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Abstract— Bathymetric lidar, with its deep penetration, contin-
uous day-and-night operation, and high accuracy, is an important
tool for remotely sensing bottom depths. However, the strong
forward scattering of the laser beam during transmission in
water introduces substantial multiple scattering components into
the lidar signal reflected by sea bottom, leading to a peak shift
and signal broadening. The peak shift leads to an overestimation
of the bottom depth, while the signal broadening makes peak
extraction more challenging. To quantitatively study this impact,
a semianalytic Monte Carlo (MC) simulation is applied to
model seabed reflected signals. By statistically analyzing the
peak position bias (termed as Bias) and full-width at half-
maximum (termed as FWHM) of the seabed lidar reflected
signals across four platforms—spaceborne, airborne, shipborne,
and underwater—empirical models are established to relate
Bias and FWHM to scattering efficient (b), bottom depth (zm),
and lidar receiver footprint (rs). Here, rs represents the radius
of the footprint of the lidar receiver on the water surface.
Furthermore, the effects of different scattering phase functions
and the absorption coefficient are analyzed. This study shows
that the Bias and FWHM are influenced by b, zm, and rs.
For lidar systems with an rs of dozens of meters, measuring
deeper depths in water with higher b can result in a bottom
depth overestimation of nearly 4% and an FWHM broadening
exceeding 28 ns solely due to multiple scattering effects. This
article provides a theoretical basis for correcting and evaluating
bathymetric lidar data, thereby improving the accuracy and
applicability of bathymetric lidar results.

Index Terms— Bathymetry, lidar, Monte Carlo (MC), multiple
scattering.

I. INTRODUCTION

BATHYMETRIC data play an important role in supporting
various marine operations, such as maritime naviga-

tion [1], port construction [2], the laying of subsea pipelines
and cables [3], [4], planning offshore activities [5], and other
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oceanographic research initiatives [6], [7]. Currently, sonar
technology is widely employed in depth measurement, uti-
lizing both single-beam and multibeam techniques [8], [9].
However, sonar systems cannot operate across the air–sea
interface and can only be deployed underwater, while mul-
tipath interference poses significant challenges for effective
detection in shallow water environments [10], [11].

Optical remote sensing technologies enable bathymetric
measurements across the air–sea interface with high spatial
resolution and extensive coverage [12]. One such technique
is ocean color remote sensing, which estimates bottom depth
by measuring remote sensing reflectance [12], [13], [14],
[15], [16]. However, ocean color remote sensing is constrained
by light conditions and cloud cover, making observations
impossible in conditions such as the absence of sunlight or
under low sun angles [17], [18].

Fortunately, as an active optical remote sensing technology,
bathymetric lidar can provide observations both day and night,
along with high-precision and high-depth resolution measure-
ments. This capability makes it an important complement to
ocean color remote sensing. Moreover, by emitting laser pulses
and analyzing the time it takes for the return signal from the
water surface and bottom, lidar provides time information on
both the water surface [19] and bottom, achieving a penetration
depth three times greater than that of passive ocean color
remote sensing [20].

To extend the observational coverage of lidar, differ-
ent platforms for lidar systems have been developed and
extensively applied, including spaceborne, airborne, ship-
borne, and underwater platforms [21]. Airborne lidar is
well-suited for applications requiring high precision and
broad coverage, providing exceptional accuracy and exten-
sive measurement range. Typical systems include the air-
borne oceanographic lidar (AOL) developed by NASA,
the laser airborne depth sounder (LADS) used by the
Royal Australian Navy, and the scanning hydrographic
operational airborne laser survey (SHOALS) employed by
the U.S. Army Corps of Engineers, among others [22].
To support applications on smaller platforms, such as
drones, researchers have developed and commercialized com-
pact airborne depth measurement lidar systems. Examples
include the RIEGL VQ-840-G [20], ASTRALiTe edge1 [23],
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and Fugro RAMMS [24]. While airborne lidar systems offer
exceptional accuracy and broad coverage for ground-based
measurements, spaceborne lidar systems are crucial for
global-scale observations and long-term monitoring. ICESat-2,
for example, is equipped with the advanced single-photon geo-
physical lidar altimeter system (ATLAS). Although ATLAS
is not specifically designed for seabed depth measurement,
it has been validated to detect depths of approximately 40 m,
with root-mean-square error (RMSE) values ranging from
0.26 to 0.61 m [25], [26]. Moreover, to avoid interference
from the air–sea interface, miniaturized single-photon lidar
systems have been proposed and demonstrated, and are suit-
able for application on underwater autonomous underwater
vehicles (AUVs) and remotely operated vehicles (ROVs) [27].

However, when lidar penetrates the air–sea interface for
depth measurements, corrections are required to account for
errors caused by water surface fluctuations and refraction at the
air–sea interface [25], [28], [29], [30], [31], [32], [33], [34].
Additionally, due to the strong forward scattering of laser
light during transmission in the water, some photons deviate
from their original path and reach the seabed, causing the
photon transmission path to be longer than the bottom depth,
which leads to an overestimation of the measured depth [35].
Studies have shown that there is a relationship between the
bathymetric error and the backscattering coefficient of the
ICESat-2 satellite [36]. Moreover, although a larger field of
view (FOV) on lidar systems increases the received signal level
to achieve a deeper depth, it simultaneously introduces bathy-
metric errors due to multiple scattering of photons in the water
column. Furthermore, for full-waveform bathymetric lidar,
previous studies have indicated that the waveform decomposi-
tion method can partially mitigate the forward-scattering bias
in water [37], [38]. However, bathymetric errors caused by
multiple scattering are influenced by a combination of the
optical properties of the water, bottom depth, and the hardware
parameters of the lidar system. This study comprehensively
investigates and quantitatively analyzes the impact of these
three factors on the peak position bias (termed as Bias) and
full-width at half-maximum (FWHM) of seabed lidar reflected
signals across four platforms.

