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ABSTRACT

Turbulent skies have often inspired artists, particularly in the iconic swirls of Vincent van Gogh’s The Starry Night. For an extended period,
debate has raged over whether the flow pattern in this masterpiece adheres to Kolmogorov’s theory of turbulence. In contrast to previous
studies that examined only part of this painting, all and only the whirls/eddies in the painting are taken into account in this work, following
the Richardson–Kolmogorov’s cascade picture of turbulence. Consequently, the luminance’s Fourier power spectrum spontaneously exhibits
a characteristic !5=3 Kolmogorov-like power-law. This result suggests that van Gogh had a very careful observation of real flows, so that not
only the sizes of whirls/eddies in The Starry Night but also their relative distances and intensity follow the physical law that governs turbulent
flows. Moreover, a “–1”-like power-law persists in the spectrum below the scales of the smallest whirls, hinting at Batchelor-type scalar turbu-
lence with a high Schmidt number. Our study, thus, unveils the hidden turbulence captured within The Starry Night.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0213627

I. INTRODUCTION
Turbulent flows or flow patterns similar to turbulence are ubiqui-

tous in nature, ranging from atmospheric and oceanic flows of plane-
tary-scale1 to high-concentration bacteria suspensions at micro-
scales.2,3 One common feature of these phenomena is the existence of
abundant swirling structures, which are also well captured by many
artists and become key elements in their paintings. Examples include
The Yellow River Breaches Its Course attributed to 13th-century
Chinese artist Yuan Ma,4,5 a series of drawings of water flows by
Leonardo da Vinci in 1500s,1,6–9 The Great Wave off Kanagawa by
Katsushika Hokusai in 1831,10–12 and The Starry Night by Vincent
van Gogh in 1890,13–18 to name a few. Turbulence-like patterns
appearing in these artworks have inspired scientists to examine how
close these patterns are to real turbulent flows. In this regard, an inter-
esting but unsettled debate is whether the swirling structures in van
Gogh’s painting The Starry Night satisfy classical turbulence theories
or not.13,15,16,19

To describe turbulent flows, Lewis Fry Richardson20 advocated a
phenomenological picture in his seminal work “Weather Prediction by
Numerical Process:”

big whirls have little whirls
that feed on their velocity,
and little whirls have lesser whirls
and so on to viscosity.

This cascade picture has been widely accepted for describing the
kinetic energy (i.e., the square of velocity) in turbulent flows qualita-
tively, which is transferred from large-scale to small-scale flow
structures and known as the forward energy cascade.1,4,21 Later in
1941, A.N. Kolmogorov proposed his famous theory of locally homo-
geneous and isotropic turbulence to quantitatively characterize the
Richardson’s picture. According to Kolmogorov’s theory, the Fourier
power spectrum of kinetic energy E(k) in fully developed turbulence
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follows a scaling law in the so-called inertial range kL " k " kg as
follows:

EðkÞ / !2=3k!5=3; (1)

where ! is the mean energy dissipation rate in units of kinetic energy
per unit mass and unit time; the wavenumber k is the inverse of the
length scale, and the subscripts L and g indicate the system and the
Kolmogorov length scales, respectively.22 This theory, now recognized
as the cornerstone in the field of turbulence, is the first theory to pro-
vide a quantitative prediction of turbulent flows and has been widely
verified both experimentally and numerically.1,23,24 The reader is
referred to recent papers for a review of this topic.4,21

Note that to observe Kolmogorov’s !5=3 law, several require-
ments must be satisfied. An important requirement is that there should
be a sufficient scale separation, which could be characterized by the
Reynolds number Re ¼ uL=". Here, u is the characteristic flow velocity
and " is the kinematic viscosity of the fluid. This general definition of
the Re number is often interpreted as the ratio between the inertia and
the viscosity forces,1,25 so the Kolmogorov’s !5=3 law has been treated
as one of the most important features of high-Re-number flows domi-
nated by inertia forces.1,24,25 Surprisingly, in recent years, turbulence-like
phenomena have been reported for low-Re-number and even nearly-
zero-Re-number flows. These flows include the so-called elastic turbu-
lence,26 bacterial turbulence or mesoscale turbulence,2 and lithosphere
deformation,27 to list a few. In these systems, despite their small Re
numbers [in the rangeOð10!24Þ!Re!Oð10!1Þ], a wide scale separa-
tion can be still observed in the flow patterns, and, thus, a turbulence-
like scaling behavior emerges. These findings imply that even for barely
flowing systems, one may examine their turbulence-like patterns in the
framework of turbulence theories.

