐 = ∪𝑖∈𝑐𝑖, (16)

where 𝑐 = {𝑖∥𝑋𝑡 ∈ 𝑖| > 𝜀𝐿} denotes the set of grids that
condition (15) holds for the target trajectory.

(2) Filter the candidate trajectory set based on the SOG and COG
meta-information. Denote 1 as the set of candidate trajectories
contained in the meta dataset 𝑐 . The current step is to filter
1 based on the average SOG 𝑠𝑜𝑔𝑎𝑣𝑒 and average COG 𝑐𝑜𝑔𝑎𝑣𝑒 of
the target trajectory segment 𝑋𝑡 and the corresponding meta-
information contained in 𝑐 . Specifically, the filtered candidate
trajectory set 2 ⊆ 1 can be identified as:

2 = {𝑝| (𝑝, 𝑣, 𝑢) ∈ 𝑐 , (18) holds for (𝑢, 𝑣)}, (17)

where
{

|

|

𝑠𝑜𝑔𝑎𝑣𝑒 − 𝑣|
|

< 𝛾𝑆𝑂𝐺 ,
|

|

𝑐𝑜𝑔𝑎𝑣𝑒 − 𝑢|
|

< 𝛾𝐶𝑂𝐺 ,
(18)

𝛾𝑆𝑂𝐺 and 𝛾𝐶𝑂𝐺 represent the threshold values. With the above
filtering, it is expected that |

|

|

2|
|

|

≪ |

|

|

1|
|

|

. Hence, the compu-
tational load incurred by pair-wised computation of trajectory
similarity can be reduced.

(3) Trim the candidate trajectories and refine the candidate trajec-
tory set based on a mapping distance. This step begins with
identifying a rectangular region 𝑡 according to the target tra-
jectory segment 𝑋𝑡. Specifically, let 𝑡 be the area enclosed by
the maximum and minimum latitude and longitude values of
𝑋𝑡(i.e., 𝑙𝑜𝑛𝑚𝑖𝑛, 𝑙𝑜𝑛𝑚𝑎𝑥, 𝑙𝑎𝑡𝑚𝑖𝑛, 𝑙𝑎𝑡𝑚𝑎𝑥), as illustrated by the red
dashed rectangular in Fig. 4. If a candidate trajectory 𝐻𝑝 ∈ 2

has non-zero points in 𝑡, i.e., ||
|

𝐻𝑝 ∈ 𝑡|
|

|

> 0, then 𝐻𝑝 is trimmed
to contain only the trajectory points within 𝑡, as also illustrated
in Fig. 4. Denote further the trimmed trajectory as 𝐻 ′

𝑝, and let
𝛿𝑝 and 𝛿𝑡 be the geo-distance between the first and the last
trajectory points of 𝐻 ′

𝑝 and 𝑋𝑡. The projection of 𝛿𝑝 and 𝛿𝑡 onto
latitude and longitude direction, i.e., 𝛿𝑙𝑜𝑛𝑝 , 𝛿𝑙𝑎𝑡𝑝 , 𝛿𝑙𝑜𝑛𝑡 , 𝛿𝑙𝑎𝑡𝑡 , are used
to further refined the candidate set. Specifically, the candidate
trajectory is retained in the refined candidate set 3 ⊆ 2 if
|

|

|

𝛿𝑙𝑜𝑛𝑝 − 𝛿𝑙𝑜𝑛𝑡
|

|

|

∕𝛿𝑙𝑜𝑛𝑡 < 𝛾𝑑𝑖𝑠 and |

|

|

𝛿𝑙𝑎𝑡𝑝 − 𝛿𝑙𝑎𝑡𝑡
|

|

|

∕𝛿𝑙𝑎𝑡𝑡 < 𝛾𝑑𝑖𝑠. Trajectories
that do not meet the above conditions are excluded from further

comparison.
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Fig. 4. An illustration of trajectory trimming in Step-4 3) of the GRI module.

