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Abstract— Carbon dioxide (CO2) is the most important green-
house gas in the atmosphere, playing a crucial role in the
greenhouse effect and climate change. Lidar, with its high spa-
tiotemporal resolution and high-precision detection capabilities,
has become an essential tool for remote sensing of CO2. However,
precise temperature information is required for CO2 retrieval.
Studies showed that for both differential absorption lidar (DIAL)
and spectroscopic lidar, a CO2 concentration measurement error
of 2.0–3.5 ppm would result from each 1 K temperature deviation.
Therefore, using nonreal-time and non in situ temperature data
can lead to significant CO2 retrieval errors. In this study,
a column-averaged CO2 spectroscopy lidar is proposed, which
enables simultaneous measurements of CO2 concentration, tem-
perature, and semi-heavy water (HDO, isotopic water vapor).
First, a model combining five Lorentzian functions with a bino-
mial background was proposed through spectral decomposition.
Second, through theoretical analysis, the fitting parameters were
reduced from 18 to 5. Finally, theoretical analysis shows that the
model achieves system biases of less than 0.1 ppm for CO2, 0.1 K
for temperature, and 0.06 ppm for HDO. Considering Poisson
noise, the error distributions of CO2, temperature, and HDO
under different optical distances and signal-to-noise ratios (SNRs)
were studied. This technology will advance the development of
CO2 flux remote sensing and is expected to play a crucial role in
ecosystem research, atmospheric environmental monitoring, and
greenhouse gas emission reduction policies.

Index Terms— Absorption spectroscopy, carbon dioxide (CO2)
measurement, lidar, temperature measurement.

I. INTRODUCTION

IN RECENT years, the increase in atmospheric carbon diox-
ide concentration (XCO2) has drawn widespread attention.

As of 2023, the global atmospheric average XCO2 has exceeded
420 ppm, a significant rise from the preindustrial level of
280 ppm [1]. Studies have shown that for every 100 ppm
increase in XCO2 , the surface temperature of the Earth rises
by approximately 1.5 ◦C [2], [3]. High XCO2 leads to global
warming, ocean acidification [4], biodiversity loss, and threats
to human health [5]. Therefore, the accurate detection of XCO2
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is crucial for understanding and mitigating the impacts of
climate change.

Existing in situ measurement techniques, such as high
sensitivity cavity ring-down spectroscopy, can achieve remark-
able XCO2 measurement precision of 0.1 ppm [6]. However,
since these in situ techniques require air sampling, they
can only perform fixed-point measurements [6]. In con-
trast, CO2 lidar technology enables remote sensing of XCO2

with its high temporal and spatial resolution. Therefore,
it is receiving increasing attention and has been applied in
volcanic CO2 flux measurements [7] and urban area CO2
monitoring [8].

In the past decade, advancements in infrared detection
technology and infrared laser technology have significantly
improved the performance of CO2 lidar. To improve detection
sensitivity, a CO2 lidar utilizing a superconducting nanowire
single-photon detector (SNSPD) has been developed [9]. Addi-
tionally, a 1.57-µm CO2 lidar based on coherent detection
has been designed to simultaneously measure wind speed
and XCO2 for flux measurements [10], [11]. To enhance CO2
detection accuracy and enable the simultaneous measurement
of multiple gases, such as H2O, a multiwavelength lidar
system has also been introduced [12], [13]. Furthermore,
airborne [14], [15] and spaceborne [16], [17] CO2 lidars have
been proposed to monitor CO2 uptake over oceans and conduct
global CO2 surveys.

However, whether employing dual-wavelength differential
absorption lidar (DIAL) systems or multiwavelength lidar
systems, such as spectroscopy lidar systems, converting lidar
backscattered signals to XCO2 requires temperature data [18].
In other words, the precision of XCO2 detection is directly
influenced by the accuracy of temperature data. However,
temperature data are typically obtained from radiosondes or
models, which are nonreal time and nonin situ. These temper-
ature data inevitably introduce errors in XCO2 retrieval [19].

Conversely, the sensitivity of CO2 lidar inversion to tem-
perature implies the potential for simultaneously conducting
temperature inversion [12], [13]. Unfortunately, research in
this field is relatively limited. On the one hand, the lidar light
source must emit enough wavelengths to capture the entire
CO2 absorption spectrum. On the other hand, there is a lack
of inversion algorithms capable of simultaneously retrieving
both XCO2 and temperature [13], [19].

Meanwhile, once simultaneous measurements of XCO2 and
temperature are achievable, it will not only enhance the
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accuracy of lidar measurements of XCO2 but also hold sig-
nificant importance for calculating CO2 flux using the eddy
covariance method [20]. This is because temperature has a
significant impact on turbulent transport processes. Temper-
ature variations can induce buoyancy effects that influence
turbulence intensity, which in turn affects the transport and
diffusion of CO2. Additionally, temperature data are crucial
for calculating sensible and latent heat fluxes, which help
ensure energy balance closure and accurately distinguish the
contribution of biological processes to CO2 flux [21].

