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ABSTRACT

Collective movements of bacteria exhibit a remarkable pattern of turbulence-like vortices, in which the Richardson cascade plays an impor-
tant role. In this work, we examine the energy and enstrophy cascades and their associated lognormal statistics using experimental velocity
field data. The coherent structure observed on a large scale is due to the presence of the inverse energy cascade, while the kinetic energy is dis-
sipated at all scales, since these active movements occur below the fluid viscosity scale. The forward enstrophy cascade occurs with injection
at all scales and may be represented by other nonlinear interactions that are not captured by the existing experimental data. Furthermore, the
lognormal statistics for both energy dissipation and enstrophy fields is verified in accordance with the Kolmogorov 1962 refined theory of tur-
bulence. Their scaling exponents can be well described by the lognormal formula with intermittency parameters comparable with those of the
three-dimensional hydrodynamic turbulence. The joint analysis of the multifractal measures of the energy dissipation rate and enstrophy fol-
lows an ellipse model from the lognormal statistics. Our results confirm the coexistence of the inverse energy cascade and the intermittency
correction of the velocity scaling in this active fluid system. An inverse energy cascade diagram below the fluid viscosity is summarized to
describe the observed two-dimensional bacterial turbulence. Our work provides an example of an active-flow model benchmark.
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I. INTRODUCTION
One hundred years ago, Lewis Fry Richardson proposed his cele-

brated cascade to describe the movement of turbulent flows in which
the kinetic energy (i.e., square of velocity) is transferred from the large
scale to the small-scale vortexes until the smallest one, known as the
dissipation scale, converts into heat.1 It was then Kolmogorov who
proposed his acclaimed three-dimensional (3D) homogeneous and
isotropic turbulence (HIT) theory to quantitatively describe this cas-
cade idea in 1941.2,3 To cope with the two-dimensional (2D) situation,
Kraichnan4 extended the concept of the forward energy cascade to
include the inverse energy cascade, wherein kinetic energy or other
physical quantities are transferred from small-scale to large-scale
vortexes.5 The concept of cascade is now widely accepted to describe
turbulent flows or turbulence-like systems6,7 and has been treated as
the cornerstone of turbulent models,8–12 the global circulation model
of the atmosphere and oceans,13–15 to name a few.

To be a cascade, taking the 3D HIT as an example, the kinetic
energy is injected into the system at the large scale L with a rate Ein,
and it is then forward transformed hierarchically from L to small scale

r1, then to r2, and so on to g, the so-called dissipation scale, see an illus-
tration in Fig. 1(a). The corresponding energy transfer rates between

scales are eP
½r1"
; eP

½r2 "
;…, and so on, wheree# means the average of the

ensemble. Assuming homogeneity and statistically stationary state
over time, energy conservation requires the global balance between
injection and dissipation,3 which can generally be written as

Ein ¼
ð
E inðrÞdr ¼

ð
B!ðrÞdr ¼ "; (1)

where EinðrÞ and B!ðrÞ are the energy injection rate density function
due to the external forcing and the energy dissipation rate density
function due to the fluid viscosity on scale r, respectively. Here, we
consider only the cases EinðrÞ ' 0 and B!ðrÞ ' 0. If there is a large-
scale separation, that is, a large Reynolds number Re ¼ UL=!, the ratio
between the inertial force and the viscosity force, where U, L, and !
are the characteristic velocity, spatial scale, and fluid viscosity, respec-
tively, the effect of viscosity can be ignored for those mediate scales,
that is, g ( r ( L, known as the inertial range. Thus, an asymptotic

conservation relation Ein ’ eP
½r"
’ " is expected in the inertial range.
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Within this inertial range, the Kolmogorov theory of 3D HIT then
predicts the Fourier power spectrum of the kinetic energy as EðkÞ
/ k)5=3 (respectively, k ¼ 1=r is the wavenumber).2,3,16 This power
law scaling prediction and the forward energy cascade are widely veri-
fied experimentally and numerically.3 A diagram of this classical for-
ward cascade is shown in Fig. 1(a), where the downward arrow
indicates the direction of the mean forward energy cascade, and the
curved arrow indicates the inverse transfer of the kinetic energy. As
pointed out by Lumley,17 a real cascade is always bidirection; for exam-
ple, both forward and inverse energy cascades coexist and cross differ-
ent scales, see Fig. 8 in Ref. 17. The direction of the final cascade is,
thus, the competition between the forward and inverse processes.
Moreover, due to the intermittent distribution of the energy dissipa-
tion field, the scaling behavior of the velocity field deviates noticeably
from the prediction of the Kolmogorov 1941 theory, known as inter-
mittency.3,18 The intermittency phenomenon has been interpreted in
the framework of multifractality of the energy dissipation field19–21

and verified widely by experiments and numerical simulations.22–27

Note that, in this conventional view of the 3D cascade, a large-scale
separation ratio is required. Or, in other words, to have a cascade and
the observed scaling behavior of the velocity field, there should be a
wide range of fluid structures to interact with each other, which is
often characterized by a large Reynolds number Re. Therefore, the cas-
cade and the associated intermittent behavior of the velocity field are
often considered one of the main properties of high Reynolds number
flows;28 see a full discussion in Refs. 29–31.

Concerning the 2D case, it does not make the problem easier
because of the reduction of dimensionality. For example, as conceptu-
alized by Kraichnan,4 if the injection of energy is on the intermediate

scale, that is, rF, the addition to energy conservation, the conservation
of enstrophy (i.e., the square of vorticity) is also expected.5 More pre-
cisely, the inverse energy cascade is expected when rF ( r ( La with
EðkÞ / k)5=3, while the forward enstrophy cascade is expected when
g ( r ( rF with EðkÞ / k)3, where La is the Ekmann friction scale
due to Ekmann friction,32 see Fig. 1(b) for an illustration. In analogy to
the 3D HIT case, the conservation law implies the following asymp-

totic relation EinðrFÞ ’ )eP
½r"
¼ "a for the inverse energy cascade and

EX;inðrFÞ ’ eP
½r"
X ¼ "X for the forward enstrophy cascade. The experi-

mental results confirm the existence of such dual cascades.33–45 Unlike
3D hydrodynamic turbulence, there is no intermittent correction in
the 2D inverse energy cascade.34,41,42,46,47