In fact, the reflected waveform from the bottom S(t, z)
measured by a bathymetric lidar is the result of the convolution
of the lidar’s response function L(t), the water body response
function R(t), and the bottom topography influence function
d(t, z), which can be expressed as [36]

S(t, z) = L(t) ⊗ R(t) ⊗ d(t, z) (1)

where ⊗ represents a convolution operation. L(t) represents
the lidar’s response function, which includes the effects of
pulsewidth, the response speed of the detector, and the sam-
pling rate of the acquisition card. R(t) is the water body’s
response to the laser pulse, primarily caused by multiple
scattering of the laser as it propagates through the water. The
multiple scattering effects not only shift the peak position
of the seabed’s reflected signal, but also affect the temporal
width of the signal [39]. d(t, z) represents the influence of
the bottom topography on the reflected waveform. Here, t is
the time variable, representing the delay of the reflected signal,

while z represents the depth or height of the bottom, reflecting
the topographic undulations of the seabed. The unevenness
of the bottom leads to different reflection times at different
locations, which, in turn, affects the time delay and waveform
shape of the reflected signal. To simplify the analysis, this
study considers only the effect of multiple scattering on the
bottom-reflected signal. After analyzing the effects of multiple
scattering, thereby establishing the expression for R(t), the
influence of L(t) and d(t, z) on the seabed reflected signal can
be analyzed according to different lidar parameters, including
platform and hardware parameters, as well as the seabed
structure, using (1).

The structure of this article is as follows. First, semi-
analytical Monte Carlo (MC) simulations are conducted to
record the seabed reflected signals for four types of lidar
platforms. Subsequently, analytical expressions are established
for the relationship between the peak bias and broadening
of seabed reflected signal with the inherent optical prop-
erties (IOPs) of the water, bottom depth, and rs , which
represents the radius of the footprint of the lidar receiver
on the water surface, and these are discussed separately for
four platforms. Moreover, the impact of various scattering
phase functions (SPFs) and the absorption coefficient on
bathymetric lidar is further analyzed. Finally, conclusions are
presented.

II. MC SIMULATION

A. Semianalytic MC Simulation

In ocean lidar applications, MC has been experimentally
validated for simulating ocean signals [40], [41], [42], [43],
and MC for simulating elastic scattering [44], [45], [46],
inelastic scattering [40], and polarization scattering [47], [48]
in ocean lidar has also been developed. Here, the process
of MC simulation for simultaneously recording the seabed
reflected signal is briefly introduced. The semianalytical MC
method, which has been validated to obtain consistent results
with the conventional MC method that considers the laser
double-path, while significantly enhancing simulation effi-
ciency, is employed to simulate the reflected signals from the
seabed [49]. The simulation flowchart is shown in Fig. 1.

During the simulation, a coordinate system is first estab-
lished, with the geometric center of the receiver’s FOV on the
water surface as the origin and the z-axis oriented downward.
Next, the state of the photons is initialized: the photon position
(x, y, z) is set to (x0, y0, 0), where x0 and y0 are the random
values that match the distribution of the incident light spot
on the water surface; the photon direction (ux , u y, uz) is
initialized to (0, 0, 1); the photon weight W0 is set to 1,
and the threshold for photon weight WT is set to 1 · 10−10.
Then, the step length (s) and the updated photon weight
(Wn+1) are calculated based on the IOPs of water [50]. When
the photon weight falls below the threshold WT, the photon
is considered extinct. Afterward, the new direction vector
(u′

x , u′
y, u′

z) is calculated using the scattering angle θ and
the azimuthal angle ϕ [50]. Once the photon’s step length
and movement direction are determined, the new position
(x ′, y′, z′) is computed. Finally, it is checked whether the
photon is within the receiver’s FOV: if it is, the data are
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TABLE I
KEY PARAMETERS OF LIDAR SYSTEMS

Fig. 1. Flowchart of MC simulation.

recorded; if not, the photon tracking ceases. For vertically
incident laser light, a photon is considered within the receiver’s
FOV if its position (x, y, z) satisfies the following conditions:

x2
+ y2

≤
[
z · tan(FOV1/2) + rs

]2 (2)

where FOV1 is the FOV after refraction at the water surface,
and rs is the radius of the receiver footprint on the water
surface. FOV1 and rs can be expressed based on Snell’s
refraction law and geometric relationships. For laser incident
at a specific tilt angle (as shown in Table I), the geometry of
the receiving FOV changes accordingly [51].

The process simulates photon propagation within the water
column, including scenarios where photons reach the seabed,
are reflected, and are subsequently detected by the lidar
receiver, with zmg representing the real seabed depth. When the
photon’s depth prior to movement, zi−1, satisfies zi−1 < zmg,
and the depth after movement, zi , satisfies zi ≥ zmg, the photon

is considered to have reached the seabed, prompting an update
to the photon’s position and movement step length

s ′
=

∣∣(zmg − zi−1
)
/(zi − zi−1)

∣∣ · s
x ′

= x + u′

x s ′

y′
= y + u′

ys ′

z′
= z + u′

zs
′

(3)

where s ′ represents the step length of the photon’s movement
from the previous position to the seabed; (x ′, y′, z′) repre-
sents the new position and (x, y, z) represents the photon
position before movement. Subsequently, the photon under-
goes reflection at the seabed. In this process, the seabed is
treated as a Lambertian reflector, and the photon’s position,
direction, and weight are updated according to the law of
reflection [52].