(4) Calculate the trajectory similarities and identify the reference
trajectory. Upon obtaining the refined candidate trajectory set
3, it is ready to evaluate the trajectory similarity between each
trajectory 𝐻𝑝 ∈ 3 and 𝑋𝑡 to identify the reference trajec-
tory. Specifically, the reference trajectory is the one that has
the smallest Directed Hausdorff Distance (DHD) (Laxhammar,
2014):

𝑝∗ = argmin𝑝∈3𝐷𝐻𝐷{𝐻̃𝑝, 𝑋𝑡}, (19)

and the corresponding DHD must be below a pre-defined sim-
ilarity threshold 𝐷𝐻𝐷{𝐻̃𝑝∗ , 𝑋𝑡} < 𝛾𝐷𝐻𝐷. Here, 𝐷𝐻𝐷{𝐻̃𝑝∗ , 𝑋𝑡}
denotes the DHD between 𝐻̃𝑝∗ and 𝑋𝑡, and 𝐻̃𝑝∗ is an interpo-
lated trajectory segment starting from the anchor point on 𝐻𝑝∗

identified according to (12). It is noted that 𝐻̃𝑝∗ is interpolated
with the same time granularity and has the same length as
𝑋𝑡. Additionally, it is possible that 𝐷𝐻𝐷{𝐻̃𝑝, 𝑋𝑡} > 𝛾𝐷𝐻𝐷. In
this case, the GRI module will declare that there is no valid
reference trajectory, hence the DLSTM model will be used to
make trajectory predictions.

4. Numerical results

In this section, the performance of our proposed approach is eval-
uated using AIS data published by the US Coast Guard (the U.S. Coast
Guard, 2024) and the Danish Maritime Authority (DMA) (DMA, 2024).
The US AIS dataset is collected by the United States Coast Guard using
ship-borne navigation safety devices. The collected AIS data allows for
monitoring the positions and characteristics of vessels within US and
international waters. The DMA AIS data is published by the Danish
Maritime Authority, which is part of the Ministry of Industry, Business,
and Financial Affairs in Denmark.

In the experiments, we examine cargo and tanker vessels navigating
between longitudes 84◦𝑊 and 72◦𝑊 , and latitudes 20◦𝑁 to 42◦𝑁 for
the US data (Zone 17 and Zone 18), and cargo navigating between
longitudes 4◦𝐸 to 15◦𝐸, and latitudes 53◦𝑁 to 59◦𝑁 for the DMA data.
Our analysis spans datasets from Jan. 2013 to Oct. 2013 for the US
and Jan. 2020 to June 2020 for Denmark as training data, with testing
periods from Nov. 2013 to Dec. 2013 and July 2020 to Aug. 2020,
respectively. Figs. 5 and 6 present the training and test datasets for
the US and Denmark scenarios, respectively.

The raw AIS data is pre-processed before applying the proposed
approach. Trajectories are extracted on a per-vessel basis and are then
further processed by denoising and down-sampling. A description of
pre-processing is provided in Appendix. When training and testing the
prediction models, data samples are produced by extracting segments
of trajectories from the training and the testing dataset. In our ex-
periments, the length of the input feature is set to 𝑚 = 9 and the
prediction horizon is set to 𝑛 = 5, corresponding to 2.5 h ahead tra-
jectory predictions. For the US dataset, there are over 194,000 training
samples and about 41,700 test samples, where the fraction of samples
that a reference trajectory is identified is about 53.3%. For the DMA
dataset, the numbers of training and test samples are about 31,000 and
9,000, where the fraction of samples that a reference trajectory can be

identified is about 75.5%.

6 
Table 1
The hyper-parameters of GRI.

𝛼 𝛽 𝛾ℎ 𝛿 𝛾𝑆𝑂𝐺 𝛾𝐶𝑂𝐺 𝛾𝑑𝑖𝑠 𝛾𝐷𝐻𝐷

the US 1◦ 2◦ 4 0.3 7.5 knots 20◦ 0.1 5.8 km
DMA 1◦ 1◦ 4 0.3 5 knots 15◦ 0.1 8.5 km

Fig. 5. An illustration of the raw AIS data from the US Guard: (a) Train dataset
corresponding to the period between Jan. 2013 and Oct. 2013; (b) Test dataset obtained
from Nov. 2013 to Dec 2013.

For the proposed DLSTM and Ref-DLSTM models, each LSTM is a
two-layer LSTM cell, with the number of hidden units set to 256, and
the dimensions of the fully connected layers are (2560, 2048, 1024, 512, 2)
for Ref-DLSTM and (2304, 2048, 1024, 512, 2) for DLSTM. The parameters
of the GRI algorithm are presented in Table 1. The models are imple-
mented under a Python 3.11 environment with PyTorch, empowered
by an Nvidia GeForce RTX 3060 GPU. Each subnetwork is trained with
a batch size of 128, a learning rate of 0.0001, and for 100 epochs. The
optimizer is set to Adam. It is noted that the training data is normalized
with max–min normalization before feeding into the model. The same
normalizer is adopted to normalize the test samples.
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Fig. 6. An illustration of the raw AIS data from DMA: (a) Train dataset corresponding
to the period between Jan. 2020 to June 2020; (b) Test dataset obtained from July
2020 to Aug. 2020.