For art paintings, their patterns can be treated as snapshots of
flow fields. However, one cannot obtain the kinetic energy information
from these patterns. Instead, a more suitable quantity to characterize
their features is luminance, which is a passive scalar similar to dye and
temperature that are transported and mixed by the flow, so its spatial
distribution is highly correlated with the characteristics of the velocity
field. Quantitatively, the behavior of a passive scalar h is determined by
the Schmidt number Sc ¼ "=j, a ratio of the fluid viscosity " to the
scalar diffusivity j.23,25 In terms of turbulent small-scale properties,
the Sc number can also be expressed using the ratio between the
Batchelor wavenumber kB ¼ ð!="j2Þ1=4 of the passive scalar and the
Kolmogorov wavenumber kg ¼ ð!="3Þ1=4 of the velocity field:
Sc ¼ ðkB=kgÞ2. Depending on the value of the Sc number, there exist
three distinct regimes in the Fourier power spectrum of passive scalar
EhðkÞ as illustrated in Fig. 1. For Sc ¼ Oð1Þ with kB ’ kg, a scaling
behavior similar to the Kolmogorov’s!5=3 law can be expected in the
inertial-convective subrange kL " k " kg, i.e.,

EhðkÞ ¼ COC!h!
!1=3k!5=3; (2)

where COC is the Obukhov–Corrsin constant and !h is the mean scalar
dissipation rate. This is the so-called Kolmogorov–Obukhov–Corrsin
scaling (KOC for short).28–31 For the case with Sc " 1, one still
expects the !5=3 scaling, but the inertial-convective subrange is
shorter than that in the KOC case since kB < kg.

For the case of Sc & 1, Batchelor32 obtained the following spec-
trum for the scales beyond the inertial-convective subrange,

EhðkÞ ¼ CB!hð"=!Þ1=2k!1 exp !CBðk=kBÞ2
! "

; k & kg; (3)

where CB is the Batchelor constant. This shows that if kB " k (i.e., in
the viscous-diffusive subrange), the spectrum follows a rapid exponen-
tial decay.28,33 Note that in the viscous-convective subrange, i.e.,
kg " k " kB, an asymptotic power-law is expected,

EhðkÞ ¼ CB!hð"=!Þ1=2k!1: (4)

Several attempts have been performed to verify the Batchelor’s –1 scal-
ing either experimentally or numerically, and the evidence has become
increasingly convincing in recent years.34–43 However, due to the lack
of a clear scale separation, it remains challenging to observe both the
KOC’s !5=3 scaling and the Batchelor’s –1 scaling simultaneously,
which requires at least 3–4 orders of scale separation in experiments or
numerical simulations to resolve all dynamically relevant scales.28

Concerning the The Starry Night examined in the present study,
it was painted by linseed oil (high fluid viscosity) mixed with stone
powder (low scalar diffusivity), implying a high Sc number. Therefore,
one might be curious about whether the flow pattern in this artwork
adheres to the Batchelor’s theory of scalar turbulence. Arag!on et al.13

found that the increment of the luminance in this painting shows a
clear scale invariance, and the corresponding probability density func-
tions can be reproduced using the formula obtained from the turbu-
lence theory. Beattie and Kriel15 showed that the Fourier power
spectrum of the luminance is close to EhðkÞ / k!2 rather than the
Kolmogorov !5=3 scaling, which could be interpreted using the the-
ory of compressible turbulence. However, Finlay16 reported that the
midrange wavenumber spectrum tends to obey a –1 scaling. These
results seem to contradict each other, partially because their examined
areas of the painting were not exactly the same, so the spectrum might
be contaminated by different elements in the painting. Moreover, these
studies considered only part of the painting, and, thus, some whirls,
which are crucial for characterizing the multi-scale feature of turbu-
lence, were excluded in their analysis, see Fig. 2(b).

In this work, we revisit the controversial issue above by keeping
all and only the whirls in The Starry Night during the analysis, follow-
ing the fundamental hypothesis of Richardson–Kolmogorov’s cascade
picture of turbulence. Both the Fourier power spectrum and the
second-order structure function of the gray-scale luminance of the
painting are analyzed. Their scaling behaviors are then compared with

FIG. 1. Scalar spectra EhðkÞ for different Schmidt numbers Sc; reproduced from
Ref. 28. For Sc & 1, the so-called Batchelor spectrum EhðkÞ / k!1 is expected to
be in the range kg " k " kB, where kg and kB are the Kolmogorov and the
Batchelor wavenumbers, respectively. See the text for a detailed explanation.
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the prediction of the Batchelor theory of scalar turbulence. The impli-
cation of our findings will be discussed.