Since bathymetric lidar records signals based on the return
time of photons, in the MC simulation, signals are recorded
based on the distance traveled by photons. Fig. 2(a)–(c) illus-
trates the photon paths under the same seabed depth with
different IOPs of the water. Path I represents the movement
of photons in water with a low scattering coefficient (b). Due
to fewer multiple scatterings and larger step length in this
type of water, the actual distance traveled by photons deviates
minimally from the bottom depth, resulting in the seabed
signal peak position being very close to the actual bottom
depth, with a narrower FWHM of the seabed signal. Path III
represents the movement of photons in water with relatively
high b values. The higher number of multiple scatterings and
shorter step length in this type of water leads to a greater
deviation of the seabed signal peak position from the bottom
depth and causes the FWHM of the seabed signal to broaden.
Path II represents the photon path when optical properties are
intermediate between the two aforementioned cases, with the
seabed signal peak shift and broadening falling between these
two scenarios. To quantitatively analyze the peak deviation and
broadening of the seabed signal caused by multiple scatterings,
Section III will investigate the impact of different IOPs, rs ,
and seabed depths on the seabed signal peak deviation and
broadening under four typical platforms.
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Fig. 2. Diagram of the impact of multiple scattering on seabed reflected
signals. Schematic of photon paths in (a) low scattering coefficient (b).
(b) Medium b. (c) High b. (d) Corresponding diagram of lidar measured
seabed reflected signals, where j indicates the number of multiple scattering
events for photons.

B. Bio-Optical Models of Water

First, the bio-optical model applied in the simulation is
introduced. As mentioned above, the step length of photon
movement is governed by the beam attenuation coefficient (c);
when the incident wavelength of the laser is 532 nm, c can be
expressed as

c(532, Chl) = a(532, Chl) + b(532, Chl) (4)

where Chl represents the chlorophyll-a concentration, and
a(532, Chl) is the absorption coefficient at 532 nm, which,
for “Case-1” waters, can be expressed as [53]

a(532, Chl) = aw(532) + 0.06A(532) · Chl0.65
+ ay(532, Chl)

(5)

where aw(532) is the absorption coefficient of pure seawater
at 532 nm, with a value of 0.045 m−1 [54]; A(532) represents a
ratio of the absorption coefficient of phytoplankton at 532 nm
versus that at 440 nm, with a value taken as 0.453 [55]; and
ay(532, Chl) is the absorption coefficient for yellow substances
at 532 nm, which can be expressed as [53]{

ay(532, Chl) = ay(440, Chl) exp[−0.014(532 − 440)]

ay(440, Chl) = 0.2
[
aw(440) + 0.06 · Chl0.65] (6)

where aw(440) is the absorption coefficient of pure seawater
at 440 nm, with a value of 0.0044 m−1 [54]. In (4), the
scattering coefficient b(532, Chl) can be expressed as

b(532, Chl) = bw(532) + bp(532, Chl) (7)

where bw(532) is the scattering coefficient of pure (sea)water
at 532 nm, with a value of 2.232 × 10−3 m−1 [56], and for
seawater, a salinity correction is needed [57]. bp(532, Chl)

is the scattering coefficient of particles [58], and the models
bp(532, Chl) at 532 nm are detailed as follows:

bp(532, Chl) = 0.3 · Chl0.62(550/532). (8)

Additionally, the maximum detectable depth of the lidar can
be assessed based on the diffuse attenuation coefficient (Kd)

at 532 nm, calculated using the model [59]

Kd(532) = m0 · a(532)

+ m1{1 − m2 exp[−m3a(532)]}bb(532) (9)

where m0 ≈ 1 + 0.005θs , with m1, m2, and m3 taking values of
4.18, 0.52, and 10.8 [59], respectively; the model for a(532) is
shown in (5) and (6); and bb(532) represents the backscattering
coefficient, which can be calculated using b(532) when the
scattering phase function is defined. In this study, the widely
used Petzold scattering phase function is adopted [60].

It should be noted that although the formulas presented
above focus on the optical parameters of 532 nm, the overall
function is also applicable to other wavelengths, except that
many values should be replaced to corresponding to the
relevant wavelength when applying the aforementioned bio-
optical models. Additionally, for simplicity, b and Kd refer to
the scattering coefficient and the diffuse attenuation coefficient
at 532 nm, respectively, with the same notation used thereafter.

C. Lidar Parameters

To study the impact of multiple scattering on the Bias and
FWHM of seabed reflected signals, this article selected five
typical platforms. The key parameters of the lidar systems for
each platform are listed in Table I. To balance the simulation
efficiency and the signal-to-noise ratio (SNR) of the simulated
profile, 108 photons are used for simulating each profile.

D. MC Results

Since the strong specular reflection signal from the air–sea
interface primarily interferes with the surface signals, and to
improve simulation efficiency while highlighting the influence
of multiple scattering on the bottom-reflected signal, the
effect of the air–sea interface is neglected in the simulation.
Additionally, to verify the effectiveness of the optimized
simulation program, a comparison is carried out between the
seabed reflected signal that records the water column signal
and the one that does not, as shown in Fig. 3.

In the simulation process, to improve efficiency, only the
bottom reflected signals are recorded, while the backscat-
tered signal from the water is not. From Fig. 3, using the
Airborne-0.35-km platform as an example, it can be seen that
under four different conditions of IOPs and zmg, the seabed
reflected signals, with and without recording coincident water
column signal, validate the effectiveness of the optimized sim-
ulation program. Furthermore, Fig. 3 shows that the SNR of
the seabed reflected signal without recording the water column
signal is significantly improved. Compared to the signal that
records the water column backscatter, the simulation code
that only models the seabed reflected signals runs about five
times faster, further validating the increased efficiency of the
optimized simulation software.
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Fig. 3. Comparison of simulated seabed reflected signals with (black lines)
and without (red and blue lines) recording the water column signal under
varying conditions on the Airborne-0.35-km platform. (a) b = 0.02 m−1,
zmg = 1/Kd = 21.11 m, and zmg = 2/Kd = 42.22 m. (b) b = 0.08 m−1,
zmg = 1/Kd = 18.07 m, and zmg = 2/Kd = 36.14 m. (c) b = 0.18 m−1, zmg =

1/Kd = 14.11 m, and zmg = 2/Kd = 28.22 m. (d) b = 0.31 m−1, zmg =

1/Kd = 10.80 m, and zmg = 2/Kd = 21.60 m.