In this study, a column-averaged CO2 spectroscopy lidar
is proposed, which enables simultaneous measurements of
XCO2 , temperature, and HDO concentration (XHDO). First, the
principle of CO2 lidar is described in detail, and then, the
theoretical study of the errors in XCO2 retrieval caused by tem-
perature deviation (1T ) in both DIAL and spectroscopy lidar
is conducted. Then, the feasibility of using the CO2 absorption
spectrum for simultaneous temperature retrieval is validated
by analyzing the relationship between temperature parameters
and absorption spectrum width. Subsequently, a model for
the CO2 absorption spectrum is proposed, which utilizes a
five-peak Lorentzian combined with a binomial background.
To improve the fitting efficiency and accuracy, theoretical anal-
ysis was conducted to reduce the number of fitting parameters
from 18 to only 5. Finally, numerical simulations verify the
effectiveness of this algorithm and establish the relationship
between the errors in XCO2 , temperature, and XHDO with
the signal-to-noise ratio (SNR) and optical distance, thereby
providing theoretical guidance for experimental research.

II. PRINCIPLE OF CO2 LIDAR

The backscattered photons received by the CO2 lidar at a
distance of R can be expressed as [22]

Ns(xi , R) =
E · 100
h · xi

η0ηq
At

R2 O(R)
τ

2
β(xi , R)T 2

r (xi , R) (1)

where Ns is the backscattered photon counts, E is the pulse
energy (J), c is the speed of light, xi is the laser wavenumber
(cm−1), R is the distance (m), h is the Planck constant, η0 is
the optical efficiency of the lidar system (%), ηq is the quantum
efficiency (%), At is the effective area of the telescope (m2),
O(R) is the geometric overlap factor at a distance of R, τ is
the laser pulse duration (s), β represents the 180 ◦C volume
backscattering coefficient of aerosols (m−1), and Tr is the
transmission term, which can be expressed as

Tr (xi , R) = exp
{

−

∫ R

0
[αa(xi , R) + αs(xi , R)]dr

}
(2)

where αa is the extinction coefficient of aerosol (m−1). αs is
the extinction coefficient of molecules and can be described
as αs = α + αm , where α is the absorption coefficient of
the gas under investigation and αm represents other extinction
processes of molecules.

The CO2 lidar measures XCO2 by detecting the absorption of
laser signals by CO2 in the atmosphere. During the measure-
ment process, since wavelength variations are generally within
0.2 pm, β, αa and αm can be assumed to be wavelength-
insensitive. Hence, the ratio of backscattered photon counts

Fig. 1. (a) Spectra of backscattered photon counts Ns(xi , R) and (b) total
OD spectra of CO2 at various distances under 450-ppm CO2, 5.28-ppm HDO,
297 K, and 1 atm.

between the two wavenumbers can be expressed as

Nsi

Ns0

= exp
(

−2
∫ R

0
[αi − α0]dr

)
(3)

where αi and α0 are the CO2 absorption coefficient at the
wavenumber of xi and x0, respectively.

In the 6360-cm−1 spectral interval, with the weak CO2
absorption line at 6360.60 cm−1 serving as a reference point,
integrate the absorption coefficient from 0 to R to obtain the
optical depth (OD), which is expressed as

OD(xi , R) = −0.5 ln
[

Nsi

Ns0

]
=

∫ R

0
[α(xi , R) − α(x0, R)]dr.

(4)

The photon counts Ns(xi , R) in the 6359.60–6360.60 cm−1

band can be reconstructed using (1), resulting in the relative
spectra at different distances presented in Fig. 1. Utilizing
the data from Fig. 1(a) and applying (4), the OD spectra at
different distances can be calculated, as shown in Fig. 1(b).
From Fig. 1, it is evident that both the photon count spectra
and the OD spectra exhibit increased spectral contrast with
increasing distance, which is beneficial for detection.

III. IMPACT OF TEMPERATURE DEVIATION ON CO2
CONCENTRATION RETRIEVAL

A. Effect of Temperature Deviation on CO2 DIAL

In CO2 DIAL, two laser wavelengths are typically used: one
located at a strong CO2 absorption feature, referred to as the
online (λon), and another selected from a weak CO2 absorption
band, known as the offline (λoff). By analyzing the intensity
and distance information from the backscattered signal of a
hard target, the column-averaged XCO2 can be retrieved [23].
According to (4), the OD of DIAL can be expressed as

OD = −0.5 ln
[

Non

Noff

]
(5)

where Non is the photon count at λon and Noff is the photon
count at λoff. According to OD, the molecular number density
of CO2 NCO2 (molecule/m3) in the atmosphere can be retrieved
as

NCO2 =
OD

(σon − σoff)R
(6)
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where σon is the absorption cross section of CO2 at λon and
σoff is the absorption cross section at λoff.

According to the ideal gas state equation, the number
density of CO2 (NCO2) can be converted to XCO2 [24]

XCO2 =
NCO2

n
× 106

=
NCO2 kbT

P
× 106 (7)

where n is the molecular number density of the atmosphere
(molecule/m3), P is the ambient pressure (Pa), T is the
ambient temperature (K), and kb is Boltzmann’s constant.