II. DATA AND METHOD
A. High resolution version of The Starry Night

The Starry Night is an oil-on-canvas painting by the Dutch post-
impressionist painter Vincent van Gogh painted in June 1889. It
depicts the view from the east-facing window of his asylum room at
Saint-R!emy-de-Provence, south of France, just before sunrise, with the
addition of an imaginary village and flowing sky, see Fig. 2. It has been
in the permanent collection of the Museum of Modern Art in New
York City since 1941, acquired through the Lillie P. Bliss Bequest. The
Starry Night, widely regarded as Vincent van Gogh’s magnum opus, is
one of the most recognized paintings in western art and can be widely
found in our daily life, see Fig. 9 in Appendix D.

Figure 2 shows a high-resolution version of The Starry Night pro-
vided by Google Art Project (https://artsandculture.google.com/asset/
the-starry-night-vincent-van-gogh/bgEuwDxel93-Pg). It has a size of
92:1 cm' 73:7 cm and 30 000 pixel' 23 756 pixel, corresponding to a
spatial resolution of 30 lm=pixel. Fourteen eddies (including themoon) of
different sizes can be recognized by naked eyes with their diameters in
the range 4:2 cm! r! 27:6 cm (i.e., 1400 pixel! r! 9200 pixel), see
Table I in Appendix A. The typical spatial scale of the brushstroke is found
to be in the range 0:09 cm! r! 1:5 cm (i.e., 30 pixel! r ! 500 pixel)
for the width and 1:2 cm! r ! 6 cm (i.e., 400 pixel! r! 2000 pixel) for
the length, see Fig. 6 inAppendixA.

Before making the analysis, the original image is converted from
the red-green-blue scale to the gray-scale using the following formula:

Y ¼ 0:2125Rþ 0:7154Gþ 0:0721B; (5)

where R, G, and B represent the intensity for each color channel. The
function color.rgb2gray from the Python scikit-image package is uti-
lized for this transformation, which can well preserve the flow struc-
tures.44 In addition, the church, mountain, and village are masked out
to exclude the potential influence of these non-flow-like elements, see
Fig. 2(b). The so-obtained gray-scale field is subsequently treated as a
passive scalar field for the following analysis.

B. Methods

1. Fourier power spectrum

As mentioned in Sec. I, when the flow is turbulent, a power-law
behavior is expected for the Fourier power spectra of both the velocity

and the passive scalar advected by the velocity field. Classically, the
Fourier power spectrum is estimated using the fast Fourier transform
algorithm, with datasets with a size of the form 2p, where p is an inte-
ger. This algorithm also requires datasets with no missing values.
However, the masked out data in this work, as seen in Fig. 2(b), have
missing parts. In order to overcome these limitations, the Fourier
power spectrum is estimated via the Wiener–Khinchine theorem here.
This theorem states that, for the luminance h (e.g., the gray-scale field
Y defined above), its Fourier power spectrum EhðkÞ and the autocorre-
lation function qhðrÞ are a Fourier transform pair, which are written as
follows:

EhðkÞ ¼
ð
qhðrÞ expð!j2pkrÞ dr; qhðrÞ ¼

ð
EhðkÞ expðj2pkrÞ dk;

(6)

where j ¼
ffiffiffiffiffiffi
!1

p
is a complex unit, k ¼ 1=r is the wavenumber, and r

is the distance between two points in the physical space. The autocor-
relation function is defined as qhðrÞ ¼ hh0ðx þ rÞh0ðxÞi, in which
h0ðxÞ ¼ hðxÞ ! hhi is the scalar variation in space and h)i means
ensemble average. qhðrÞ can be estimated when there are missing data,
and in such case, an additional step is involved to correct the missing
data effect; see detail of this algorithm in Ref. 45. In the case of scale
invariance, one expects a power-law behavior of EhðkÞ written as
follows:

EhðkÞ / k!bh ; (7)

where bh > 0 is the scaling exponent that can be determined experi-
mentally or through theoretical considerations; for example, b ¼ 5=3
for the velocity spectrum of high Reynolds number flows.1,22,46

2. Second-order structure function

To characterize the scale invariance in the physical space, the
second-order structure function is often used. For luminance h exam-
ined here, this function is written as follows:

Sh2ðrÞ ¼ hDrhðxÞ2i / rfhð2Þ; (8)

where DrhðxÞ ¼ hðx þ rÞ ! hðxÞ is the scalar increment over a dis-
tance r; fhð2Þ is the second-order scaling exponent if the power-law
behavior holds. A scaling relation bh ¼ 1þ fhð2Þ is expected for
1 < bh < 3.1,46 However, as discussed by Huang et al.,47,48 due to

FIG. 2. (a) A high-resolution van Gogh’s
The Starry Night obtained from https://
artsandculture.google.com/asset/the-starry-
night-vincent-van-gogh/bgEuwDxel93-Pg with
a size of 92:1 cm' 73:7 cm and
30 000 pixel' 23 756 pixel. Visually, the sky
seems to be flowing with swirling eddies. (b)
Gray version of the The Starry Night, where
the region studied by Finlay16 is illustrated by
a white square. The non-flow part is masked
out manually. The whirls/eddies are recog-
nized by naked eyes.
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several reasons, for instance, contamination by the energetic large-
scale structures (e.g., ramp-cliff structures in scalar turbulence31,49)
ultraviolet or infrared effects, to name a few, this scaling relation is
often violated;31,47,48 see more discussion in Ref. 46. Note that when
Sc & 1, Batchelor’s theory of scalar turbulence predicts a scaling value
of bh ¼ 1, and the power-law in Eq. (8) is then violated due to the
ultraviolet effect. For this situation, Batchelor’s theory predicts a log-
law, which is written as follows:

Sh2ðrÞ / ah lnðrÞ; (9)

where rB " r " rg and ah is an unknown parameter. Therefore,
instead of the power-law in Eq. (8), the log-law in Eq. (9) will be tested
in the present study.

III. RESULTS
A. Fourier power spectrum

The Fourier power spectra EhðkÞ are estimated along the horizon-
tal (x) and vertical (y) directions using the algorithm described in Sec.
II B 1. A bin average with ten points per order of wavenumber is per-
formed. Figure 3 shows the thus-obtained EhðkÞ, where a dual power-
law behavior is visible. As mentioned in Sec. IIA, the spatial sizes of
the whirls are in the range 4:2 cm! r! 27:6 cm (i.e., 1400 pixel
! r! 9200 pixel), and we, therefore, attempt power-law fit to the data
in this range, following the Richardson–Kolmogorov’s cascade picture
of turbulence. It is found that power-law behaviors can be well deter-
mined in the wavenumber range 6:67 ' 10!2 cm!1 ! k! 2:33
'10!1 cm!1 (i.e., 2' 10!4 pixel!1 ! k! 7' 10!4 pixel!1), corre-
sponding to the spatial scale in the range 4:3 cm! r! 15 cm (i.e.,
1430 pixel! r! 5000 pixel). The scaling exponents are found to be
bhx ¼ 1:6760:13 and bhy ¼ 1:6860:19, where the 95% fit confidence
is provided by the least squares fit algorithm. These values agree well
with the one predicted by the KOC theory, since the scaling range

chosen here satisfies the requirement of the Richardson-Kolmogorov’s
cascade picture of turbulence, where the whirls/eddies that cover a suffi-
cient scale range are included in the analysis.1,20,22,46 This finding
implies that the arrangement of the eddy-like formations crafted by van
Gogh resembles the energy transfermechanism in real turbulent flows.

The second power-law behavior is observed in the wavenumber
range 6:67' 10!1 cm!1 ! k! 10 cm!1 (i.e., 2' 10!3 pixel!1 ! k! 3
'10!2 pixel!1), corresponding to the spatial scale in the range
0:1 cm! r! 1:5 cm (i.e., 33 pixel! r! 500 pixel). The measured
scaling exponents are found to be bhx ¼ 1:046 0:02 and bhy
¼ 1:136 0:02, close to the Batchelor –1 scaling. As we discussed in the
Introduction, such a scaling is expected to observe in the viscous-
convective range of scalar turbulence.28,37,50 Notably, the wavenumber
range for the –1 scaling is in line with that of the brushstroke width, sug-
gesting that the diffusion and mixing properties associated with the
painting process may result in patterns that resemble the diffusion and
mixing observed in turbulent flows.