Fig. 4. Normalized simulated signals for five different platforms under
varying conditions. (a) b = 0.20 m−1 and zmg = 0.5/Kd = 6.34 m.
(b) zmg = 1/Kd = 12.68 m. (c) zmg = 2/Kd = 25.36 m. (d) b = 0.31 m−1

and zmg = 2/Kd = 21.60 m.

Using the parameters from Table I and the water bio-optical
models in (4)–(9) with the Petzold scattering phase function,
and with Chl set to 0.5 and 1.0 mg/m3, the simulated seabed
reflected signals with different seabed depths across various
platforms are shown in Fig. 4. In the MC simulation, the
sampling length, defined as the total distance over which
photon interactions are tracked, is set to 100 m with a sampling
interval of 0.01 m. To simplify this study, the simulation
process assumes a homogeneous distribution of the water
column.

From Fig. 4, it can be observed that, with the same
b and zmg, there are significant differences in the depth
deviation and the broadening of seabed backscattered signals
across different platforms. Note that the signal in Fig. 4 is the

Fig. 5. (a) Simulated signals and multiple scattering for the ICESat-2 platform
when zmg = 5 m and b = 0.08 m−1. (b) b = 0.20 m−1. (c) zmg = 15 m and
b = 0.08 m−1. (d) zmg = 15 m and b = 0.20 m−1. Here, MS-1 indicates
the single scattering, MS-2 indicates the double scattering, MS-3 indicates the
triple scattering, and MS-4 indicates the four or more scatterings.

raw signal at the corresponding tilt angle and has not been
angle-corrected. As a result, due to the large tilt angle of the
shipborne lidar, the seabed reflected waveform is delayed in
the time domain. Additionally, as the height of the platform
above the water surface increases, the rs becomes larger, and
the differences become more pronounced. Furthermore, for
the same platform and b value, Fig. 4(a)–(c) demonstrates
that with increasing zmg, both depth deviation and broadening
increase. For the same platform and fixed zmg, an increase in b
results in greater depth deviation and broadening. Thus, from
Fig. 4, it is evident that depth deviation and broadening are
influenced not only by rs but also by b and zmg. This is because
all three factors affect the proportion of multiple scattering
signals in the reflected signal. For example, with ICESat-2,
the distribution of multiple scattering signals under different b
and zmg values is shown in Fig. 5. Comparing Fig. 5(a) and (b),
with the same zmg, increasing b leads to a higher proportion of
multiple scattering in the bottom-reflected signal. Comparing
Fig. 5(a)–(d), it is observed that with the same b, increasing
zmg also leads to a higher proportion of multiple scattering.

Therefore, the next step will be to quantitatively analyze
the relationships between b, zmg, rs , and depth deviation and
signal broadening. Note that, for convenience in directly using
the statistical model of Bias and FWHM, the subsequent
statistics use the depth derived from the seabed reflected
waveform (i.e., zm) rather than the true depth (zmg). The
simulated seabed reflected signal is processed as follows: first,
the “Findpeaks” function in MATLAB is used to identify the
peak of the seabed reflected waveform. After correcting for
the tilt angle, the difference between the extracted depth (zm)

and the true bottom depth (zmg) is calculated, termed as Bias.
Additionally, the FWHM of the seabed reflected waveform
is calculated to quantify the broadening caused by multiple
scatterings.
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Fig. 6. For Chl from 0.01 to 1.00 mg/m3, correspondingly, b ranging from
0.02 to 0.31 m−1, and zmg within (0.1∼2)/Kd on the ICESat-2 platform.
(a) Relationship between peak position bias (Bias) and b ·zm . (b) Relationship
between FWHM and b · zm . Symbols represent MC simulation results; lines
represent the fitting results from (10) and (11). (c) Relationship between fitting
coefficients ln(B1) in (a) with b. (d) Relationship between fitting slope ln(k1)
in (b) with b. Dots represent MC statistical results, and lines represent the
fitting results of polynomial functions from (12) and (13).

III. ANALYSIS OF BIAS AND FWHM

A. ICESat-2

First, the MC simulation is applied to the ICESat-2 plat-
form. The maximum bottom depth that can be measured
by the ICESat-2 lidar is approximately 2/Kd [25]. In this
study, as ∼90% of the global surface ocean has Chl under
1 mg/m3 [66] the range of Chl is set between 0.01 and
1.00 mg/m3, subsequently the corresponding b values ranging
from ∼0.02 to 0.31 m−1. Five different seabed depths are
evaluated for each Chl value, corresponding to 0.1, 0.5, 1, 1.5,
and 2 times of 1/Kd . When b · zm is used as an independent
variable, the statistical results for the Bias and the FWHM of
the seabed reflected signal are shown in Fig. 6(a) and (b),
respectively. As shown in Fig. 6, the Bias of the seabed
reflected signal for different depths under various b values
follows a binomial relationship with b · zm , while the FWHM
of reflected signal at different seabed depths follows a linear
relationship with b · zm . Therefore, the following binomial
function is used to fit the relationship between Bias and b · zm :

Bias = constant1 + B1 · (b · zm)2 (10)

where constant1 is a constant, and B1 is the binomial
coefficient.

Similarly, the relationship between FWHM and b · zm is fit
using the following linear function:

FWHM = constant2 + k1 · (b · zm) (11)

where constant2 is the intercept and k1 is the slope.
As shown in Fig. 6, both (10) and (11) can effectively

fit the relationships between Bias and FWHM with b ·zm , with
the coefficient of determination (R2) values exceeding 0.98.
The differences in the curves shown in Fig. 6(a) and (b)

Fig. 7. For Chl from 0.01 to 1.00 mg/m3, correspondingly, b ranging from
0.02 to 0.31 m−1, and zm within (0.1∼2)/Kd on the ICESat-2 platform.
(a) Relationship between Bias and g1(b, zm). (b) 3-D plot of Bias versus
b and zm based on (16). (c) Relationship between FWHM and f1(b, zm).
(d) 3-D plot of FWHM versus b and zm based on (17).