It is interesting to note that the turbulence-like dynamics was also
observed for several low Reynolds number flows, for example, the
elastic turbulence with a typical Reynolds number Re ¼ Oð0:1Þ,48–50
the collective motion of a high concentration of bacteria with Re
¼ Oð10)5Þ (also known as mesoscale turbulence, or active turbu-
lence),51–59 and the lithosphere deformation with Re ¼ Oð10)24Þ,7 to
name a few. The cascades in these mentioned systems, if they exist,
should be more complex, as their external forces and dissipation mech-
anisms could be very different from those of the 3D and 2D HITs. For
example, in bacterial turbulence, a remarkable coherent flow pattern
with spatial size greater than 10 times their mean body size eR was
reported.52,55 This large-scale structure pattern is believed to be a con-
sequence of an inverse energy cascade through hydrodynamic interac-
tions, in which kinetic energy is injected into the flow system through
the stirring of bacteria.55,60–62 Unlike conventional turbulent flows
with high Reynolds numbers, where inertia dominates on a wide range
of scales, the cascade of the bacterial turbulence, if it exists, is still con-
sidered below the viscosity scale.61,63 There is strong competition
between fluid inertia and viscosity. For example, this work will show
that the kinetic energy is rapidly dissipated on all scales due to the
effect of fluid viscosity, see the illustration in Fig. 1(c), and more dis-
cussion in Sec. IVA. Thus, cascades play an important role in the for-
mation of this special active-fluid system.

Since its discovery,51,52,64–67 the bacterial turbulence and its asso-
ciated models have attracted more and more attention.54,56,68–84 For
example, Wu and Libchaber64 reported that due to the existence of
large-scale motions, mass transport is enhanced. Ishikawa et al.66

experimentally measured how energy was transported from the indi-
vidual cell to the larger mesoscale in 3D so that the energy is dissipated
mainly in the large wave number regime. According to their estima-
tion, the energy dissipated by mesoscale eddies is much smaller than
the energy required for bacterial swimming. Based on 3D experimental
observation, Dunkel et al.53 proposed a minimal fourth-order vector
model to reproduce the main statistical characteristics of self-sustained
turbulence in concentrated bacterial suspensions. Using a hydrody-
namic model, Doostmohammadi et al.60 studied the onset of meso-
scale turbulence in the channel. They reported that the transition to
mesoscale turbulence is governed by the dimensionless activity num-
ber A ¼ h=‘a, the ratio of channel height h to the characteristic
activity-induced length scale ‘a ¼

ffiffiffiffiffiffiffiffi
K=f

p
(f is intrinsic activity and K

is the orientational elasticity of the nematic fluid): when A ' Acr, simi-
lar to the classical hydrodynamic turbulence,85 the active puff grows
into mesoscale turbulence. Bratanov, Jenko, and Frey55 reported
numerically an inverse energy cascade in the Fourier representation

FIG. 1. (a) Illustration of the forward energy cascade in the 3D homogeneous and
isotropic turbulence, where the downward arrow indicates the direction of the mean
forward cascade, and the curved arrow indicates the instantaneous inverse energy
cascade. (b) Forward energy and inverse enstrophy cascades in the 2D turbulence.
(c) The inverse energy cascade for the 2D bacterial turbulence that is below the
fluid viscosity scale. The horizontal arrow implies the energy dissipated density
function B!ðrÞ on scale r.
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for the continuum model.52,53 Power law behavior of velocity energy
spectra was observed even in the absence of an inertial range, but the
spectral exponents may depend on the choice of parameters. Słomka
and Dunkel86 found that the inverse energy cascade could be triggered
in 3D if the mirror-symmetry is broken. Linkmann et al.62 performed
a systematic study of the parameters of the hydrodynamic model of
dense microswimmer suspensions. They found a phase transition
between bacterial turbulence (i.e., spatiotemporal chaos) and hydrody-
namic turbulence (i.e., large-scale coherent structures). However, it is
still challenging to understand the intermittency characteristics for
such a low Reynolds number turbulence-like system.76,77,87 Wensink
et al.52 checked the high-order structure-function for the experimental
velocity field; due to the scale mixture of this method,88 no scaling
behavior is observed. Mukherjee et al.84 performed a series numerical
simulation using the hydrodynamic model proposed by Wensink
et al.52 They reported a non-Gaussian fluctuation of velocity incre-
ments, a signature of the intermittency when the level of activity
beyond a critical value. They also proposed an asymptotic energy spec-
trum EðkÞ / k)3=2. By applying the Hilbert-Huang Transform to the
experimental velocity field of 2D bacterial turbulence, when the scale
mixture is overcome in a joint amplitude-frequency domain, a clear
power law behavior is then obtained in the range 0:15! keR! 0:5
with an intermittency parameter l ’ 0:26 [see definition in Eqs. (9)
and (12)] is reported.89 To avoid the problem of the scale mixture in
the physical domain, Wang and Huang61 proposed a coordinate-free
approach, namely, the streamline-based intrinsic flow structure analy-
sis, to extract the flow structure in a natural-like coordinate. When
applied to the experimental velocity field, the power law behavior is
confirmed in the range 2! ‘=eR! 10, corresponding to a range of
wave numbers 0:1! keR! 0:5, with a comparable intermittency
parameter l ’ 0:20. They also show evidence of the inverse energy
cascade using the filter-space technique (FST), and of the lognormal
statistics of the energy dissipation rate and enstrophy fields. These
results confirm the existence of the inverse energy cascade even in the
absence of an inertial range; moreover, contrary to conventional 2D
hydrodynamic turbulence, the intermittent correction coexists for this
special active dynamic system.

In this work, cascades and associated lognormal statistics of the
2D bacterial turbulence will be further explored by analyzing
the experimental velocity field. Experimental evidence is presented for
the inverse energy cascade and the forward enstrophy cascade. The
Kolmogorov lognormal scaling formula is also discussed.