From the above analysis, the impact of temperature devi-
ation 1T on XCO2 involves two aspects: first, temperature
affects the calculation of NCO2 in the process of retrieving
XCO2 [as indicated in (7)]; secondly, the CO2 absorption cross
section, which is necessary for calculating NCO2 as described
in (6), also depends on temperature data. To simultaneously
consider both factors, Han et al. [25] introduced a weighting
factor (w) to comprehensively account for the influence, which
can be expressed as

w =
σon − σoff

kbT/P
. (8)

Thus, (7) can be rewritten as

XCO2 =
1

2wR
· ln

Non

Noff
. (9)

To quantitatively analyze the error of XCO2 (1XCO2) caused
by 1T , this work carried out the following studies: 1) the
deviation in the absorption cross section caused by 1T leads
to errors in XCO2 retrieval; 2) when converting NCO2 to XCO2 ,
as indicated by (7), the impact of 1T on XCO2 retrieval; and 3)
the combined effect of the above two factors on XCO2 retrieval,
as shown in (9).

The results from these analyses are shown in Fig. 2.
During the simulation process, XHDO was set to 5.28 ppm
and pressure to 1 atm. The 1XCO2 introduced by 1T when
calculating the absorption cross section is shown in Fig. 2(a).
That is, assuming there is no temperature deviation when
calculating XCO2 using (7), while a temperature deviation is
present in calculating NCO2 using (6), resulting in 1XCO2 .
For every 1 K deviation in temperature, the 1XCO2 increases
by 0.68–1.23 ppm. Higher XCO2 and higher temperatures
result in larger 1XCO2 . The 1XCO2 caused by 1T when
converting NCO2 toXCO2 is shown in Fig. 2(b). That is,
assuming there is no temperature deviation when calculating
NCO2 using (6), while a temperature deviation is present in
calculating XCO2 using (7), resulting in 1XCO2 . In this case,
for every 1 K deviation in temperature, the 1XCO2 increases
by 1.18–2.22 ppm. Furthermore, higher XCO2 and lower tem-
peratures result in larger 1XCO2 . The combined effect of 1T
on 1XCO2 , calculated by (9), is shown in Fig. 2(c). That
is, assuming temperature deviation exists both in calculating
XCO2 using (7) and in calculating NCO2 using (6), resulting
in 1XCO2 . As illustrated in Fig. 2(c), the impact of 1T on
1XCO2 varies with different atmospheric temperatures and
XCO2 levels. For every 1 K deviation in temperature, 1XCO2

increases by approximately 1.96–3.28 ppm. Overall, higher
XCO2 and lower temperatures lead to larger 1XCO2 .

TABLE I
PARAMETERS OF THE FIVE ABSORPTION PEAKS USED

IN THE MODEL [29]

B. Effect of Temperature Deviation on CO2 Spectroscopy
Lidar

DIAL cannot obtain the full absorption spectrum informa-
tion of CO2 because it uses only two wavelengths. To address
this limitation, Yu et al. [13] proposed a scheme in 2021 to
acquire the CO2 absorption spectrum, enabling the retrieval
of multiple gases, including CO2 and HDO. To decompose
the absorption spectrum CO2, a model was proposed for
nonlinear least squares fitting of the OD spectrum. The
model employs three Lorentzian functions, namely, S1–S3 (see
Table I), to represent the three strongest absorption peaks
around 6359.96 cm−1, along with a constant background value
(B), which can be expressed as follows:

F(x) = f1(x) + f2(x) + f3(x) + B (10)

where fi (x) represents a Lorentzian function, which can be
expressed as

fi (x) =
Ai

π

ωLi

ω2
Li + (x − xci )

2 (i = 1, 2, 3) (11)

where A is the area of the Lorentzian peak (cm−2), ωL is
the half-width at half-maximum (HWHM) of the Lorentzian
function (cm−1), and xc is the central wavenumber of the
Lorentzian function under ambient conditions (cm−1).

To obtain distance-resolved OD, the OD is transformed into
unit OD (UOD) before performing the fitting as follows:

UOD(xi , R) = −
1

2R
ln

[
Nsi

Ns0

]
= α(xi , R) − α(x0, R). (12)

In the near-Earth atmospheric environment, the line shape
of the absorption peak is the Lorentz line shape [26]. The
absorption coefficient at the wavenumber is equal to the sum
of the absorption coefficients of all absorption peaks at this
wavenumber

α(x) =

∑
f (x) (13)

where f (x) represents a Lorentzian function, as described
by (11).
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Fig. 2. Analysis of XCO2 retrieval errors (1XCO2 ) caused by temperature deviation (1T ) in DIAL. (a) 1XCO2 resulting from the absorption cross section
deviation due to temperature deviation. (b) 1XCO2 resulting from 1T when converting NCO2 to XCO2 . (c) 1XCO2 caused by 1T under the combined effect
of the two factors mentioned above. (The parameter k in the figure represents the slope of the 1T versus 1XCO2 curve, indicating the error in 1XCO2
retrieval for each 1 K deviation).