are due to varying b values. The relationships between the
fit B1 and k1 with b are shown in Fig. 6(c) and (d). From
Fig. 6(c), as b increases, B1 in (10) decreases exponentially.
The relationships between b and ln(B1) can be described
by logarithmic functions, with R2 values exceeding 0.99.
Fig. 6(d) shows that as b increases, the slope k1 decreases,
and the relationship between b and ln(k1) can be described
by a logarithmic function, with an R2 of 0.99. The functional
relationships of b with B1 and b with k1 are as follows:

B1 = e−4.97/
(
b − 8.39 · 10−4)1.35

(12)

k1 = e0.63/
(
b + 1.40 · 10−4)0.63

. (13)

Subsequently, substituting (12) into (10) and (13) into (11)
yields two new variables, represented as g1(b, zm) and
f1(b, zm), respectively, which can be expressed as follows:

g1(b, zm) =

[
e−4.97/

(
b − 8.39 · 10−4)1.35

]
· (b · zm)2 (14)

f1(b, zm) =

[
e0.63/

(
b + 1.40 · 10−4)0.63

]
· (b · zm). (15)

Fig. 7(a) shows the relationship between Bias and g1(b, zm).
A linear fit of this relationship yields the following result:

Bias = 1.072 · g1(b, zm) + 0.012. (16)

Similarly, Fig. 7(c) shows the relationship between FWHM
and f1(b, zm), along with the results of a linear fit, which are
as follows:

FWHM = 0.994 · f1(b, zm) − 0.786. (17)

By substituting (14) into (16), the relationship between Bias
and b as well as zm can be obtained, as shown in Fig. 7(a).
Similarly, substituting (15) into (17) provides the relationship
between FWHM and b as well as zm , as illustrated in Fig. 7(c).
From Fig. 7(b) and (d), it can be observed that both Bias and
FWHM increase with the increase in zm and b. When both
zm and b are high, Bias can reach up to 0.8 m, and FWHM can
reach up to 30 ns. This indicates that, under these conditions,
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Fig. 8. (a) Bias versus zm for different b values. (b) Bias versus b for different
zm values. (c) FWHM versus zm for different b values. (d) FWHM versus b
for different zm values. Symbols represent MC simulation results, and lines
represent the results computed from analytical expressions (16) and (17).

the effect of multiple scattering is significant, and it is essential
to apply (16) for depth bias correction.

To clearly present the relationships between Bias and b as
well as zm , and between FWHM and b as well as zm , Fig. 8(a)
shows the relationship between Bias and zm under different
b values, while Fig. 8(c) shows the relationship between
FWHM and zm . The relationships between Bias and b, and
between FWHM and b, are shown in Fig. 8(b) and (d),
respectively. The symbols represent the MC simulation results,
while the lines indicate results calculated using the analytical
expressions in (16) and (17). Fig. 8 demonstrate that the results
calculated using (16) and (17) are consistent with the MC
simulation results, thereby validating the effectiveness of the
empirical model.

B. Airborne-3 km

Compared to spaceborne lidar, airborne bathymetric lidar
operates at a lower altitude above the water surface, thereby
offering a wider range of selectable FOV. Therefore, this
analysis considers not only the effects of b and zm , but also
the impact of rs on the peak deviation and broadening of
the seabed reflected signal. Following the previous analysis
method, the effects of b and zm on the seabed signal are first
analyzed under an airborne platform with a height of 3 km
above the water surface, followed by the inclusion of rs to
assess its impact on the seabed signal.

First, following the statistical method described for the
ICESat-2 platform, the relationships between the Bias and
FWHM of the seabed reflected signal and both b and zm

are fit separately. Then, the relationship between the fitting
parameters and b is established to derive the normalized
independent variables h1(b, zm) for Bias and j1(b, zm) for
FWHM, as detailed in the following:

h1(b, zm) = 0.02 · b · zm + [0.67 − 0.71 ln(b − 0.02)]

· (b · zm)2 (18)

Fig. 9. For Chl ranging from 0.01 to 1.00 mg/m3, b varies from 0.02 to
0.31 m−1, and zm ranges from (0.1∼2)/Kd on the Airborne-3-km platform.
(a) Bias versus h1(b, zm) and (b) FWHM versus j1(b, zm) under different rs
conditions. The relationships between the fit parameters obtained from fitting
the data in (a) and (b) using (18) and (19) with rs . (c) C1 versus rs . (d) D1
and D2 versus rs . Symbols represent the MC simulation results, while lines
represent the fit results.

j1(b, zm) =

[
e0.44

/(
b + 8.23 · 10−3)0.74

]
· (b · zm). (19)

To study the performance of Bias and FWHM for the air-
borne lidar platform at different FOVs (i.e., different rs values),
MC simulations were conducted with the FOV adjusted from
2.4 to 33 mrad, while keeping other parameters constant.
Subsequently, the relationships between Bias and h1(b, zm)

and between FWHM and j1(b, zm) under different rs condi-
tions are calculated, as shown in Fig. 9(a) and (b), respectively.
As can be seen from Fig. 9(a) and (b), the relationships
between Bias and h1(b, zm) and between FWHM and j1(b, zm)

can be fit using the following polynomials:

Bias = constant3 + C1 · h1(b, zm) (20)

FWHM = constant4 + D1 · j1(b, zm) + D2 ·
[

j1(b, zm)
]2

(21)

where constant3 and constant4 are the constants, and C1, D1,
and D2 are the fit polynomial coefficients. Subsequently, the
relationships between C1, D1, D2, and rs are analyzed and
fit using power functions and polynomials, respectively. The
resulting fit expressions are given as follows:

C1 = 1.28 − 2.50 · 0.77rs (22)
D1 = −0.65 + 0.36rs − 0.02r2

s + 5.90 · 10−4r3
s

− 5.03 · 10−6r4
s

D2 = 0.018 − 0.01rs + 7.87 · 10−4r2
s

− 2.32 · 10−5r3
s + 2.08 · 10−7r4

s .