II. EXPERIMENTAL DATA AND FILTER-SPACE
TECHNIQUE
A. Experiment velocity field of 2D bacterial turbulence

The velocity vectors of the 2D bacterial turbulence analyzed here
are experimental results provided by Goldstein and co-workers.52

Here, we briefly recall the main control parameters in a microfluidic
chamber. Bacillus subtilis is used for the experiment with an individual
body length in the range 0:5!R=eR! 1:5 (i.e., eR ’ 5 lm for the
mean body length) and a mean aspect ratio a ’ 6:3, the ratio between
body length R and body diameter d. The vertical height Hc of the
microfluidic chamber is less than or equal to the length of the individ-
ual body to ensure 2D flow. The volume fill fraction is / ¼ 84% to
ensure the turbulent phase of the flow.52 The particle image velocime-
try measurement area is 217lm* 217 lm with an image resolution

of 700 pix* 700 pix and a frame rate of 40Hz. The final velocity field
has 84* 84 vectors and a total of 1441 snapshots. In total, there are
10167 696 velocity vectors, which provide good statistical conver-
gence.52 As shown by Wang and Huang,61 the flow field is smooth
enough to safely calculate its spatial gradient, e.g., vertical vorticity xz

and energy dissipation rate ". Therefore, vorticity-associated enstrophy
flux, and multifractal analysis of both the energy dissipation rate " and
the enstrophy X ¼ x2

z are considered.

B. Filter-space technique
To determine both the direction and the strength of the cascade,

one has to extract the scale-to-scale flux that characterizes the energy
or other physical quantities exchanged between scales above ‘ > r and
below ‘ < r.3 There exist mainly three methodologies to fulfill this job:
third-order longitudinal structure-function,90,91 spectral representa-
tion,92–95 and Filter-Space-Technique.36,61,96–98 Although the first
approach has been widely used in the turbulence community, it
requires a priori knowledge of the balance of the external force and the
dissipation of the system. Thus, it is not suitable here to extract the
scale-dependent energy flux information. The second one provides a
global representation of the energy flux in the Fourier space without
providing local dynamic information.29,30 The last method was first
proposed in the turbulence community to a posteriori extract the
scale-to-scale flux of the velocity field and preserve local dynamic
information,99–101 thus attracting more and more attention in not only
fluid dynamics but also geophysical fluid dynamics.36,61,96,97,102–105

Taking the 2D velocity field, e.g., uðx; tÞ ¼ ½uxðx; y; tÞ;
uyðx; y; tÞ", as an example, its coarse-grained lower-pass field with spa-
tial scale r is defined as

u r½ "ðx; tÞ ¼ uðx; tÞ + Grðx; tÞ ¼
ð
uðx þ x0; tÞGrðx0; tÞdx0; (2)

where + is the convolution, GrðxÞ is a filter kernel, and r is the spatial
scale. Due to its good low-pass property in Fourier space, the Gaussian
kernel, i.e., GrðxÞ / expð)x2=2r2Þ, is then often taken as the filter
kernel.32 The scale-to-scale energy flux can be derived from the incom-
pressible Navier–Stokes equations as follows:100

P r½ "ðx; tÞ ¼ )
X

i;j¼1;2

ðuiujÞ r½ " ) ðu r½ "
i u r½ "

j Þ
h i @u r½ "

i

@xj
; (3)

where u1 ¼ ux; u2 ¼ uy is the velocity component, x1 ¼ x; x2 ¼ y
are the spatial coordinates in the 2D plane, and r is the radius of the
Gaussian kernel. A positive P½r" > 0 indicates the energy transferred
from large-scale motions with spatial scales ‘ > r to small-scale ones
‘ < r and vice versa. Thus, it characterizes both the direction and
intensity of the energy cascade. It can be generalized to other physical
quantities, e.g.,xz,

P r½ "
X ðx; tÞ ¼ )

X

i¼1;2

ðuixzÞ r½ " ) ðu r½ "
i x r½ "

z Þ
h i

@x r½ "
z

@xi
: (4)

Its interpretation is the same as that of the kinetic energy. The FST
method has also been experimentally proven to be robust with noisy
or underresolution data.96

The cascade associates deeply with the nonlinear interaction of the
governing equation, e.g., u #ru, in the Navier–Stokes equations.
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However, additional nonlinear interactions have been introduced in the
model equations proposed by several authors.52,73 To simplify the prob-
lem, here only the advection term u #ru is taken into account, as other
effects are difficult to determine by using the experimental data.61

Figure 2 shows an experimental example of scale-to-scale (a) energy
flux P½r" and (b) enstrophy flux P½r"

X with r=eR ¼ 5. Unlike the global
Fourier spectral representation,3,55 the spatial pattern has been well cap-
tured. For example, both the negative (inverse) and positive (forward)
fluxes are local preserved. It is interesting to see that high-intensity nega-
tive fluxes are often accompanied by high-intensity positive fluxes, which
is also observed for 3D homogeneous shear turbulence.103

III. RESULTS
A. Energy cascade

To address both the direction and intensity of cascades, the FST
approach is applied to the experimental data of the 2D bacterial turbu-
lence to retrieve scale-to-scale energy and enstrophy fluxes. Note that
the 2D velocity field has 84* 84 vectors and a spatial resolution of

2:58 lm, which is approximately half the mean body size eR (e.g.,
5 lm).52 Therefore, the spatial scale separation in these data is approxi-
mately 40 times. For the sake of good statistics, the largest scale is lim-
ited to r=eR ’ 20 in the following analysis. Figure 3(a) shows the
experimental probability density function (pdf) of the energy flux P½r"

for scales in the range 0:5! r=eR! 20. It shows a negatively skewed
shape, indicating an inverse energy cascade. With an increase in the
scale r, it is from the stretched exponential distribution pðxÞ / e)jxjb

approaching the normal one (respectively, b ’ 2).106 The experimen-
tal b through a nonlinear least squares is shown in Fig. 3(b). A power
law increasing trend is observed with a scaling exponent 0.52. Note
that the measured b is slightly asymmetric for the left and right parts
of the pdf and approaches the value 2 of the normal distribution.
Moreover, the left part of the measured b deviates notably from the
power law trend around the scale r=eR ’ 5. It follows again this power
law trend when r=eR" 8.

Figure 3(c) shows the mean energy flux )eP
½r"

in the log-log
view. Power law decaying is evident in the range 4! r=eR! 12 with a
scaling exponent 3.686 0.08, suggesting that the kinetic energy is
strongly dissipated at all scale r, since these scale of motions are still
below the fluid viscosity scale, see more discussion in Sec. IV. The scal-
ing range agrees well with the one observed in Ref. 61, which is to be
2! r=eR! 10. To emphasize the asymmetry of pdfs, the skewness fac-
tor of each scale r is calculated as follows:

Sk ¼ hx3i
hx2i3=2

; (5)

where h#i means the average of the ensemble and x is either the energy

flux P½r" or enstrophy flux P½r"
X . The experimental Sk(r) is shown in

FIG. 2. A snapshot of (a) the energy flux P½r " and (b) enstrophy P½r"
X flux at scale

r=eR ¼ 5.