To highlight the two distinct power-law behaviors, the compensated
curves using the fitted parameters are shown in Fig. 3 as inset, where clear
plateaus are observed. From Fig. 3, one can also observe a fast decay of
EhðkÞ in the large wavenumber range, motivating us to check Eq. (3) pre-
dicted by Batchelor.32 To do so, the least squares fit algorithm is performed
to the curve EhðkÞ in the range 6:67' 10!1 cm!1 ! k! 1:33'
102 cm!1 (i.e., 2' 10!3 pixel!1 ! k! 4' 10!1 pixel!1). Visually, Eq.
(3) fits the data well with a Batchelor-like parameter kB ¼ 6766 cm!1,
corresponding to a spatial scale of 0:015 cm (5 pixel), see Fig. 4(a). To
highlight the exponential tail EhðkÞ * expð!ðk=kBÞ2Þ, the results are re-
plotted in a semilog-y view, see Fig. 4(b), which confirms the validation of
Eq. (3).

B. Second-order structure function
As mentioned in Sec. II B 2, the power-law behavior of the

second-order structure function might be strongly biased due to
the presence of the ultraviolet effect (e.g., the observation of bh ’ 1) in
the present study. Therefore, instead of Eq. (8), the log-law in Eq. (9) is
examined. Figure 5 shows the estimated second-order structure func-
tions Sh2ðrÞ normalized by the luminance variance of the examined
region of the painting. A clear logarithmic law is evident in the range
0:003 cm! r! 1:5 cm (i.e., 1 pixel ! r! 500 pixel), with the fitting

FIG. 3. Experimental Fourier power spectrum EhðkÞ, where the black and red lines
indicate the power-law behaviors in the ranges 6:67' 10!2 cm!1 ! k! 2:33
'10!1 cm!1 (i.e., 2' 10!4 pixel!1 ! k! 7' 10!4 pixel!1Þ and 6:67' 10!1

cm!1 ! k! 10 cm!1 (i.e., 2' 10!3 pixel!1 ! k! 3' 10!2 pixel!1), respec-
tively. For clarity, the curve EhðkyÞ has been shifted up by multiplying a factor of 10.
The inset shows the compensated curves EhðkÞkbhC!1 using the corresponding
scaling exponents bh and prefactors C to emphasize the power-law behaviors.

FIG. 4. Experimental verification of Eq. (3), where the solid and dashed lines are
least squares fits to the data in the range 6:67' 10!1 cm!1 ! k! 1:33'
102 cm!1 (i.e., 2' 10!3 pixel!1 ! k! 4' 10!1 pixel!1) for EhðkxÞ and EhðkyÞ,
respectively: (a) a log –log plot to highlight the power-law behavior EhðkÞ * k!1;
(b) a semilog-y plot to highlight the exponential tail EhðkÞ * expð!ðk=kBÞ2Þ. For
clarity, the curve EhðkyÞ has been shifted up by multiplying a factor of 10.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 36, 095140 (2024); doi: 10.1063/5.0213627 36, 095140-4

Published under an exclusive license by AIP Publishing

 20 Septem
ber 2024 23:29:23

pubs.aip.org/aip/phf


slopes being 0.166 0.01 and 0.186 0.01 for the horizontal and vertical
directions, respectively. Note that this log-law range is compatible
with the range of the brushstroke width. The local slope
ahðrÞ ¼ dðSh2ðrÞ=r2hÞ= d lnðrÞ is also estimated using a finite center
difference, see the inset in Fig. 5. In general, ahðrxÞ and ahðryÞ have the
same evolution trend, with a mean value of "ah ¼ 0:176 0:03 in the
range mentioned earlier. Combined with the findings in the Fourier
power spectrum, it seems that Batchelor’s scalar turbulence theory is a
good candidate for interpreting the present results phenomenologically.

IV. DISCUSSIONS
A. Turbulent flows in art paintings

Science and art often inspire each other. To what degree the com-
plex physics of natural flows can be captured by the patterns in art-
works has attracted growing interest from the community of fluid
dynamics. For example, using a physics-informed deep learning frame-
work that is capable of encoding the Navier–Stokes equations into
neural networks, Raissi et al.7 successfully extracted the velocity and
pressure fields from Leonardo da Vinci’s painting of turbulent flows.
Colagrossi et al.9 reproduced the physics behind one of Leonardo da
Vinci’s drawings (i.e., a water jet impacts on a pool painted in 1510–
1512) by a smoothed particle hydrodynamic model and concluded
that Leonardo da Vinci “was able to extract essential phenomena of
complex air–water flows and accurately describe each flow feature
independently of the others, both in his drawings and in their accom-
panying notes.” In fact, Leonardo da Vinci is considered one of the
pioneers in identifying the characteristic feature of turbulent flows, as
evidenced by the multi-scale eddies pattern depicted in several of his
artworks.5,6,8