(23)

Next, by substituting (22) into (20) and (23) into (21),
two new normalized independent variables that take rs into
account are obtained, represented as g2(b, zm, rs) for Bias and
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Fig. 10. For Chl ranging from 0.01 to 1.00 mg/m3, b varies from
0.02 to 0.31 m−1, and zm ranges from (0.1∼2)/Kd on the Airborne-3-km
platform. (a) Bias versus g2(b, zm , rs) and (b) FWHM versus f2(b, zm , rs).
Symbols represent the MC simulation results, while lines represent the fit
results.

f2(b, zm, rs) for FWHM, respectively,{
g2(b, zm, rs) = C1 · h1(b, zm)

f2(b, zm, rs) = D1 · j1(b, zm) + D2 ·
[

j1(b, zm)
]2

.
(24)

The relationship between Bias and g2(b, zm, rs) is shown
by the symbols in Fig. 10(a). By performing a linear fit,
a statistical expression for Bias in terms of b, zm , and rs is
ultimately established, which can be expressed as

Bias = 1.036 · g2(b, zm, rs) + 0.032. (25)

Similarly, the relationship between FWHM and f2(b, zm, rs)

is shown by the symbols in Fig. 10(b). By performing a
linear fit on the relationship between FWHM and f2(b, zm, rs),
an analytical expression for FWHM in terms of b, zm , and rs

is ultimately obtained, which can be expressed as

FWHM = 0.955 · f2(b, zm, rs) − 0.029. (26)

Fig. 11(a) and (b) shows the variations of Bias and FWHM
with zm under different rs when b = 0.23 m−1. It can be
observed that with fixed b and rs , a deeper zm leads to
greater Bias and broader FWHM. Fig. 11(c) and (d) shows
the variations of Bias and FWHM with zm under different zm

when rs = 27.1 m. It is evident that with fixed zm and rs ,
a higher b results in greater Bias and broader FWHM. These
findings are consistent with the results from the ICESat-2
platform. Fig. 11(e) and (f) shows the variations of Bias and
FWHM with rs under different zm when b = 0.23 m−1. Within
a certain range of small rs , both Bias and FWHM increase
with increasing rs . For the same seawater, as the telescope’s
FOV increases, the maximum scattering angle of the received
photons and the number of multiple scattering events also
increase, leading to larger Bias and FWHM. However, once
the FOV continues to increase, the telescope can effectively
capture photons with various multiple scattering scenarios,
resulting in a relatively stable Bias and FWHM. As shown
in Fig. 11(f), when the FOV exceeds a certain value (i.e., when
rs exceeds 20 m), the signal broadening is significant, lead-
ing to larger uncertainties in locating the peak value of a
waveform. Consequently, the peak Bias values in Fig. 11(e)
show greater fluctuations though they remain close to a stable
value.

Fig. 11. When b = 0.23 m−1, under different rs conditions. (a) Bias versus zm
and (b) FWHM versus zm . When rs = 27.1 m, under different zm conditions.
(c) Bias versus b and (d) FWHM versus b. When b = 0.23 m−1, under
different zm conditions. (e) Bias versus rs and (f) FWHM versus rs . Symbols
represent MC simulation results, while lines represent the results calculated
using (25) and (26).

Fig. 12. For Chl ranging from 0.01 to 1.00 mg/m3, b varies from
0.02 to 0.31 m−1, and zm ranges from (0.1∼2)/Kd on the Airborne-0.35-km
platform. (a) Bias versus g3(b, zm , rs) and (b) FWHM versus f3(b, zm , rs).
Symbols represent the MC simulation results, while lines represent the fit
results.

C. Airborne-0.35 km

When the flight altitude of the airborne platform is lower,
and the variation in the lidar’s FOV is minimal, the lidar’s
rs is smaller. For example, among the two airborne lidars
listed in Table I, the lidar at an altitude of 3 km has an rs

of 37.6 m, whereas the lidar at a height of 0.35 km has
an rs of only 1.15 m. Therefore, for the airborne lidar
at 0.35 km, a quantitative analysis is conducted on the effects
of b, zm , and rs on the peak Bias and FWHM of the seabed
backscattered signal, using the statistical methods described
above. The results are shown in Fig. 12. The expressions for
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TABLE II
VALUE OF FIT COEFFICIENT

the normalized variables g3(b, zm, rs) and f3(b, zm, rs) are

g3(b, zm, rs) =

4∑
i=0

(
mi · r i

s

)
· h2(b, zm)

+

4∑
i=0

(
ni · r i

s

)
· [h2(b, zm)]

2
(27)

f3(b, zm, rs) =

4∑
i=0

(
pi · r i

s

)
· j2(b, zm)

+

4∑
i=0

(
qi · r i

s

)
·
[

j2(b, zm)
]2

(28)

where mi , ni , pi , and qi are the coefficients obtained from
fitting, with specific values listed in Table II. The normalized
variables h2(b, zm) and j2(b, zm) are the functions of b and
zm , and are expressed as follows:

h2(b, zm) =
[
0.03 − 0.16 · b + 0.57 · b2]

· (b · zm)

+ [−0.02 − 0.02 · ln(b − 0.02)] · (b · zm)2 (29)

j2(b, zm) =

[
e0.49

/(
b + 9.29 · 10−3)0.70

]
· (b · zm). (30)

The final expressions for Bias as a function of b, zm , and
rs , as well as for FWHM as a function of b, zm , and rs , are
presented as follows:

Bias = 0.009 + 0.964 · g3(b, zm, rs) (31)
FWHM = 0.426 + 0.928 · f3(b, zm, rs). (32)

D. Shipborne

Similarly, for the shipborne lidar, a quantitative analysis is
conducted on the effects of b, zm , and rs on the peak Bias
and FWHM of the seabed reflected signal, using the statistical
methods described above. The results are shown in Fig. 13.
The expressions for the normalized variables g4(b, zm, rs) and
f4(b, zm, rs) are presented as follows:

g4(b, zm, rs) =

4∑
i=0

(
ri · r i

s

)
· h3(b, zm) +

4∑
i=0

(
ti · r i

s

)
· [h3(b, zm)]2 (33)

f4(b, zm, rs) =

3∑
i=0

(
wi · r i

s

)
· j3(b, zm) +

3∑
i=0

(
vi · r i

s

)
·
[

j3(b, zm)
]2 (34)

Fig. 13. For Chl ranging from 0.01 to 1.00 mg/m3, b varies from
0.02 to 0.31 m−1, and zm ranges from (0.1∼2)/Kd on the shipborne platform.
(a) Bias versus g4(b, zm , rs) and (b) FWHM versus f4(b, zm , rs). Symbols
represent the MC simulation results, while lines represent the fit results.