FIG. 3. (a) Measured probability density
function (pdf) of instantaneous scale-to-
scale energy flux P½r " for scales in the
range 0:5! r=eR! 20, where the normal
distribution is illustrated as a dashed line.
For display clarity, the pdf curves have
been vertical shifted. (b) Stretched expo-
nential distribution exponent b, where a
power law trend is demonstrated by a
dashed line. (c) Measured mean energy
flux eP

½r "
, where the dashed line is the

power law fit with a scaling exponent
3.686 0.08. (d) The corresponding skew-
ness factor, where the dashed line indi-
cates the power law relation with scaling
exponents 1.096 0.03 and 2.676 0.06.
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Fig. 3(d). It is interesting to see a dual power law with scaling expo-
nents 1.096 0.03 of the range 1! r=eR! 4:5 and 2.676 0.06 of the
range 5:5! r=eR! 14:5. The separation scale r=eR ’ 5 agrees well
with the one indicated by b, see Fig. 3(b).

B. Enstrophy cascade
The experimental pdf of the enstrophy flux P½r"

X is shown in
Fig. 4(a). Unlike those of the energy flux, they seem to be symmetric
for all scales. With an increase in scales r, they are approaching the
standard exponential distribution with b ’ 1, see experimental b in
Fig. 4(b). For the scales r=eR! 4, experimental b follows the power law
increasing with a scaling exponent 0.48, which is comparable to the
one found for energy fluxes. Above r=eR ’ 4, the power law is less
steep, showing a scaling exponent value of 0.23. The mean flux of ens-
trophy eP

½r"
X is positive with a decaying power law in the scale range

2! r=eR! 8 and a scaling exponent 3.676 0.04, see Fig. 4(c). It sug-
gests that enstrophy might be injected into the system on all scales
through other mechanisms, see more discussion in Sec. IVA. The cor-
responding skewness factor suggests two regimes separated by a scale
around r=eR ’ 5, where a power law increase is observed in the range
5:5! r=eR! 20 with a scaling exponent 0.666 0.11, see Fig. 4(d).
Note that both the mean enstrophy flux and its skewness factor are
positive for all scales, confirming the forward enstrophy cascade and a
transition scale around r=eR ’ 5.

C. Background cascades
The part with the highest probability (respectively, the core part

of the pdf) represents the background motion of the flow field.107 To

better understand the contribution of different intensity events to the
mean cascade, a pdf ratio P in dB is defined as

Pðr; jP r½ "jÞ ¼ 20* log10
pðP r½ "ÞP r½ "<0

pðP r½ "ÞP r½ ">0

; (6)

where a positive value of P means that the inverse transfer is stronger
than the forward transfer at a given intensity of events. Figure 5(a)
shows the experimental P for the energy flux in the intensity range
0! jP½r"j=r! 5, where r is its standard deviation. It is interesting to
note that in the core part of the pdf, P is negative with a minimum
value of approximately )3 dB (that is roughly 0.7 times), indicating
that the background energy cascade of this active flow is still forward.
In other words, the forward and inverse energy cascades coexist.79

With an increase in the intensity of the event, especially around body
size, it is strongly positive, confirming that the energy is injected
through the movement of bacteria. A maximum value 46 dB (approxi-
mately 200 times) is found for r=eR ’ 1:5 and P½r"=r ’ 16:8 (not

FIG. 4. (a) Measured pdf of the enstrophy
flux P½r "

X , where the normal distribution is
illustrated as a dashed line. For display
clarity, the pdf curves have been vertical
shifted. (b) Stretched exponential distribu-
tion exponent b, where a power law trend
is demonstrated by a dashed line. (c)

Measured mean enstrophy flux eP
½r "
X ,

where the dashed line is the power law fit
with a scaling exponent 3.676 0.04. (d)
The corresponding skewness factor,
where the dashed line indicates the power
law scaling with a scaling exponent of
0.666 0.11.

FIG. 5. Experiment negative vs positive pdf ratio P in dB. (a) r-Dependent energy
flux and (b) enstrophy flux, where the vertical dash line indicates the body size of
the bacteria. The solid line in (a) indicates 0 and 6 dB (i.e., twice).
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shown here). For the enstrophy case, the experimental P is nearly neg-
ative for all r andP½r"

X , indicating that the forward enstrophy cascade is
dominant. It is interesting to note that the minimum value was also
found to be around)3 dB.

D. Energy-enstrophy joint cascades
The energy and enstrophy cascades could be treated as a joint

cascading process because they are dynamically related.108–110

Figure 6(a) shows the measured joint pdf pðP½r";P½r"
X Þ for scales in the

range 0:5! r=eR! 10, in which the first four orders of magnitude are
shown. For small r, it is strongly asymmetric; with increasing scales r,
it then approaches the up-down and right-left symmetry. To see more
details of the asymmetry of the conditional pdf, the conditional skew-
ness for P½r"

X and P½r" is calculated, see Fig. 6(b). The conditional
Skðr;P½r"

X Þ of the enstrophy flux (top) shows an antisymmetric relation

with respect to P½r" ¼ 0. More precisely, for positive P½r", except for
special regions 3! r=eR! 5 and 2!P½r"=r! 8, the conditional skew-
ness factor is positive. For the case of energy flux, it is nearly negative
for all scales r andP½r"

X .
The experimental cross-correlation coefficient between P½r" and

P½r"
X is shown in Fig. 6(c). A log-law is evident in the range

6! r=eR! 20 with a scaling exponent 0.0816 0.04. All of the afore-
mentioned results confirm the existence of an inverse energy cascade
and a forward enstrophy cascade below the fluid viscosity scale and a
finite scaling behavior with a scaling exponent n 2

3 (e.g., n¼ 0, 2, and 3,
see Table I)52,61,89 and indicate a separation scale around r=eR ’ 5.

E. Kolmogorov lognormal statistics
In his 1941 theory of 3D HIT, Kolmogorov considered the mean

energy dissipation rate as the key parameter.2,3 As Landau and Lifshits

FIG. 6. (a) Experiment joint pdf pðP½r ";P½r "
X Þ for four typical spatial scales. (b) Conditional skewness Skðr ;P

½r "Þ of enstrophy flux (top) and Skðr ;P½r "
X Þ of energy flux (bottom),

where Sk¼ 0 is indicated by a white line. (c) Cross-correlation coefficient qðrÞ between P½r " and P½r "
X , where the dashed solid line indicates a log-law with a slope of

0.0816 0.004 in the range 6! r=eR! 20.