Concerning The Starry Night painted by Vincent van Gogh, our
results show a clear evidence of the !5=3 scaling law when all and
only the whirls/eddies in the painting are included in the analysis.
According to the Richardson–Kolmogorov’s cascade picture of

turbulence, a sufficient number of eddies with a wide distribution of
scales should be involved to observe the !5=3 scaling, see more exam-
ples in Appendix C. Our present finding, thus, suggests that not only
the size distribution of whirls/eddies in The Starry Night but also their
relative distance and intensity follow the physical law that governs the
behaviors of turbulent flows. In other words, Vincent van Gogh had a
very careful observation of real flows, and the !5=3 scaling observed
here is due to this excellent mimic of real flows.

B. Estimation of the Reynolds and the Schmidt
numbers

As previously noted, the Richardson–Kolmogorov !5=3 scaling
requires a wide range of scales, usually associated with high Reynolds
number flows. The !5=3 scaling revealed here arises from the artist’s
representation of real flows, as opposed to the nonlinear interactions
between multi-scale eddies in hydrodynamic turbulence. Meanwhile,
the –1 scaling could result from physical processes like diffusion and
mixing during painting. According to the Batchelor’s theory of scalar
turbulence, one should have a stationary flow with the Schmidt num-
ber Sc & 1 to observe the !1 scaling.32 The former condition is auto-
matically satisfied, since the flows during preparing the painting oil
and the painting process are slow enough. The latter condition is argu-
ably satisfied, as The Starry Night was painted by linseed oil (high fluid
viscosity) mixed with stone powder (low scalar diffusivity). To check
these conditions quantitatively, we estimate the Reynolds and the
Schmidt numbers as follows.

As mentioned in Sec. II A, the length of the brushstroke is in the
range 1:2 cm! r! 6 cm. We, therefore, take the median value, that is
L ¼ 3:6 cm, as the characteristic length scale. Assuming that the typi-
cal timescale for each brushstroke is 1 s, then the typical velocity dur-
ing the painting is around u ’ 3:6 cm=s. Therefore, the Reynolds
number is estimated to be Re ¼ uL="eff ’ 19:1 / Oð10Þ, where
"eff ’ 6:79' 10!5m2=s is the effective kinematic viscosity estimated
by the Einstein relation approximately, see Appendix B for the estima-
tion in detail.51

Note that the Reynolds number can also be expressed as the sepa-
ration ratio of the characteristic scales in turbulent flows,23 i.e.,

Re / LE
gk

% &4=3

; (10)

where LE represents the size of the largest eddy and gk is the
Kolmogorov dissipation scale. In the present study, we can estimate
the value of LE from the painting, being LE ’ 27:6 cm approximately.
For the value of gk, Fig. 3 shows that the !5=3 scaling and the
Batchelor-like scaling are observed in the spatial scale ranges
4:3 cm! r! 15 cm and 0:1 cm! r! 1:5 cm, respectively, so gk should
lie between 1.5 and 4:3 cm. Then, the Reynolds number estimated from
Eq. (10) is in the range 11:9!Re! 48:6, which is alsoOð10Þ and con-
sistent with the value estimated earlier. The Taylor microscale Reynolds
number can be further calculated using the well-known formula Rek ¼
ð203 ReÞ

1=2 (Ref. 23) resulting in a range 9!Rek ! 18.
As for the Schmidt number, its value can be calculated by

Sc ¼ ðkB=kgÞ2 ¼ ðgk=gBÞ
2. The Batchelor-like scale gB has been

obtained from Fig. 4, which is gB ’ 0:015 cm. Since 1:5 cm! gk
! 4:3 cm as discussed earlier, the low bound of the Schmidt number
is estimated to be Sc ’ ð1:5=0:015Þ2 ¼ Oð104Þ. Alternatively, the

FIG. 5. Experimental verification of Eq. (9) in a semilog-x plot, where the solid and
dashed lines are least squares fit to the data in the range 0:003 cm! r! 1:5 cm
(i.e., 1 pixel! r! 500 pixel) for Sh2ðrxÞ and Sh2ðryÞ, respectively. For display clar-
ity, the curve of Sh2ðryÞ has been shifted up vertically by adding a constant of 0.3.
The inset shows the local slope ahðrÞ ¼ dðSh2ðrÞ=r2hÞ= d lnðrÞ, where the hori-
zontal dash line indicates a mean value of "ah ¼ 0:1760:03.
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Schmidt number can be approximated by using its original definition:
Sc ¼ "eff=jeff ¼ Oð1011Þ, where "eff ’ 6:79' 10!5m2=s and jeff ’
3:90' 10!16m2s are the effective kinematic viscosity and diffusivity
coefficient estimated using the Einstein relation, refer to Appendix B for
details. Both estimation methods yield a value of Sc & 1. Therefore, the
requirement for Batchelor’s theory of scalar turbulence is satisfied.