The area A of the Lorentzian profile is fitted to UOD for
the retrieval of CO2 and HDO concentrations, where A can
be expressed as

A =
S(T )Pself

kbT × 106 (14)

where Pself represents the partial pressure of the target gas,
which can be expressed as

Pself = P · X · abundance (15)

where X is the concentration of the target gas, abundance
refers to the natural abundance of the target isotope in the
environment, and S(T ) represents the spectral line intensity at
temperature T (cm/molecule), which can be expressed as [27]

S(T ) = S(T0)
Q(T0)

Q(T )

{
1 − exp(−c2x0/T )

1 − exp(−c2x0/T0)

}
exp

[
E ′′c2

(
1
T0

−
1
T

)]
(16)

c2 =
h × c

kb
= 1.4387769cm · K (17)

xc = x0 + P × Pshift ×

(
T0

T

)nair

(18)

where S(T0) is the spectral line intensity at T0 (cm/molecule),
x0 is the wavenumber of the spectral line transition (cm−1) in
vacuum, Q(T0) is the total internal partition sum at T0 and can
be downloaded from HITRAN2020, Q(T ) is the total internal
partition sum at T , c2 is the second radiation constant, and E
is the lower state energy of the transition (cm−1).

Finally, the concentration of the target gas X can be
expressed as

X =
A

S(T )nL

P0

P
T
T0

(19)

where P0 is 1 atm, T0 is 296 K, and nL (molecule/m3) denotes
the molecular number density in the atmosphere under the
conditions of P0 and T0. Additionally, when the concentration
of CO2 is expressed in ppm, the CO2 concentration needs to
be multiplied by 106. Similarly, the HDO concentration needs
to be multiplied by 106 since HDO is expressed in ppm.

Fig. 3. Effect of temperature deviation on spectroscopy lidar to measure
CO2.

However, it is still necessary to incorporate the temper-
ature information in the retrieval process. The deviation in
temperature will lead to errors in the retrieval of XCO2 and
XHDO. Assuming other parameters are known and based on
the model described in (10), the 1XCO2 caused by the tem-
perature deviation when using (11)–(19) is shown in Fig. 3.
Calculations show that every 1 K deviation in temperature
will lead to a 2.02–3.49-ppm deviation in CO2. However, it is
challenging to obtain synchronized and accurate temperature
data in experiments. Therefore, obtaining temperature data
simultaneously while measuring CO2 is particularly important.

IV. FEASIBILITY ANALYSIS OF TEMPERATURE RETRIEVAL
VIA ABSORPTION SPECTROSCOPY

The width ωL of the absorption spectrum of CO2 is affected
by temperature, and its width can be expressed as [27]

ωL =

(
T0

T

)nair[
γair(P0, T0)(P − Pself) + γself(P0, T0)Pself

]
(20)

where nair is the coefficient of the temperature dependence
of ωL , Pshift is the pressure shift at the spectral line posi-
tion (cm−1/atm), and γair and γself are the air-broadened ωL

(cm−1/atm) and self-broadened ωL (cm−1/atm) at T0 and P0,
respectively.
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Fig. 4. Effects of (a) pressure, (b) XCO2 , and (c) temperature on ωL .

As indicated in (20), P , Pself, and T codetermine ωL . The
influence of these three parameters on ωL will be analyzed
individually. First, the atmospheric pressure profile is relatively
stable in the vertical direction, allowing the use of model
data with deviations within ±2 hPa [28]. Fig. 4(a) shows
that under 1 atm, variations in ωL remain within 1% when
pressure deviates by ±5 hPa. Therefore, although P influences
the magnitude of ωL , accurate pressure data can minimize
the error it introduced. Additionally, the influence of Pself on
ωL is approximately in the range of 10−5–10−4 of its own
magnitude and can therefore be neglected. In (20), γair(P0,
T0)(P − Pself) represents the contribution of pressure from
other gases in the atmosphere to ωL broadening, while γair(P0,
T0)Pself represents the contribution of partial pressure from the
target gas to ωL broadening. Fig. 4(b) shows that when XCO2

changes from 350 to 550 ppm at T0 and P0, ωL increased by
only 5 × 10−6 cm−1. Additionally, the analysis of ωL in S2
revealed that when XHDO increased from 3.11 to 6.21 ppm,
ωL increased by only 9 × 10−7 cm−1, indicating that the
magnitude of the variable itself is approximately 10−2 cm−1.
The above analysis indicates that ωL is minimally affected by
changes in gas concentration.

In contrast, ωL is much more sensitive to temperature
changes than to variations in gas concentration. According
to (20), the width of the CO2 absorption peak S1, ωL , can
be calculated as the temperature changes from 223 to 324 K.
The results are shown in Fig. 4(c), where ωL changes by
approximately 2.5 × 10−4 cm−1 for every 1 K change in
temperature. This indicates that ωL is sensitive to temperature
variations. In summary, ωL is minimally affected by gas
concentration and is primarily determined by temperature. This
provides a basis for using ωL for temperature retrieval.