TABLE I. Scaling ranges and intermittency parameters l observed in the experimental velocity of 2D bacterial turbulence provided in Ref. 52. The intermittency parameters
measured for 3D HIT are l" ’ 0:21 and lX ’ 0:3324.

Method/Quantity Scaling range Scaling exponents Intermittency l References

Fourier 2! r=eR! 5 2:68 2 2
3

# $
60:03 NA Wensink et al.52

Hilbert 2! r=eR! 6 0.916 0.02 0.266 0.01 Qiu et al.89

Streamline 2! r=eR! 10 0:7660:01 0.206 0.01 Wang and Huang61

b ofP½r" 0:5! r=eR! 20 0.526 0.05 NA Figure 3(b)
r=eR ’ 5

eP
½r"

4! r=eR! 12 3:68 3 2
3

# $
60:08 NA Figure 3(c)

Sk(r) of P½r" 1! r=eR! 4:5 1.096 0.03 NA Figure 3(d)
5:5! r=eR! 14:5 2:67 2 2

3

# $
60:06

b ofP½r"
X 0:5! r=eR! 4 0.486 0.04 NA Figure 4(b)

4! r=eR! 20 0.236 0.05
eP

½r"
X 2! r=eR! 8 3:67 3 2

3

# $
60:04 NA Figure 4(c)

Sk(r) of P½r"
X 5:5! r=eR! 20 0:66 2

3

# $
60:11 NA Figure 4(d)

qðrÞ 6! r=eR! 20 0.0816 0.004 NA Figure 6(c)
M";qð‘Þ 0:5! ‘=eR! 3 NA l" : 0:2660:01 Figure 7(a)
MX;qð‘Þ 0:5! ‘=eR! 3 NA lX : 0:3660:02 Figure 7(b)
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pointed out, the energy dissipation rate " (see the definition below)
should be varied in both space and time, leading to a non-universal
spectrum for different flows.10 In 1962, 20 years after his 1941 the-
ory, Kolmogorov proposed his famous refined theory of turbulence,
in which the lognormal statistics of the energy dissipation field are
used to reconcile the highly intermittent distribution of the energy
dissipation rate in space.3,18,111 The energy dissipation rate of the
velocity field is defined as

"ðx; tÞ ¼ 2!SijSij; Sij ¼
1
2

@ui
@xj

þ
@uj
@xi

 !
; (7)

where ! is the fluid viscosity. A coarse-grained energy dissipation rate
"‘ is defined as

"‘ðx; tÞ ¼
1
D

ð

jx0 j-‘
"ðx þ x0; tÞdx0; (8)

where, following the convention, the radius ‘ is the characteristic spa-
tial scale;18,112,113 D ¼ p‘2 for the 2D case and D ¼ 4

3p‘
3 for the 3D

case. The high-order moment of "‘ is expected to follow the power law
decaying if "‘ satisfies the lognormal distribution, that is,

M";qð‘Þ ¼ h"q‘i / ‘)K"ðqÞ; K"ðqÞ ¼
l"
2

q2 ) q
# $

; (9)

where l" is the so-called intermittency parameter. A higher value of
l", a more intermittent energy dissipation field.

An experimental test has been performed in Ref. 61 to confirm
the validation of the lognormal distribution of both "‘ and X‘ for all ‘
(figure not reproduced here). Figure 7(a) shows the high-order
moment M";qð‘Þ of the coarse-grained energy dissipation rate "‘. The
power law decaying is observed in a finite range 0:5! ‘=eR! 3. Note
that, for example in the statistical analysis,114,115 if one treats the diam-
eter as the spatial scale, the scaling range is then in the range
1! 2‘=eR! 6. The experimental MX;qð‘Þ for the enstrophy is shown
in Fig. 7(b), where power law decaying is evident in the same range of
scales as that of the energy dissipation rate. The compensated curves
using the fitted parameters are shown in Fig. 7(c) to highlight the
experimental power law behavior. Note that the finite scale range of
power law scaling has been recognized by several different methodolo-
gies and quantities, e.g., less than one decade in Figs. 3 and 4, Fig. 4 in
Ref. 52, Figs. 4–6 in Ref. 89, and Fig. 5 in Ref. 61. There are several rea-
sons to limit the scaling range since the flow motion is below the fluid
viscosity scale, see the comment in Ref. 89 and Sec. IVB.

The direct measurement of K"ðqÞ and KXðqÞ is shown in
Fig. 7(d) and yields intermittency parameters l" ’ 0:26 and
lX ’ 0:36, confirming the validation of Eq. (9). These intermittency
parameters are comparable to those for high Reynolds number 3D
hydrodynamic turbulence.3,23,24,27,116 For example, the best fit of

FIG. 7. (a) Measured high-order moments M";qð‘Þ, where a power law behavior is evident on the range 0:5! ‘=eR! 3. (b) The same as (a) but for MX;qð‘Þ. (c) The compen-
sated curves to emphasize the experimental power law behavior. (d) Experimental K"ðqÞ (!, l" ¼ 0:2660:01) and KXðqÞ (3; lX ¼ 0:3660:02). K(q) calculated for the
same dataset through Eq. (12) using fðqÞ provided in Ref. 89 ("; l ’ 0:26) and in Ref. 61 (#; l ’ 0:20) is also shown. The directly calculated K(q) for the 3D Lagrangian
turbulence $ (l ’ 0:23) provided in Ref. 27; indirectly ones provided in Ref. 42 for the forward cascade in the 2D turbulence (~, l ’ 0:31); Ref. 23 for both longitudinal
(blue %; l ’ 0:23) and transverse (orange !, l ’ 0:35) scaling, directly measure K"ðqÞ (green &, l" ’ 0:21) and KXðqÞ (red', lX ’ 0:33) in Ref. 24, and the litho-
sphere deformation( (l ’ 0:30) in Ref. 7 are also shown. The intermittency parameter l is provided by the least squares of either Eqs. (9) or (12) in the range 0 - q - 4.
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intermittency parameters K"ðqÞ and KXðqÞ in Ref. 24 for the 3D
homogeneous and isotropic turbulence is, respectively, l" ’ 0:21 and
lX ¼ 0:33. These values suggest a more intermittent enstrophy field
than energy dissipation and have been further recognized as a finite
Reynolds number effect.109,110,117,118 For comparison, the directed
measured K"ðqÞ for the 3D Lagrangian turbulence with an intermit-
tency parameter l" ’ 0:23 provided in Ref. 27 is also shown in
Fig. 7(d). The experimental K(q) for various flows shows a good agree-
ment, indicating that the intermittency parameter l might be univer-
sal, see more discussions in Sec. IVC.