C. Batchelor scalar turbulence
As mentioned in the Introduction, the prediction of the Batchelor’s

theory of scalar turbulence is difficult to realize not only in experiments
but also in numerical simulations.28 Several attempts have been made to
verify this theory. For example, Amarouchene and Kellay38 observed
Batchelor scaling for the thickness fluctuation of fast-flowing soap films.
However, to fit the experiment spectrum curve, instead of Batchelor’s
original proposal k!1 expð!ðk=kBÞ2Þ, an exponential tail is considered,
that is, k!1 expð!k=kBÞ, the form proposed by Kraichnan52 when the
fluctuation of the strain is taken into account. Here, we can fit the exper-
imental curve using Batchelor’s original proposal, since the basic
assumption of his theory of scalar turbulence is satisfied.

Numerically, Clay50 has examined the asymptotic behavior of the
Batchelor’s prediction via direct numerical simulations of isotropic tur-
bulence at Rek ’ 140 with 4! Sc! 512. It is found that with increasing
the Sc number, a wider range of scales is developed in the scalar field,
resulting in a more pronounced –1 scaling in the Fourier power spec-
trum EhðkÞ. In this context, one may anticipate that the Batchelor’s –1
scaling could be attainable at a lower Reynolds number with a larger
Schmidt number. Indeed, Yeung et al.37 have observed a Batchelor-like
scalar spectrum at Rek ’ 8 by increasing the Sc number from 64 to
1024, which is close to the values of Rek and Sc numbers estimated in
the present study and, thus, provides a support of our finding.

It is important to highlight two recent notable studies of scalar tur-
bulence.41,43 Iwano et al.41 conducted a turbulent jet experiment with a
Schmidt number Sc ’ 3000 and a Reynolds number Rek ’ 200. Dye
concentration was measured at a fixed point using an optical fiber LIF
(laser-induced fluorescence) probe with a spatial resolution of 2:8 lm.
Utilizing Taylor’s frozen hypothesis,1,53 the observed six-order magni-
tude of wavenumber power spectra indicated the coexistence of
Kolmogorov and Batchelor scalings. However, as He et al.53 noted, the
application of Taylor’s frozen hypothesis should be approached with
caution. Saito et al.43 conducted a direct numerical simulation of the
passive scalar under a special setup, where the passive scalar was carried
by particles in isotropic turbulence to achieve large Schmidt numbers
with a Reynolds number as high as Rek ’ 500. Their Fourier power
spectra provided clear evidence of the coexistence of Kolmogorov!5=3
scaling and Batchelor –1 scaling over a scale range of one order of mag-
nitude for each. Nonetheless, simultaneous observation of Kolmogorov’s
!5=3 scaling and Batchelor’s –1 scaling through direct experimental
measurements in the spatial domain remains challenging. The findings
of the present study may inspire experimental approaches like “painting
in turbulent flows” to address this issue in the future.

V. CONCLUSION
In summary, we show in this work that when all eddies in the

painting are considered in the analysis, the turbulence-like statistics can
be recovered for the The Starry Night, with a Kolmogorov!5=3 scaling
corresponding to the multi-scale eddies represented by the painter, and
a Batchelor –1 scaling produced by the oil of the painting, corresponding

to the viscous-convective range. In other words, Vincent van Gogh, as
one of the most notable post-impressionist painters, had a very careful
observation of turbulent flows: he was able to reproduce not only the
size of whirls/eddies but also their relative distance and intensity in his
painting. Furthermore, the full Batchelor spectrum [i.e., Eq. (3)] is found
for spatial scales below the size of the eddies. This is because during the
preparation of the painting oil and the drawing process, the characteris-
tic Reynolds number is low, and the diffusivity is dominant. This is
nicely confirmed by the second-order structure function, which precisely
follows the theoretical prediction, showing a log-law. This study, thus,
reveals the hidden turbulence in the painting The Starry Night using
both Kolmogorov’s and Batchelor’s theories.
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source code for the present analysis is available at https://github.com/
lanlankai.