Fig. 14. For Chl ranging from 0.01 to 1.00 mg/m3, correspondingly,
b ranging from 0.02 to 0.31 m−1, and zm within the range of (0.1∼2)/Kd
on the underwater platform. (a) Bias versus g5(b, zm) and (b) FWHM
versus f5(b, zm). Symbols represent the MC simulation results, while lines
represent the fit results.

where ri , ti , wi , and vi are the coefficients obtained from
fitting, with specific values listed in Table II. The normalized
variables h3(b, zm) and j3(b, zm) are the functions of b and zm ,
and are expressed as follows:

h3(b, zm) =
[
2.41 · 10−3

+ 7.28 · 10−3 ln(b − 0.02)
]
· (b · zm)

+
[
−3.19 · 10−3

+ 1.20 · 10−2 ln(b − 0.02)
]

· (b · zm)2 (35)

j3(b, zm) =
[
e0.47/(b + 0.02)0.43]

· (b · zm)

+
[
e−4.52/(b + 0.05)1.88]

· (b · zm)2. (36)

The final expressions for Bias as a function of b, zm , and rs ,
as well as for FWHM as a function of b, zm , and rs , are
presented as follows:

Bias = 0.016 + 0.990 · g4(b, zm, rs) (37)
FWHM = 0.741 + 0.974 · f4(b, zm, rs). (38)

E. Underwater

Deploying lidar underwater not only avoids interference
from the air–sea interface, but also enables its integration onto
underwater platforms, such as AUVs and ROVs, thereby facil-
itating deep-sea ocean environment profiling. Consequently,
underwater lidar has recently been proposed and demon-
strated [67], [68], [69], [70]. Similarly, using the parameters
of the underwater lidar from Table I, a quantitative analysis
is conducted on the effects of b, zm , and rs on the peak Bias
and FWHM of the seabed reflected signal, using the statistical
methods described above. The results are shown in Fig. 14.
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Fig. 15. (a) Bias versus b when zmg = 15 m. (b) Bias versus zmg when
b = 0.08 m−1. (c) FWHM versus b when zmg = 15 m. (d) FWHM versus
zmg when b = 0.08 m−1, for four different platforms.

The expressions for the normalized variables g5(b, zm) and
f5(b, zm) are presented as follows:

g5(b, zm) =
[
−4.15 · 10−4

− 3.10 · 10−4 ln(b − 0.02)
]

× (b · zm)[1.38−0.22·ln(b−0.021)] (39)

f5(b, zm) =

[
e−1.94

/(
b + 9.76 · 10−4)0.85

]
· (b · zm). (40)

The differences in Bias and FWHM for different platforms
under the same b and zmg conditions are shown in Fig. 15.
Fig. 15(a) and (c) displays the variation in Bias and FWHM
with b when zmg = 15 m, while Fig. 15(b) and (d) illus-
trates the variation in Bias and FWHM with zmg when
b = 0.08 m−1. It is evident that both Bias and FWHM
increase with higher platform height and larger rs . Specifically,
the results for Airborne-3 km are similar to those for ICESat-2,
as both platforms have rs values greater than 20 m. Although
the rs for the Airborne-3 km is larger than that of ICESat-2,
it is sufficiently large at this height, so the results are
not significantly affected by changes in the rs . Similarly,
shipborne and underwater lidars have smaller rs , resulting
in smaller Bias and FWHM. Additionally, the rs of the
Airborne-0.35-km lidar falls between those of the other two
types of platforms, leading to Bias and FWHM values that
are also intermediate. In summary, both Bias and FWHM
are influenced by rs, b, and zm . When these parameters are
large, the correction model proposed above should be used
to correct the depth data obtained from bathymetric lidar
measurements.

F. Impact of Scattering Phase Function

The scattering phase function determines the distribution
of the light field underwater [71], which, in turn, affect
the distribution of Bias and FWHM of seabed backscattered
signal. To investigate the influence of different scattering phase
functions on the distribution of Bias and FWHM, this work

Fig. 16. Comparison of the Petzold scattering phase function and the HG
scattering phase function for angles (a) 0◦–180◦ and (b) 90◦–180◦. Dashed
lines represent Petzold, while solid lines represent HG.

Fig. 17. Comparison of Bias under four platforms for Chl ranging from
0.01 to 1.00 mg/m3, correspondingly, b ranging from 0.02 to 0.31 m−1,
and zm within the range of (0.1∼2)/Kd between HG and Petzold scattering
phase functions. (a) ICESat-2. (b) Airborne-3 km. (c) Airborne-0.35 km.
(d) Shipborne. Symbols represent the MC simulation results, while lines
represent the fit results.

incorporates the Henyey–Greenstein (HG) scattering phase
function, which significantly differs from the previously used
Petzold scattering phase function, for conducting the MC
study. The HG function can be expressed as [72]

β̃ p =
1

4π

1 − g2[
1 + g2 − 2g cos(θ)

]3/2 (41)

where g is the anisotropy parameter, which is set to 0.919 in
the simulation [44].

Fig. 16 shows the comparison of the Petzold and HG scatter-
ing phase functions. The Petzold function is stronger than the
HG function at angles below 5◦ and between 135◦ and 180◦,
as shown in Fig. 16(b). Additionally, the Petzold function
increases monotonically in the 135◦–180◦ range, while the HG
function decreases monotonically.