F. Kolmogorov lognormal scaling relation
The scaling of the energy dissipation field is deeply related to

Kolmogorov’s 1962 refined turbulence theory that the intermittency
feature of the velocity field stems from the wild distribution of the for-
mer quantity.3,18 Taking the 3D hydrodynamic turbulence as an exam-
ple, the scaling exponent K"ðqÞ of the energy dissipation field and
fEðqÞ of the Eulerian structure-function of the velocity field can be
related as follows:

fEðqÞ ¼
q
3
) l"
18

q2 ) 3q
# $

: (10)

Its Lagrangian counterpart is written as follows:

fLðqÞ ¼
q
2
) l"

8
q2 ) 2q
# $

: (11)

A generalization of the aforementioned formula for an arbitrary Hurst
number h is written as follows:

fðqÞ ¼ qh) KðqhÞ; KðqÞ ¼ l
2
ðq2 ) qÞ; (12)

where h is the Hurst number provided by either theoretical consider-
ations (e.g., 1/3 for the Eulerian velocity or 1/2 for the Lagrangian
velocity) or determined by the least squares fit of fðqÞ. This lognormal
scaling relation has been verified for the 3D HIT in either Eulerian and
Lagrangian frames.22–27,119 For example, the indirect measure l for the
longitudinal and transverse structure-function scaling in Ref. 23 is
l ’ 0:23 and l ’ 0:35, respectively; they agree well with the direct
measure values l" ’ 0:21 and lX ’ 0:33 in Ref. 24.

Therefore, indirect measurements of K(q) are also calculated
using experimental fðqÞ through the relation KðqÞ ¼ q) fðq=hÞ. The
scaling exponent fðqÞ of this bacterial velocity field has been obtained
by two different methods: Hilbert-Huang Transform89 and streamline-
based analysis.61 The indirect estimation of K(q) is also shown in
Fig. 7(d) as " and #, where the Hurst number h is obtained by the
nonlinear least squares fit. Interestingly, the direct and indirect mea-
sured K(q) (l ’ 0:26 of Ref. 89 and l ’ 0:20 of Ref. 61) agree well
with each other, confirming the validation of the aforementioned
Kolmogorov lognormal scaling relationship. This suggests that the
intermittency correction observed in 2D bacterial turbulence could
originate from the energy dissipation field, which deserves more care-
ful study in the future, see more discussion in Sec. IVC.

For comparison, K(q) calculated either directly or indirectly from
other flow systems is also shown: (1) the 3D Lagrangian HIT ($) in
Ref. 27, Eulerian longitudinal (blue%) and transverse (orange!) pro-
vided in Ref. 23, and K"ðqÞ (green &) and KXðqÞ (red') provided in
Ref. 24; (2) the forward cascade in the 2D turbulence (~, l ’ 0:31) in

Ref. 42; (3) the deformation of the lithosphere ((; l ’ 0:30) in Ref. 7.
Despite very different methodologies and systems, the experimental K
(q) agrees very well with each other, suggesting a possible universal
intermittency correction, e.g., 0:2! l! 0:4.3,116 Note that one of the
shortcomings of the lognormal model is that it may not be realizable
since it predicts unlimited velocities, see more comments in Ref. 3.
Other multifractal models19,20,120–122 could also well fit the scaling
exponents in Fig. 7(d) or scaling relation Eq. (12), in which other ana-
lytical forms for K(q) may be involved. To keep things as simple as
possible, we do not discuss other models here.

G. Joint multifractal measures
In Sec. IIID, the joint distribution of energy and enstrophy fluxes

is examined, which confirms the existence of the joint energy-
enstrophy cascade. This joint cascade can be further characterized by
the so-called joint multifractal measures using mixed high-order
moments of the coarse-grained energy dissipation rate and enstro-
phy,108,123 which is written as

Mm;nð‘Þ ¼ h"m‘ X
n
‘ i / ‘)nðm;nÞ; (13)

where nðm; nÞ is the scaling exponent that satisfies nðm; 0Þ ¼ K"ðmÞ
and nð0; nÞ ¼ KXðnÞ. When the multifractal fields " and X are inde-
pendent of each other, one has

nðm; nÞ ¼ K"ðmÞ þ KXðnÞ: (14)

By substituting Eq. (9) into the aforementioned equation, it yields an
ellipse model for the joint scaling exponents nðm; nÞ,108

l"
2

m) 1
2

% &2

þ lX
2

n) 1
2

% &2

¼ 1
8
ðl" þ lXÞ þ nðm; nÞ: (15)

To test the aforementioned relation, one has to destroy the correlation
between X‘ðx; tÞ and "‘ðx; tÞ: they are shuffled in both space and
time to decouple with each other. The high-order moments Mm;nð‘Þ
are then calculated with and without shuffling in the range
)2 - m; n - 4. The experimental scaling exponents nðm; nÞ are then
estimated in the range 0:5! ‘=eR! 3. Figures 8(a) and 8(b) show the
contour lines of the measured nðm; nÞ (%) without and with shuffling.
Note that in Fig. 8(b), contour lines provided by Eq. (15) with experi-
mental values of l" ¼ 0:26 and lX ¼ 0:36 are shown as a solid line
without further adjustment. The decoupled nðm; nÞ agrees well with
the analytical ellipse model in a wide range of )0:08! nðm; nÞ! 1.
However, the direct measured nðm; nÞ seems to follow the
ellipse shape with an inclined angle. Therefore, the eccentricity
e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1) b2=a2

p
(a and b are the major and minor axes of the ellipse,

respectively) and the inclined angle h (counterclockwise) are extracted.
The measured e is found to be a constant value of e ¼ 0:7860:01,
which is significant above the value of 0.536 0.04 (i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1) l"=lX

p
)

provided by Eq. (15). However, the inclined angle h decreases with
n in the range )26. ! h! ) 18.. More precisely, two regimes
separated by n ’ 1:5 with different slopes (e.g., )1:876 0:03 and
)10:6760:06) can be identified.