However, the three-peak Lorentzian plus background model
described by (10) is insufficient for accurately describing CO2
absorption spectra. As shown in Fig. 5, with XCO2 set to
450 ppm, XHDO set to 5.28 ppm, pressure at 1 atm, and
temperature at 297 K, the systematic errors from least-squares
fitting using (10) are evident. Fig. 5(a) shows that as XCO2

increases from 350 to 550 ppm, the systematic error of
XCO2 rises from 8.5 to 12.7 ppm. Fig. 5(b) indicates that
for temperature inversion from 250 to 310 K, the deviation
between true and inverted temperatures follows a quadratic
function, peaking at 270 K with an error of 4.36 K, decreasing

but still above 4.15 K on either side. Fig. 5(c) reveals that
the XHDO bias is minimized at 4.66 ppm, increasing on both
sides. Thus, to improve accuracy, it is necessary to develop a
model that more accurately approximates the real absorption
spectrum.

V. DETERMINATION OF THE ABSORPTION SPECTRUM
MODEL

A. Spectral Decomposition

To accurately describe the absorption spectrum of CO2, the
absorption spectrum needs to be decomposed first. Fig. 6(a)
shows the absorption spectrum calculated using data from
the HITRAN2020 database [29]. Using the criterion of
peak intensities being more than twice as strong as other
background absorption peaks, five absorption peaks, labeled
S1 through S5, are selected, with their locations shown in
Fig. 6(a). According to the HITRAN database, the peak posi-
tions of these five absorption peaks are 6359.967, 6359.748,
6360.278, 6360.113, and 6359.864 cm−1. In atmospheric
CO2 detection, the influence of atmospheric pressure and
temperature on these peak positions is negligible. However,
Doppler shifts caused by atmospheric wind speed do affect
them. Fortunately, the Doppler-induced frequency shift can
be compensated for by adding a wind measurement func-
tion to the CO2 lidar [30]. When the three peaks S1–S3,
as shown in (10), are subtracted from the spectrum, the
resulting spectrum is shown in Fig. 6(b). As shown there,
this resulting spectrum cannot be solely represented by the
background constant B in (10). This discrepancy is the reason
why using (10) to describe the absorption spectrum results
in significant systematic deviations in XCO2 , temperature, and
XHDO, as shown in Fig. 5.

From Fig. 6(b), it can be observed that peak S4 has a
significant impact on the background. After subtracting S4, the
remaining absorption spectrum is shown as the dashed line in
Fig. 6(c), and peak S5 still stands out in the remaining spec-
trum. After subtracting S5, the residual spectrum, shown as
the solid line in Fig. 6(c), reveals that the residual background
curve can be represented by a binomial. Therefore, to enhance
the representation of the absorption spectrum, a model is
introduced that describes the CO2 absorption spectrum using
a five-peak Lorentzian combined with a binomial background,
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Fig. 5. Systematic errors introduced by the three-peak model described in (10) for (a) CO2 concentration, (b) temperature, and (c) HDO concentration.

Fig. 6. (a) Absorption spectrum in the 6360-cm−1 band. (b) Residual spectrum after removing peaks S1–S3. (c) Residual spectrum (solid line) after removing
peaks S1–S4, and the residual spectrum (dashed line) after removing S1–S5.

as shown in the following:

F(x) = f1 + f2 + f3 + f4 + f5 + aB(x − bB)
2
+ cB . (21)

The detailed parameters of the five absorption peaks used in
the model are listed in Table I.

B. Simplification of Fitting Parameters

However, when the model is updated from three Lorentz
functions plus a background, as described in (10), to five
Lorentz functions plus a binomial background, as described
in (21), the number of unknown parameters to be determined
increases to 18. This will significantly increase the difficulty
of fitting and reduce its accuracy. Therefore, it is important
to find relationships among the parameters in order to reduce
the number of variables that need to be decided. First, the
central positions of the five Lorentz functions need to be
determined. As shown in (18), the central wavenumber is
influenced by temperature and pressure. A change of 1 K
in temperature results in a change of approximately 1.5 ×

10−5 cm−1 in the central wavenumber. Similarly, a change of
1 hPa in pressure leads to a change of approximately 5.7 ×

10−8. Therefore, these variations are negligible compared to
the central wavenumber itself. Without considering the spectral
shift caused by atmospheric wind speed [30], the central
wavenumbers of the five Lorentz functions can be treated
as known constants, with their specific values presented in
Table I. Through the above analysis, the number of fitting

8 to 13. Second, parameter is reduced from 1, as shown
in (14), area A is related to gas concentration and spectral
line intensity S(T ). For the same gas, area A depends solely
on the spectral line intensity S(T ). According to (16), the
ratio between different peaks of the same gas depends only
on the parameters of the absorption peaks themselves and the
temperature. When the ambient temperature changes, the ratio
of each peak area is shown in Fig. 7. For every 1 K increase in
temperature, the A3/A2 ratio decreases by about 1.67 × 10−3,
the A4/A1 ratio increases by about 1.59 × 10−5, and the A5/A1
ratio increases by about 6.40 × 10−6. Therefore, for the same
gas, the area ratios between different peaks can be determined
by temperature. In the fitting processes, once the temperature
is determined, the ratios of A can be accordingly established.
Furthermore, since the ratio of the areas of different peaks for
the same gas can be obtained from the temperature, the three
unknowns for the CO2 peak areas, namely, A1, A4, and A5,
are simplified to just one. Similarly, the two unknowns for the
HDO peak areas, A2 and A3, are simplified to one. Moreover,
according to the analysis in Section IV, ωL is mainly affected
by temperature rather than gas concentration. Therefore, the
ωL values of the five Lorentz functions can be related through
temperature. Calculated according to (20), the ratios of ωL2,
ωL3, ωL4, and ωL5 to ωL1 with respect to temperature are
shown in Fig. 8. From the picture, the ratios of each width to
ωL1 change slightly between 250 and 310 K. For every 1 K
increase, the ωL2/ωL1 ratio decreases by about 3.97 × 10−4,
the ωL3/ωL1 ratio decreases by about 3.90 × 10−4, the ωL4/ωL1