4.1. Results for reference trajectory identification

To examine the efficacy of the GRI algorithm, we start by presenting
three types of representative examples derived from the US and DMA
datasets, as illustrated in Figs. 7–9. In these figures, each subplot
presents both the historical (solid lines for the target and dotted lines
for the reference) and future (dashed lines) trajectory segment relative
to the current position of the target vessel.

The first type of reference trajectory, as depicted in Fig. 7, is
characterized by its high fidelity towards the direction and position
of the target vessel throughout both historical and future stages. This
alignment provides crucial auxiliary data for trajectory prediction, en-
abling the Ref-DLSTM model to preserve the correct trajectory direction
while preventing any unintended acceleration or deceleration in the
predicted path. The precise positioning information of this type of
reference trajectory ensures the accuracy of the predicted trajectory,
particularly in maintaining the course and speed predictions for the
target vessel.

Conversely, the second type of reference trajectory, shown in Fig. 8,
maintains directional consistency with the target trajectory but displays
variable positional discrepancies over time. Although this type may
not be as effective in predicting future positions, its consistent direc-
tionality lends support to trajectory forecasts, especially in scenarios
where the course of a vessel may abruptly change. The directional
information from this type of reference trajectory helps in adjusting
the prediction model to accommodate sudden deviations in the vessel
path, underscoring its utility despite positional variances.

The third type of reference trajectory, illustrated in Fig. 9, exhibits a
strong correlation with the target trajectory during the historical stage,
7 
Fig. 7. Example 1 - GRI Results from (a) the US dataset and (b) the DMA dataset. This
type is characterized by similarity in the direction and position of the target trajectory
throughout the history and future phases.

Table 2
The average number of candidate trajectories remaining at each sub-step in step-4 of
the GRI.

0 1 2 3

the US 9606 3433.42 826.98 37.46
Denmark 3254 1957.93 478.63 154.01

aligning with the intended function of the GRI algorithm. However, it
diverges significantly in the future stage, indicative of vessels entering
a maritime zone with varying destinations, which leads to trajectory
‘‘divergence’’. Despite the high historical accuracy, this divergence
cannot be rectified simply by tweaking the GRI parameters. In such
instances, the prediction model must prioritize the historical data of
the target trajectory, thereby diminishing the impact of this reference
trajectory type on future trajectory predictions.

Besides the above examples, we further present results on the aver-
age number of trajectories within the candidate sets across different
GRI steps to demonstrate the efficacy of the GRI algorithm in re-
ducing the computational complexity incurred by trajectory similarity
computation. As shown in Table 2, the sequential filtering steps of
the GRI algorithm successively decrease the size of the candidate set,
thereby efficiently reducing the computational load while still creating
high-quality reference trajectories for analysis. Specifically, in the US
dataset, the final candidate trajectory set comprised merely 0.4% of
that of the original trajectory set. Similarly, for the DMA dataset, this
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Fig. 8. Example 2 - GRI Results from (a) the US dataset and (b) the DMA dataset.
This type is consistent with the direction of the target trajectory, but there is some
variation in position over time.

proportion stood at 4.7%, underscoring the significant computational
savings afforded by the GRI algorithm.

We pause to note that the DMA dataset exhibits a less pronounced
reduction in candidate set size at each GRI step compared to the US
dataset. This difference can be attributed to the more consistent pattern
of maritime traffic in Danish waters, where vessels predominantly
adhere to established shipping lanes, resulting in a less substantial
decrease in candidate trajectories at each filtering step. This con-
trast highlights the adaptability and efficiency of GRI in diverse mar-
itime settings, affirming its utility in streamlining trajectory-matching
process.