IV. DISCUSSION
A. Scale-dependent cascade and dissipation

Note that in the global balance Eq. (1), the energy flux eP
½r"
is not

involved, as it is only exchanged between different scales internally.
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Assuming the spatial homogeneity and temporal stationary, the local
energy balance on scale r is written as3,105,124

dr eP
r½ " ¼ B!ðrÞ ) E inðrÞ: (16)

Here, a negative value of dr eP
½r"

indicates an injection of energy into
the loop of the cascade and vice versa. With different combinations of
these three terms, different pictures of cascades can be realized. For
example, far from the injection scale L and the dissipation scale g, a

scale-independent energy flux eP
½r"

is required, since dr eP
½r"
¼ 0. This

is the inertial range for both 3D and 2DHITs.125 Figure 9(a) shows the

experimental phase diagram of eP
½r"
vs dr ePðrÞ through a finite center

difference. It confirms that the kinetic energy is injected via the bacte-

rial body size (i.e., dr eP
½r"
< 0 when r ’ eR) and is dissipated out the

system on all scales (i.e., dr eP
½r"
> 0) that above the injection scale eR.

In other words, the kinetic energy is, indeed, dissipated on all scales.66

This can also be confirmed by the so-called dissipation spectrum,126

i.e., E"ðkÞ ¼ EðkÞk2,127 where E(k) is the kinetic energy spectrum of
the velocity. Figure 10(a) reproduces the normalized experimental
curve EðkÞk2, where E(k) is adopted from Ref. 52. A peak of the dissi-
pation spectrum is evident at keR ’ 0:2, corresponding to a spatial
scale ‘ ’ 5eR. The normalized Fourier power spectrum of the energy

dissipation rate is also shown as(. A log-law decaying is evident with
a slope 2.206 0.03 on the range 0:07! keR! 0:2, corresponding to a
spatial scale range 5! ‘=eR! 14. For comparison, the dissipation spec-
trum in the 3D bacterial turbulence provided in Ref. 66 is also repro-
duced as solid lines, where two heights above the bottom of their
experiments are 10 lm and 30lm. As mentioned earlier, when the
scale r is above the size of the body of the bacteria, one can treat
dr ePðrÞ as B!ðrÞ, see Fig. 10(b). All these results suggest and confirm
that the kinetic energy is dissipated on all scales r.

However, the bacterial turbulence is very different from that of
classical HITs as follows:
(1) Movement is below the fluid viscosity scale g when the viscosity

reduction effect is not considered;128–130

(2) the scaling range, if it exists, is limited by the body size of bacte-
ria R and the fluid viscosity scale g;61

(3) because of (1), the kinetic energy is dissipated at all scales r, e.g.,
B!ðrÞ > 0.66

Based on the aforementioned observations, the following picture of
cascade can be drawn. The movement of bacteria is mainly balanced
by the viscosity of the fluid immediately at its size eR.66 Only a small
portion of the energy is injected into the loop of the energy cascade.
However, due to the presence of fluid viscosity, it rapidly dissipates on
all scales r. Therefore, there is no constant flux as expected for the

FIG. 8. (a) Contour lines of measured nðm; nÞ (dashed line), where the solid line is an ellipse fit. (b) The decoupling test nðm; nÞ (dashed line), where the
analytical form provided by Eq. (15) with experimental l" ¼ 0:26 and lX ¼ 0:36 is shown as a solid line. (c) The eccentricity of measured nðm; nÞ (solid line), where the value
of e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1) l"=lX

p
(i.e., 0.536 0.04) is shown as a dashed line. The magenta solid line is the fitted inclined angle h (counterclockwise) of the measured nðm; nÞ. The mea-

sured ellipse center is illustrated as a blue cross in (a) and (b).

FIG. 9. (a) Phase diagram of the energy flux eP
½r "
vs dr eP

½r"
. (b) The enstrophy flux eP

½r "
X vs dr eP

½r "
X .
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classical inertial turbulence. A summary of this cascade picture of the
bacterial turbulence referred to above is shown in Fig. 1(c).

Concerning the enstrophy cascade, it is more complex: for exam-
ple, it is forward, but its intensity decreases with r, see Fig. 4(c).
Negative dr eP

½r"
X indicates a relation EX;inðrÞ > BXðrÞ > 0. In other

words, the enstrophy is injected into the system on all scales r. One pos-
sible reason is due to the local alignment between the vorticity gradient
and the space transport of the vorticity, that is, ðujxzÞ½r" ) ðu½r"j x½r"

z Þ, at
different scales,36,131 or other nonlinear interactions associated with the
enstrophy cascade rather than the advection term u #ru, but not cap-
tured here for the experimental data, which deserves more careful study
in the future using proper model equations.

B. Finite range of scaling behaviors
Experimentally, scale separation is limited by the measurement

technique, and by the scale ratio of the fluid viscosity scale g and the
mean bacterial body size eR. Therefore, the scale range of the scaling
behavior is short, e.g., less than one order magnitude of scales. The
scaling range and the corresponding scaling exponent or intermittency
parameter l are summarized in Table I, in which all scales are in the
physical domain. We note that several scaling exponents are of the
form n 2

3, which is also indicated in Table I if their fractional parts are
close to 2/3. For example, the scaling exponent of the Fourier power
spectrum of the velocity field is found to be 2.68,52 which is in the
form 2 2

3. It suggests an experimental Hurst number h¼ 5/6 through
the scaling relation b ¼ 1þ 2h.3,16 A characteristic scale r=eR ’ 5 is
observed for several quantities, for example, the Fourier and Hilbert
spectrum of velocity,52,89 energy flux eP

½r"
and its skewness factor, and

to name a few. According to the convention, in the coarse-graining
analysis, the spatial scale ‘ is the radius of the circle, while in the statis-
tical analysis, the spatial scale is often considered as the diameter.
When the latter definition is taken, the scaling range is 1! 2‘=eR! 6.
Moreover, as noted by Kraichnan,125 different approaches over a scal-
ing range interval do not necessarily make it into an inertial range
quantity, e.g., energy dissipation rate ".