Authorized licensed use limited to: Xiamen University. Downloaded on December 20,2024 at 08:10:38 UTC from IEEE Xplore.  Restrictions apply. 



SHANGGUAN et al.: SIMULTANEOUS COLUMN-AVERAGED CO2, TEMPERATURE, AND HDO MEASUREMENT 4100112

Fig. 7. Effect of temperature on the ratio of the area of absorption peaks (a) S3 and S2, A3/A2, (b) S4 and S1, A4/A1, and (c) S5 and S1, A5/A1.

ratio increases by about 3.85 × 10−5, and the ωL5/ωL1 ratio
remains constant at 0.9865. This indicates that the ratios
of the widths of the different absorption peaks to ωL1 can
be considered constants. Therefore, determining ωL1 for the
CO2 absorption peak S1 as the only unknown is sufficient to
determine the ωL values for the other four absorption peaks.
Finally, a study on the model background was conducted.
By analyzing the residual background spectra after subtracting
the absorption spectra of S1–S5 under different CO2 con-
centrations, HDO concentrations, temperatures, and pressures,
it was found that these background values can be accurately
fitted using a quadratic equation aB(x − bB)2

+ cB . The
results are shown in Fig. 9. Fig. 9(a) shows the background
spectra for varying CO2 concentrations. Fig. 9(b) presents
the background spectra for different HDO concentrations.
Fig. 9(c) illustrates the background spectra under different
temperature, and Fig. 9(d) displays the background spectra
at various temperatures. As shown in Fig. 9, the background
spectra under different conditions can be well fitted using a
univariate quadratic equation, with Fig. 9(a) illustrating an
example of the fitting results. The analysis of these spectra
reveals that the value of bB consistently regresses to 6359.97,
so bB can be fixed as a constant 6359.97. This analysis reduces
the number of unknowns in the background from three to
two. Additionally, based on the results from Fig. 9, the initial
values for aB and cB in the fitting are set to 1.8 × 10−6

and 1.26 × 10−5. Based on the above analysis, the newly
proposed absorption spectrum model, as represented by (21),
simplifies the number of unknowns from 18 to 5. These five
parameters are the area A1 of absorption peak S1, the area
A2 of absorption peak S2, the ωL1 of absorption peak S1, and
the background parameters a and c. Among these, A1 will be
used to retrieve CO2 concentration XCO2 , A2 will be used to
retrieve HDO concentration XHDO, and ωL1 will be used to
retrieve temperature.

C. Model Verification

To verify the proposed model (21) and assess the feasibility
of the simplified fitting parameters, a simulation and model
validation study was carried out. First, the CO2 absorption
spectra in the range of 6359.60–6360.60 cm−1 were selected.
Thirty wavenumbers were chosen using uniform sampling,
with 6360.60 cm−1 set as the reference point. The UOD was

calculated according to (4) and (12). Subsequently, nonlinear
fitting of the UOD was carried out using (10) and (21),
respectively. The XCO2 was set at 450 ppm, XHDO at 5.28 ppm,
P at 1 atm, and T at 297 K. Initial values for fitting were
computed based on these environmental parameters. After the
first fitting process was completed, the fitted results were used
as initial values for the next fitting until the results of the
fitting parameters stabilized. The fitting results of the newly
proposed model and the model represented by (10) are shown
in Fig. 10. During the computation, the absorption depth was
set to 5 km. The analysis of the residuals in Fig. 10(b) and (d)
reveals that the newly proposed model performs better, with
residuals on the order of 10−8, which is an order of magnitude
lower than those of the model described by (10). Subsequently,
similar to Fig. 5, the five-peak model was applied under
different environmental parameters to investigate its systematic
errors. As shown in Fig. 11, with XCO2 set to 450 ppm, XHDO
set to 5.28 ppm, pressure at 1 atm, and temperature at 297 K,
the systematic errors from least-squares fitting using (21) are
significantly reduced. For XCO2 retrieval, it is found that the
systematic errors of the five-peak model are less than 0.1 ppm
across the range of XCO2 from 350 to 550 ppm, as shown
in Fig. 11(a). Fig. 11(b) shows that for temperature inversion
from 250 to 310 K, the temperature deviation is less than
0.11 K, with the minimum error point located at 270 K. For
XHDO retrieval, the systematic error increases gradually with
the HDO concentration varying from 0 to 12.43 ppm, but
the maximum value remains below 0.06 ppm, as shown in
Fig. 11(c). These results validate the effectiveness of the new
model.