4.2. Results for trajectory prediction: quantitative analysis

In this subsection, we present a quantitative analysis of the accuracy
of the proposed trajectory prediction framework, compared to the
following established baselines:

∙ Simple-LSTM: Similar to the DLSTM methodology, this model
employs a recursive strategy for multi-step forecasting across
future 𝑛 time steps. In contrast, it utilizes unprocessed trajectory
sequences 𝑋𝑡 at time 𝑡 (outlined in (1)) as its input, rather
than combining differentiated and unprocessed feature data. The
architecture of the Simple LSTM includes two LSTM layers and
four fully connected layers. The LSTM hidden layers have 256
8 
Fig. 9. Example 3 - GRI Results from (a) the US dataset and (b) the DMA dataset.
This type has a strong correlation with the target trajectory in the historical phase, but
there is a clear divergence in the future phase.

units, while the dimensions of the fully connected layers are
(2560, 2048, 1024, 512, 2) respectively.

∙ Reference-only: The Reference-only baseline directly adopts infor-
mation extracted from the reference 𝑟(𝑡) as the predictions. Since
this baseline relies on the existence of a valid reference trajectory,
it can only be applied to the instances that the Ref-DLSTM model
is adopted.

∙ METO-S2S (Zhang et al., 2023): The METO-S2S model is one
state-of-the-art prediction model that comprises dual encoders
and one decoder. The first encoder integrates a five-layer bidirec-
tional LSTM network to encode the historical trajectory data. The
second encoder is designed to encode metadata, such as departure
time and vessel type. The decoding phase is facilitated by a two-
layer LSTM, which subsequently feeds into a fully connected layer
to generate the prediction. The model processes input features of
the following form:

𝑥𝑡 =
(

𝑙𝑜𝑛𝑡, 𝑙𝑎𝑡𝑡, 𝑆𝑂𝐺𝑡, 𝐶𝑂𝐺𝑡, 𝑑𝑡
)

,

where 𝑑𝑡 represents the cumulative distance sailed by the ves-
sel until time 𝑡. More detailed information about this model is
provided in Zhang et al. (2023).

We pause to note that among the above models, the transition from
SimpleLSTM to DLSTM and then to Ref-DLSTM sequentially incorpo-
rates two major improvements we proposed: modifying the input to
a differential form and integrating reference trajectories for feature
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Table 3
MAE of the test samples with valid reference trajectories obtained from the US dataset

MAE𝜏 Average MAE

𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 5

Simple LSTM 13.77 16.24 20.92 27.33 35.11 22.67
Reference-only 2.29 3.94 5.78 7.74 9.81 5.91
METO-S2S 3.81 5.17 7.44 10.16 13.36 7.99
DLSTM 1.14 3.01 5.50 8.43 11.76 5.97
Ref-DLSTM 1.25 3.06 5.10 7.30 9.62 5.27

Table 4
MAE of the test samples with valid reference trajectories obtained from the DMA dataset

MAE𝜏 Average MAE

𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 5

Simple LSTM 5.53 7.69 10.92 14.68 18.58 11.48
Reference-only 2.03 3.37 4.75 6.26 7.89 4.86
METO-S2S 3.30 4.50 6.65 9.13 12.00 7.10
DLSTM 1.73 4.29 7.58 11.45 15.67 8.14
Ref-DLSTM 1.32 2.83 4.45 6.20 8.02 4.56

fusion. Therefore, this progression inherently serves the purpose of an
ablation study.

In the analysis, we use the Mean Absolute Error (MAE) of the
predicted positions to quantify the discrepancy between the predicted
and the actual vessel trajectories. The MAE is calculated using the
following formula:

MAE𝜏 = 1
𝑁

𝑁
∑

𝑖=1
𝑑𝑖𝑠

(

𝑃𝑡+𝜏 , 𝑃𝑡+𝜏
)

, (20)

where 𝑑𝑖𝑠(𝑃𝑡+𝜏 , 𝑃𝑡+𝜏 ) represents the great-circle distance between the
predicted position 𝑃𝑡+𝜏 and the actual position 𝑃𝑡+𝜏 , and 𝑁 is the
number of test samples.

We note that the proposed method incorporates two prediction
modes: the Ref-DLSTM is employed when a reference trajectory is
available, and the DLSTM is used otherwise. Therefore, to evaluate
the predictive efficacy of the model, we categorize the samples into
two groups based on the availability of a valid reference trajectory
as determined by the GRI module, creating subsets with and without
a reference trajectory. Within the datasets from the US and DMA,
valid reference trajectories were identified for 53.3% and 75.5% of
the test samples, respectively. It is crucial to acknowledge that this
bifurcation serves primarily to facilitate a nuanced comparison of our
method across different scenarios. In real-world applications, including
during testing, the selection between Ref-DLSTM and DLSTM modes is
seamlessly managed by the GRI module based on the data at hand.