C. Universality of intermittency corrections
Here, we quote directly the words by Kolmogorov132 that pub-

lished in 1985: “Moreover, I soon understood that there was little hope

of developing a pure, closed theory, and because of the absence of such
a theory the investigation must be based on hypotheses obtained in
processing experimental data. It was also important to have collabora-
tors capable of combining theoretical and experimental research
work.” Following his spirit, data analysis should be performed for dif-
ferent flow systems to pursue a data-inspired explanation or theory.
When the experimental data are analyzed, the scaling curve K(q) and
the associated intermittency parameter l are recovered in the lognor-
mal framework, where the dependence of the Hurst number h is
excluded. Thus, the universality of the intermittency correction could
be verified for various flows. Here, we show that the intermittency
parameter l, estimated either directly or indirectly, is, indeed, compa-
rable, at least in four quite different flow systems: classical 2D and 3D
HITs, bacterial turbulence, lithosphere deformation, and to name a
few. In other words, the strength of the intermittency correction
might be universal. An elegant and more rigorous theoretical argu-
ment should be proposed to take into account this experimental
observation.

Note that, unlike the classical 2D HIT, the intermittency correc-
tion and inverse energy cascade are simultaneously observed for the
2D bacterial turbulence. This is because the cascade of bacterial turbu-
lence is below the viscosity scale g, where the fluid viscosity plays an
important role. For example, kinetic energy is rapidly dissipated at

all scales r without the existence of a constant energy flux eP
½r"
. This

scenario is very different from the inertial range observed in the 2D or
3D HITs, where the influence of the fluid viscosity can be ignored, so a

constant energy flux eP
½r"

through scales r is expected, and for the 2D
case, a non-intermittent scaling has been observed for the inverse cas-
cade.42 For this active-flow system, the scaling behavior could depend
on the type of bacteria, and for the model, it could depend on the
choice of parameters. For example, bacterial turbulence emerges only
when its concentration is within a range of values.52 This is partially
due to the fact that the value of concentration determines how far the
cascade can go, since the kinetic energy is mainly balanced immedi-
ately at its body size:66 a low concentration means a low energy injec-
tion rate EinðrÞ, the flow structure generated by an individual
bacterium will soon be smoothed out by the fluid viscosity. Therefore,
the inverse energy cascade, if it exists, is too short to be detected by the
classical methodology.89 A systematic analysis of different parameters

FIG. 10. (a) Normalized experimental dissipation spectrum EðkÞk2 (〇, where a peak is found to be a keR ’ 0:2, corresponding to a spatial scale ‘ ’ 5eR ). For comparison,
the Fourier power spectrum of the energy dissipation rate is shown as (, and the dissipation spectrum in Ref. 66 is shown as solid line. For display clarity, the solid lines have
been vertically shifted. (b) The experimental energy dissipation density function B!ðrÞ.
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experimentally or numerically should be performed in the framework
considered here, which is beyond the topic of this work.

Finally, we would like to make a remark on the low Reynolds
number turbulence-like flows. As mentioned earlier, turbulence is
believed to be one of the most important features of high Reynolds
number flows, in which the viscosity force can be ignored if one
explains the Reynolds number as the ratio between the inertial force
and viscosity force. In fact, one may rewrite the Reynolds number as
follows:

Re ¼ L
!=u

: (17)

It can be explained as the spatial scale ratio between the largest scale
structure and the viscosity structure. In other words, the Reynolds
number is one of those parameters that characterize scale separation of
the systems. In the current system, spatial scale separation is roughly
estimated at least asOð102Þ.

V. CONCLUSIONS
In summary, the cascade of the bacterial turbulence and the asso-

ciated lognormal statistics are examined in this work. Our data analysis
confirms the inverse energy cascade and the forward enstrophy cas-
cade below the fluid viscosity scale. Because of the presence of the
inverse energy cascade, large-scale coherent structures are then gener-
ated through the hydrodynamic interaction spontaneously. However,
the experimental energy flux decays rapidly with the increase in the
spatial scale r due to the strong influence of fluid viscosity; no constant
energy flux is observed, since the kinetic energy is dissipated on all
scales r. The degree to which the inverse energy is transferred depends
not only on the viscosity of the fluid but also on the injection rate of
the kinetic energy, e.g., the concentration of bacteria. It is also evident
that the background energy cascade is still forward. Moreover, the
experimental pdfs of both energy and enstrophy fluxes can be
described well by the stretched exponential distribution. For the for-
mer, with an increase in the spatial scale, it is approaching the standard
normal distribution; for the latter, it is approaching the standard expo-
nential distribution. Regarding the cascade of enstrophy, the experi-
mental results suggest an injection on almost all scales r. One possible
reason is that the local alignment between the vorticity gradient and
the space transport of the vorticity, or other nonlinear interactions
associated with the enstrophy cascade rather than the advection term
are not captured in the experimental data.

Concerning the energy dissipation rate and enstrophy fields, the
power law behavior of their high-order moments of coarse-grained mul-
tifractal fields is observed as expected. The corresponding scaling expo-
nents K(q) are well described by the lognormal formula with the
intermittency parameters l comparable with those of the 2D and 3D
HITs. In addition, the lognormal scaling relation that connects the scaling
behavior of the velocity field and the energy dissipation rate through Eq.
(12) are verified. In analogy to Kolmogorov’s 1962 refined theory of tur-
bulence, this observation suggests that the intermittency correction in the
velocity field may originate from the multifractal nature of the energy dis-
sipation field. Unlike the classical 2D HIT, the inverse energy cascade
and intermittency coexist for this special active dynamical system, see the
summarized cascade picture in Fig. 1(c) and discussions in Sec. IVA.

The coupling between the energy and enstrophy cascades is char-
acterized by the joint analysis of their fluxes and multifractal measures.

The correlation on different scales r is evident. The joint scaling expo-
nent nðm; nÞ of their multifractal measures can be well fitted by the
ellipse formula of lognormal statistics. Compared to the decoupling
test, a higher eccentricity eðnÞ with an inclined angle hðnÞ is observed.
They can be treated as a signature of the coupling between energy and
enstrophy cascades. Our results show that the lognormal statistics is a
relevant analogy to the framework of Kolmogorov’s 1962 refined the-
ory of 3D HIT. Models of active flows should reproduce not only the
large-scale coherent structure but also all detailed scaling relations pre-
sented in this work, which is beyond the topic of this work.

Finally, the intermittency parameter l might be universal for
quite different flow systems. For example, a comparable intermittency
parameter l" in the range 0:21 / 0:23 has been found for 3D
HITs,23,24,27 l ’ 0:31 for 2D HIT,42 and l ’ 0:30 for the lithosphere
deformation with extremely low Reynolds number, for example,
Re ’ Oð10)24Þ.7 More data analysis is needed for various turbulent
flows or turbulence-like systems to extract their intermittency parame-
ters to see whether the intermittency index within the lognormal
framework is universal or not.
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