VI. SIMULATION ANALYSIS

To validate the performance of the new model in a noisy
environment, a simulation study was conducted. Since the
CO2 lidar system uses a single-photon detection scheme,
its primary noise sources include shot noise (i.e., Poisson
noise), solar radiation noise, and detector dark noise. For
solar radiation noise, the lidar operates in the near-infrared
range, where solar noise is minimal, allowing a narrowband
filter to effectively suppress it. Regarding dark noise, current
single-photon detection technologies, such as SNSPD, can
achieve ultralow system dark count rates [13]. Therefore, this
study considers only Poisson noise in the simulation. The
specific simulation steps are as follows.
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Fig. 8. Effect of temperature on the ratio of ωL for absorption peaks. (a) S2 and S1, (b) S3 and S1, (c) S4 and S1, and (d) S5 and S1.

Fig. 9. (a) CO2 concentration, (b) HDO concentration, (c) temperature, and (d) pressure on the background spectra after removing the five absorption peaks.

Fig. 10. Fitting results for (a) three-peak model and (c) five-peak model,
with corresponding residual error shown in (b) and (d).

Step 1: Calculate the absorption coefficients for
30 wavenumbers uniformly distributed across the spectrum
in the range of 6359.60–6360.60 cm−1, based on the
atmospheric environment and gas concentrations [13].
During the simulation process, three different environmental
conditions were considered: temperature 250 K with a
CO2 concentration of 350 ppm; temperature 297 K with
a CO2 concentration of 450 ppm; and temperature 300 K
with a CO2 concentration of 550 ppm. In all cases, HDO is
5.28 ppm, and P is 1 atm.

Step 2: Simulate the backscattered photon counts at different
wavenumbers and distances R using (3), based on specified
detection SNR and incorporate Poisson noise into the simu-
lated photon counts. Note that the SNR refers to the SNR at
6360.60 cm−1.

Step 3: Calculate the UOD according to (4) and (12).
Step 4: Perform nonlinear fitting on the simulated UOD

using the five-peak Lorentzian model, as described by (21).
The initial values of the fitting parameters, A1, A2, and
ωL , were calculated based on the following environmental
conditions: XCO2 at 450 ppm, XHDO at 5.28 ppm, P at 1 atm,
and T at 297 K.

Step 5:XCO2 , XHDO, and T were calculated using the fitting
parameters A1, A2, and ωL , respectively.

Step 6: The initial retrieval results for XCO2 , XHDO, and T
calculated in Step 5 are used as the starting values for the next
fitting. The iteration stops when the variance of XCO2 in three
consecutive iterations is less than 10−9.

Step 7: Backscattered signal spectra are generated under
different SNRs (ranging from 102 to 104, with intervals of 500)
and varying detection distances (ranging from 1 to 10 km,
with 1-km intervals). Additionally, Poisson noise is added
to each signal spectrum to generate 100 independent sets of
data, and Steps 2–6 are repeated to obtain 100 sets of XCO2 ,
XHDO, and T . Finally, the standard deviation of these 100 sets
is then calculated and denoted as1XCO2 , 1XHDO, and 1T,
respectively.

To obtain analytical expressions for 1XCO2 , 1XHDO, and
1T with respect to SNR and R, the data underwent the
following statistical analysis. Taking the retrieval of1XCO2

Authorized licensed use limited to: Xiamen University. Downloaded on December 20,2024 at 08:10:38 UTC from IEEE Xplore.  Restrictions apply. 



SHANGGUAN et al.: SIMULTANEOUS COLUMN-AVERAGED CO2, TEMPERATURE, AND HDO MEASUREMENT 4100112

Fig. 11. Systematic errors introduced by the five-peak model described in (21) for (a) CO2 concentration, (b) temperature, and (c) HDO concentration.

Fig. 12. (a) Relationship between the logarithm of XCO2 , log10(1XCO2 ), and the logarithm of SNR, log10(SNR), at different distances. Dots represent
simulation results, while lines show the fitted function log10(1XCO2 ) = m log10(SNR) + C . (b) Relationship between the logarithm of the intercept, log10(c),
and the logarithm of R, log10(R) and (c) relationship between slope m and the logarithm of R, log10(R).

under the conditions of a temperature of 297 K and a XCO2 of
450 ppm as an example, the results are shown in Fig. 12(a).
As shown in the figure, log10(1XCO2) decreases monotonically
with increasing log10(SNR) at different detection distances
and can be fitted with a linear function: log10 (1XCO2) = m
log10(SNR) + C , where m is the slope of the linear curve and
C is the y-intercept. The fitted coefficients of determination
(R2) are all greater than 0.98. The relationship between
log10(C) and log10(R) is shown by the black data points
in Fig. 12(b). This relationship can be fitted as log10(C) =

−0.144 log10(R) + 1.042, as depicted by the red line in
Fig. 12(b). The relationship between m and log10(R) is shown
in Fig. 12(c). Since m only varies slightly, ranging from
−0.49 to −0.51, it is taken as the average value of −0.502.
Analyzing the above process provides the relationships of
1XCO2 , 1XHDO, and 1T with SNR and R. In the case of
a temperature of 250 K and a CO2 concentration of 350 ppm,
the relationships of 1XCO2 , 1XHDO, and 1T with SNR and
R can be expressed as