Tables 3 and 4 present a comparative analysis of the prediction
accuracy of Ref-DLSTM against various baselines for cases where a
reference trajectory is available. The evaluation metrics include the
MAE at each prediction step, i.e., MAE𝜏 , 𝜏 = 1, 2,… , 𝑛, and the average
MAE across all 𝑛 = 5 steps, calculated as follows:

MAE = 1
𝑛

𝑛
∑

𝜏=1
MAE𝜏 . (21)

Additionally, to demonstrate the enhancement because of the integra-
tion of a reference trajectory in the Ref-DLSTM model, a direct com-
parison with the DLSTM model is also provided in the aforementioned
tables.1

The results presented in Tables 3 and 4 indicate that the Simple-
LSTM model underperformed in terms of both individual-step predic-
tion error (MAE𝜏 ) and overall average prediction error (MAE), primar-
ily because of its simplistic approach to input data, which hindered

1 In this case, DLSTM is applied to the samples that a valid reference
rajectory is found.
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Table 5
MAE of the test samples without valid reference trajectories obtained from the US
dataset.

MAE𝜏 Average MAE

𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 5

SimpleLSTM 11.45 13.37 17.04 21.97 27.85 18.34
METO-S2S 3.85 5.26 7.74 10.74 14.04 8.33
DLSTM 1.33 3.50 6.28 9.50 13.09 6.74

Table 6
MAE of the test samples without valid reference trajectories obtained from the DMA
dataset.

MAE𝜏 Average MAE

𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 5

Simple LSTM 12.51 14.44 17.73 21.67 26.00 18.47
METO-S2S 14.17 11.92 14.28 17.69 21.83 15.98
DLSTM 2.37 5.76 9.99 14.92 20.49 10.71

its capability to learn the dynamic and nonlinear aspects of vessel
movements. Upon modifying the input to differential features as for
DLSTM, the average MAE was reduced by 73.7% for the US dataset
and 29.1% for the DMA dataset, respectively. The improvement comes
in two-fold. On one hand, the differential input format enhances the
model’s sensitivity to trajectory positions and motion characteristics,
enabling more accurate learning of information changes. On the other
hand, since the prediction is made in a differential manner, where
future position information is adjusted based on historical data, this
approach ensures the continuity of the trajectory. The experimental
results from both datasets also confirm the robustness of the DLSTM
model.

Furthermore, long-term trajectories might exhibit motion character-
istics in the future that differ greatly from historical patterns, leading
to larger cumulative errors for DLSTM if the prediction horizon is large.
To address this issue, reference trajectories are introduced for feature
fusion, resulting in the Ref-DLSTM model. Experimental results demon-
strate that the incorporation of reference trajectories can improve the
prediction accuracy, reducing the MAE by 13.4% and 18.2% for the
US dataset and 45.9% and 48.8% for the DMA dataset, respectively,
achieved at 𝜏 = 4 and 𝜏 = 5 compared to the DLSTM model.

For the METO-S2S model, Tables 3 and 4 also demonstrate a more
subdued error amplification across successive prediction steps, a direct
outcome of its architecture which facilitates simultaneous multi-step
trajectory forecasting. The design of METO-S2S inherently balances
the prediction accuracy across all steps during the back-propagation
process by adjusting the loss contribution of each step. However, this
methodology can result in elevated errors for the initial trajectory
points. In contrast, the DLSTM and Ref-DLSTM models, which predict
each trajectory point individually, effectively counteract this early-
stage prediction inaccuracy. In particular, Ref-DLSTM builds upon the
DLSTM framework by incorporating reference trajectory data to further
mitigate error propagation in long-range predictions. As a result, Ref-
DLSTM achieves a significantly lower overall prediction error, with the
average MAE showing a reduction of 34.0% and 35.8% in the US and
DMA datasets, respectively, when compared to the METO-S2S model.