After replacing the Petzold scattering phase function with
the HG scattering phase function, the MC simulations are
rerun, and the relationships of Bias and FWHM with b, zm ,
and rs are recalculated. The differences in Bias and FWHM
under these two scattering phase functions are compared,
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Fig. 18. Comparison of FWHM under four platforms for Chl ranging from
0.01 to 1.00 mg/m3, correspondingly, b ranging from 0.02 to 0.31 m−1,
and zm within the range of (0.1∼2)/Kd between HG and Petzold scattering
phase functions. (a) ICESat-2. (b) Airborne-3 km. (c) Airborne-0.35 km.
(d) Shipborne. Symbols represent the MC simulation results, while lines
represent the fit results.

with the results shown in Figs. 17 and 18, respectively.
As shown in Figs. 17 and 18, the differences in Bias and
FWHM calculated using these two scattering phase functions
are minimal. As shown in Fig. 17, for Bias, the results
from both scattering phase functions are almost identical
for the ICESat-2; however, for the Airborne-3-km platforms,
Airborne-0.35-km platforms, and Shipborne platforms, the
results from the HG scattering phase function are slightly
larger than those from Petzold. As shown in Fig. 18, for
FWHM, the results from both scattering phase functions
are almost identical to those from the Shipborne platform,
whereas for the other three platforms, the results from the HG
scattering phase function are slightly smaller than those from
Petzold.

G. Impact of the Absorption Coefficient

The variation in a leads to changes in both c and the single
scattering albedo (b/c). Therefore, it is important to further
investigate the influence of a on Bias and FWHM.

As shown in Fig. 19, for different platforms, when b and zmg

are fixed, the variation in a has little impact on bias. This
is because an increase in a leads to an increase in c,
which, in turn, reduces the photon step length (s), causing
more scattering events when photons reach the same depth.
However, as c increases, b/c decreases, meaning that the
increase in c accelerates energy attenuation, which reduces
the probability of multiple scattering events. The interaction
between the shortened step length and the accelerated energy
attenuation largely counteracts each other, ultimately making
the effect of a on Bias negligible.

However, as shown in Fig. 20, an increase in a leads
to a gradual reduction in FWHM. This is because, when
b and zmg remain constant, a higher a reduces the single

Fig. 19. Effect of a on Bias under different values of b and zmg for
different platforms. (a) ICESat-2. (b) Airborne-3 km. (c) Airborne-0.35 km.
(d) Shipborne.

Fig. 20. Effect of a on FWHM under different values of b and zmg for
different platforms. (a) ICESat-2. (b) Airborne-3 km. (c) Airborne-0.35 km.
(d) Shipborne.

scattering albedo, thereby accelerating photon energy atten-
uation. Consequently, when photons travel the same distance
in water, a higher a results in faster energy loss of photons,
leading to a reduction in FWHM. Therefore, when analyzing
the influence of multiple scattering on bottom reflection width
based on the FWHM statistical model, the contribution of a
must be considered.

IV. CONCLUSION

Bathymetric lidar has widespread applications. However,
due to the significant forward scattering of the laser beam as
it transmits through water, there is a notable contribution of
multiple scattering in the seabed reflected signals. This leads
to a shift in the peak position of the seabed reflected signal
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(termed Bias) and broadening of the signal width (termed
FWHM). To quantitatively study the impact of multiple scat-
tering on Bias and FWHM, this study employs semianalytic
MC simulations to statistically analyze the models for Bias
and FWHM of bathymetric lidar across different platforms,
including spaceborne, airborne, shipborne, and underwater
platforms.

The results indicate that b, zm , and rs collectively influence
Bias and FWHM. As b, zm , and rs increase, Bias and FWHM
increase. This means that b, zm , and rs together affect the
proportion of multiple scatterings in the reflected signals.
The higher the proportion of multiple scattering signals,
the greater the deviation of the peak determined from the
reflected waveform, and the more broadening of the signal
width. This not only leads to an overestimation of bottom
depth when the peak position of the seabed signal is used
for evaluation, but also makes extracting the peak position
(i.e., determining the bottom depth) more challenging due to
the broadening of the seabed signal. Specifically, for bathy-
metric lidar systems operating at higher altitudes, including
Airborne-3 km, Airborne-0.35 km, and spaceborne lidar, the
Bias can reach up to nearly 0.8 m, and the FWHM can
be as high as 30 ns when b is below 0.31 m−1 and zm

is less than 2/Kd . For shipborne bathymetric lidar systems,
the Bias and FWHM are lower, with maximum values of
approximately 0.6 m and 20 ns, respectively. For underwater
lidar, due to the unique characteristics of underwater opera-
tions, the bottom-reflected signal is least affected by multiple
scattering, resulting in the smallest Bias and FWHM. These
findings suggest that for bathymetric lidar with larger rs ,
depth measurements in waters under higher multiple scat-
tering and deeper bottom depths may be overestimated and
thus require correction. Moreover, statistical analysis shows
that Bias is minimally affected by the absorption coefficient,
while FWHM decreases with increasing absorption coeffi-
cient. Finally, the empirical expressions derived from the
statistical analysis for Bias and FWHM concerning b, zm ,
and rs provide valuable guidance for correcting depth mea-
surement errors caused by multiple scattering in bathymetric
lidar.

Based on the above, we will further investigate the mecha-
nism regarding the impact of multiple scattering on Bias and
FWHM, with an aim of developing a generic expression for
bias and FWHM applicable to different platforms, rather than
using separate expressions for each platform as presented in
this study. Moreover, the interference of the air–sea interface
will also be further investigated, and the applicability of the
derived empirical expressions will be experimentally verified.
Additionally, while this work focuses on the 532-nm wave-
length, future studies will consider additional wavelengths
to enhance the robustness of the model. In conclusion, the
empirical models developed in this study offer important
insights for enhancing the accuracy of bottom depth detection
across various platforms.
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