1XCO2 = SNR−0.9980
· 10R−0.1528

·101.0469

1T = SNR−0.9972
· 10R−0.1727

·101.0739

1XHDO = SNR−0.9994
· 10R−0.3624

·101.4728
. (22)

In the case of a temperature of 297 K and a CO2 concentra-
tion of 450 ppm, the expressions can be updated as follows:

1XCO2 = SNR−1.0020
· 10R−0.1442

·101.0417

1T = SNR−1.0000
· 10R−0.1676

·101.0705

1XHDO = SNR−1.0076
· 10R−0.3245

·101.3730
. (23)

In the case of a temperature of 300 K and a CO2 concentra-
tion of 550 ppm, the expressions can be updated as follows:

1XCO2 = SNR−0.9978
· 10R−0.1533

·101.0735

1T = SNR−0.9962
· 10R−0.1838

·101.1140

1XHDO = SNR−0.9968
· 10R−0.3646

·101.4984
. (24)

Under atmospheric pressure conditions at an altitude of
3 km, with P at 70 108 Pa, HDO set to 0 ppm, a temperature
of 297 K, and a CO2 concentration of 450 ppm, the expressions
are updated as follows:

1XCO2 = SNR−1.0018
· 10R−0.1419

·101.0373

1T = SNR−1.0018
· 10R−0.1657

·101.0623

1XHDO = SNR−1.0028
· 10R−0.3467

·101.4473
. (25)

From (22) to (25), it can be observed that the relationships
between 1XCO2 , 1XHDO, and 1T with SNR and distance
are similar across the three environmental conditions. For
instance, with a temperature of 297 K and a CO2 con-
centration of 450 ppm, as the SNR increases from 102 to
104 and R changes from 1 to 10 km, the distributions of
1XCO2 , 1XHDO, and 1T, as described by (19), are illus-
trated in Fig. 13(a)–(c), respectively. Comparisons between
the analytical results and the simulation results are depicted
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Fig. 13. (a), (c), and (e) Relationship between 1XCO2 , 1XHDO, and 1T with SNR and R, respectively, as described by (23). (b), (d), and (f) Comparison
between the analytical results, as described by (23), and the simulation results.

Fig. 14. (a), (c), and (e) Relationship between 1XCO2 , 1XHDO, and 1T with R, calculated using (23), under different SNR levels. (b), (d), and
(f) Relationship between 1XCO2 , 1XHDO, and 1T with SNR, calculated using (23), at different R values.

in Fig. 13(d)–(f). These results demonstrate that the ana-
lytical expressions provided by (22)–(25) closely match the

simulation results for 1XCO2 , 1XHDO, and 1T. This indicates
that the equations effectively represent the distributions of
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TABLE II
DEFINITIONS AND UNITS OF DIFFERENT SYMBOLS

1XCO2 , 1XHDO, and 1T under varying SNR and distance
conditions.

TABLE II
(Continued.) DEFINITIONS AND UNITS OF DIFFERENT SYMBOLS

To illustrate these relationships more intuitively,
Fig. 14(a)–(c), respectively, shows 1XCO2 , 1XHDO, and
1T variations with the detection range R, at different SNR
levels. Additionally, Fig. 14(d)–(f) demonstrates 1XCO2 ,
1XHDO, and 1T variations with the SNR at different
distances R. From Fig. 14, it can be observed that when
the SNR is fixed, 1XCO2 , 1XHDO, and 1T decrease as the
distance R increases. Similarly, when R is fixed, 1XCO2 ,
1XHDO, and 1T decrease as the SNR increases. From
Fig. 14(a), (c), and (e), when the SNR is 104, the distance is
between 1 and 10 km,1XCO2 is less than 1.5 ppm, 1T is less
than 1 K, and1XHDO is less than 0.04 ppm. For convenience,
the definitions and units of the symbols used in this article
are listed in Table II.

VII. CONCLUSION

This work proposes an algorithm for simultaneously mea-
suring column-averaged atmospheric CO2, temperature, and
HDO using absorption spectrum lidar, validated through sim-
ulations. To reduce system errors, the absorption spectrum was
decomposed, and a new model with five Lorentzian peaks
and a polynomial background was introduced. The number of
fitting parameters was reduced from 18 to 5 through theoretical
calculations, significantly decreasing fitted errors. Addition-
ally, simulations established analytical solutions for CO2,
temperature, and HDO under different SNR and detection
distances, considering photon counts that follow shot noise
(i.e., single-photon detection), thus validating the method’s
effectiveness. In future work, single-photon CO2 absorption
spectrum lidar experiments will be conducted to validate the
practicality of this approach. Furthermore, the measurement
capability will be extended from the current column con-
centrations to distance-resolved measurements. Finally, this
technology, combined with wind speed detection capabilities,
is expected to be used for eddy covariance measurements
of ecosystem CO2 flux and industrial pollution monitoring
applications.
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