In the evaluation of test samples without a valid reference trajec-
tory, where Reference-Only and Ref-DLSTM models are inapplicable,
the DLSTM model performance is benchmarked against Simple-LSTM
and METO-S2S baselines, as detailed in Tables 5 and 6. The DL-
STM model demonstrates a substantial reduction in average MAE,
outstripping Simple-LSTM by 63.2% and METO-S2S by 19.1% in the
US dataset, and eclipsing them by 42.0% and 33.0%, respectively, in
the DMA dataset. We will note that a comparative analysis with results
from Tables 3 and 4 reveals higher prediction errors in the absence of a
reference trajectory, highlighting the complex motion patterns of these
trajectories which present significant learning challenges. This contrast
accentuates the efficacy of the Ref-DLSTM’s integration of reference

trajectories in enhancing prediction accuracy.
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Fig. 10. Representative examples selected from the US test datasets with valid trajectories: (a) the target trajectory exhibits a smooth pattern, making the prediction relatively
straightforward; (b) the target trajectory exhibits a smooth pattern in the historical phase but has a significant change of COG in the future phase; (c) the target trajectory exhibits
significant changes in both SOG and COG in the historical and future phase; (d) the target trajectory exhibits a smooth pattern in the historical phase, but has much sharper
changes in COG in the future phase.
4.3. Results for trajectory prediction: qualitative analysis

In Section 4.2, we analyzed the advantages of our proposed method
over existing technologies through quantitative results. In this sub-
section, we will present several representative examples from the
US dataset to demonstrate the predictive performance of the Ref-
DLSTM and DLSTM models, as well as the state-of-the-art trajectory
prediction method, METO-S2S. The predicted trajectories are shown
in Figs. 10(a)–10(d), while Table 7 presents the prediction errors at
each time step. In each of these figures, the black trajectory represents
the historical and future stages of the target vessel; the green dashed
trajectory is the reference trajectory found by the GRI module; the
yellow trajectory represents the predicted trajectory by the METO-
S2S model; the blue trajectory represents the trajectory predicted by
DLSTM; and the red trajectory represents the trajectory predicted by
Ref-DLSTM.

The example in Fig. 10(a) is a typical one in that both the Ref-
DLSTM and the baselines perform well on trajectory predictions. This is
because the target trajectory is a smooth curve with minor variations
in SOG and COG, reflecting a relatively straightforward navigational
pattern.

In contrast to the relatively straightforward scenario presented in
Fig. 10(a), the trajectory in Fig. 10(b) poses a greater challenge because
10 
Table 7
Prediction errors for the example presented in Fig. 10.

MAE𝜏

𝜏 = 1 𝜏 = 2 𝜏 = 3 𝜏 = 4 𝜏 = 5

(a)
METO-S2S 3.39 3.19 4.06 5.50 7.16
DLSTM 0.78 1.98 3.25 4.43 5.90
Ref-DLSTM 0.45 1.14 2.17 3.24 4.42

(b)
METO-S2S 2.72 3.15 5.30 12.73 21.59
DLSTM 2.13 4.40 5.27 10.36 15.51
Ref-DLSTM 1.87 2.53 2.93 3.11 4.55

(c)
METO-S2S 3.76 7.61 16.67 25.76 37.82
DLSTM 1.14 2.71 9.61 18.87 30.18
Ref-DLSTM 1.63 3.96 3.63 3.39 6.90

(d)
METO-S2S 3.64 5.08 7.19 13.61 26.89
DLSTM 0.67 1.34 1.78 10.11 26.02
Ref-DLSTM 1.14 2.83 4.97 3.53 15.19

of significant COG changes in the future phase, diverging from the his-
torical phase of near-linear motion. In this case, the Ref-DLSTM model
outperforms the METO-S2S and DLSTM models in terms of prediction
accuracy, benefiting from the inclusion of a reference trajectory that
provides critical insights into forthcoming COG shifts. As can be seen
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from Table 7, while all models achieve reasonable accuracy at 𝜏 = 1, the
DLSTM and METO-S2S models cannot anticipate the COG adjustment
between 𝜏 = 2 and 𝜏 = 3, leading to a marked error increase from
𝜏 = 3 forward. In contrast, the Ref-DLSTM model effectively leverages
GRI-derived predictive priors to adjust its predictions, significantly
mitigating errors associated with the abrupt COG changes.

The trajectory shown in Fig. 10(c) transitions from a narrow river
channel to the open sea, significantly increasing the difficulty of pre-
diction compared to those in Fig. 10(a) and Fig. 10(b). Analysis of
the ground truth trajectory reveals notable changes in COG during
the historical phase, as precise control of the vessel course is required
within the narrow river. In the future phase, especially after 𝜏 = 2, the
trajectory undergoes a sharp turn. Additionally, after entering the open
sea at the end of the historical phase, the vessel enters an accelerated
motion mode. As a result, both the METO-S2S and DLSTM models fail
to provide trajectory predictions with satisfactory quality (predicting
both the sharp turn and the accelerated speed). Leveraging GRI-derived
predictive priors for SOG and COG, the Ref-DLSTM model markedly
reduces the prediction error by accurately adjusting for the sudden
motion shifts. This demonstrates the capability of Ref-DLSTM to adapt
to rapid changes in motion patterns and hence the value of integrating
precise prior information to enhance prediction accuracy in intricate
navigational contexts.

Fig. 10(d) presents a trajectory with a similar structure to that in
Fig. 10(b), characterized by a simple historical phase followed by an
abrupt turning in the future phase. However, the example in Fig. 10(d)
is significantly more challenging since the COG change is much sharper.
While the Ref-DLSTM model can partially redirect towards the accu-
rate trajectory, its effectiveness is limited by the limited information
from the reference trajectory. Nonetheless, compared to DLSTM and
METO-S2S, the performance of Ref-DLSTM remains superior.

5. Conclusions and discussions

This paper has developed a deep learning-based trajectory pre-
diction framework that utilizes navigation patterns from reference
trajectories to improve prediction accuracy. Relying solely on the past
motion characteristics of the target trajectory, a Differential Long Short-
Term Memory (DLSTM) mode has been first designed for trajectory
predictions in the absence of a reference trajectory. Based on DLSTM,
an enhanced version, Ref-DLSTM, has been developed to incorporate
features from both the target and the reference trajectories, offering
refined prediction capabilities. To accelerate the identification of refer-
ence trajectories, a grid-based search algorithm has been developed to
confine the search to a localized area. Evaluations using AIS datasets
from the US and DMA highlight the superiority of the proposed frame-
work over existing models, with significant reductions in geographical
distance errors.

The current research has primarily capitalized on historical ref-
erence trajectories to refine trajectory prediction accuracy. However,
future advancements could explore the integration of environmental
factors, such as weather conditions and ocean currents, into the pre-
diction models. Employing techniques like feature fusion and encoding
could enable the incorporation of critical weather variables, including
wind speed, direction, temperature, and precipitation, alongside the
effects of ocean currents on vessel trajectories, potentially enhancing
fuel efficiency and voyage timing predictions. Further, there is an
opportunity to enhance the feature fusion technique utilized within the
Ref-DLSTM model. The existing method, which merges LSTM-processed
trajectories, might not adequately capture the intricate relationships
present in the trajectory data. Investigating more sophisticated feature
fusion approaches and leveraging cutting-edge methodologies such as
multimodal deep learning and Graph Neural Networks could provide
deeper insights and more effective amalgamate of varied data types,

culminating in more precise and adaptable trajectory forecasting.
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Appendix

The raw AIS data encompasses a variety of vessel information and
has a very fine temporal granularity. Additionally, it may also contain
noise, errors, and anomalies, necessitating preprocessing to ensure data
accuracy and reliability. To extract valid target trajectories, the raw AIS
data is filtered and cleaned by the following steps:

1. Trajectory Extraction. Maritime Mobile Service Identity (MMSI)
serves as the unique identifier for each vessel. Therefore, each
trajectory is identified based on the MMSI embedded in the
AIS messages by extracting and sorting the AIS data entries
according to their timestamps.

2. Denoising. For each trajectory identified in the previous step,
we remove trajectory points with abnormal status, such as those
indicating anchoring or mooring, and points where the SOG
exceeds 40 knots or falls below 2 knots. Additionally, trajec-
tory points with sudden changes in position are eliminated.
Specifically, we calculate the change in latitude and longitude
between adjacent trajectory points; if the difference in latitude or
longitude of a point compared to the two adjacent points exceeds
0.1◦, it is considered an outlier and should be removed.

3. Down-sampling. Since this work considers trajectory prediction
at equal time intervals, each trajectory point is expected to
have the same time interval between them. This is achieved
through linear interpolating the trajectory data after denoising,
with the time interval between adjacent points set to 30 min.
The interpolated trajectory points adopt the SOG and COG of the
nearest original trajectory point as their instantaneous attributes,
while the average SOG and COG are calculated for the adjacent
interpolated points.
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