APPENDIX A: TYPICAL SPATIAL SCALES

The detection of the scaling range should follow the require-
ment of turbulence theories, that is, there should be enough whirl-
ing structures involved in the statistics. Here, we manually estimate
the typical spatial scale for both visualized whirls and brush strokes.

1. Spatial scales of whirls
The spatial sizes of 14 whirls/eddies are estimated by naked

eyes. Their diameters, locations, and areas are listed in Table I.
Following Richardson’s picture of turbulent energy cascade, the
Kolmogorov !5=3 scaling is expected in the range 1400 pixel! r
! 9200 pixel (i.e., 4:2 cm! r! 27:6 cm), corresponding to a wave-
number range 1' 10!4 pixel!1 ! k! 7' 10!4 pixel!1 (i.e., 3'
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10!2 cm!1 ! k! 2' 10!1 cm!1). Two distinct types of structures
can be visually distinguished. The first type resembles an eddy with a
ring-shaped pattern, while the other one is spiral in nature, see Fig. 6.

2. Spatial scales of brushstrokes
The spatial scales of the brushstrokes are estimated manually with

the width and length around 30 and 500 pixel (i.e., 0:09 cm! r
! 1:5 cm) and around 400 and 2000 pixel (i.e., 1:2 cm! r! 6 cm),
respectively. Figure 6 shows an example of three typical whirls/eddies.
The Batchelor’s –1 scaling law is expected in these ranges.

APPENDIX B: THE EFFECTIVE KINEMATIC VISCOSITY
AND DIFFUSIVITY ESTIMATED FROM KINEMATIC
DYNAMICS

The Starry Night is an oil-on-canvas painting by Vincent van
Gogh in 1889. At that time, the painting oil was made of stone pow-
der and linseed oil. Using the classical knowledge of the thermal

dynamics, the effective kinematic viscosity can be roughly estimated
as follows.

Concerning stone powder in linseed oil, we can use a model
called the Einstein equation to estimate its effective kinematic vis-
cosity,54 which is written as follows:

leff ¼ lf ð1þ 2:5/Þ; (B1)

where leff is the effective dynamic viscosity of the suspension, lf is
the dynamic viscosity of the fluid, and / is the volume fraction of
the particles in the suspension. It is an empirical relationship that
relates the effective viscosity of a suspension to the properties of the
particles and the fluid. When combining the mass ratio of stone
powder and linseed oil as 1 : 1,55 the effective viscosity is then

leff ¼ lf 1þ 2:5
qf

qf þ qs

% &
: (B2)

Substituting the given dynamic viscosity of linseed oil
lf ¼ 0:055 Pa ) s at the room temperature, that is T ¼ 293:15K, the
density of linseed oil qf ¼ 0:93 g=cm3, the density of stone
qs ¼ 2:5 g=cm3, we get

leff ¼ 1:68lf ¼ 9:24' 10!2 Pa ) s: (B3)

The effective kinematic viscosity is then estimated as follows:

"eff ¼
leff
qeff

’ 6:79' 10!5m2=s; (B4)

where the effective fluid density is calculated as qeff ’ 1360 kg=m3.
It is important to note that the previously mentioned estimated

Reynolds number is approximately Oð10Þ. Therefore, the Einstein
equation condition may not hold. In this context, considering the
order of the Reynolds number, a more precise effective kinematic
viscosity does not alter our conclusion.

Moreover, the diffusion coefficient of a spherical particle in a
liquid can be estimated using the Stokes-Einstein equation,51 which
is written as follows:

jeff ¼
kBolT
6plf r

: (B5)

Here, kBol ¼ 1:38' 10!23m2kgs!2K!1 is the Boltzmann constant; T
is the absolute temperature; lf is the dynamic viscosity of the liquid;
and r is the radius of the spherical particle. We estimate here an
order of the Schmidt number; therefore, we do not consider a non-
spherical particle or a mixture of particle sizes where more complex

TABLE I. Geometric properties of eddies in The Starry Night manually checked by
naked eyes. The diameters of the whirls/eddies are roughly in the range
1400 pixel * 9200 pixel (i.e., 4.2 cm–27.6 cm), corresponding to a scale ratio around
’ 6.6. The Kolmogorov-like !5/3 scaling law is expected in this range.

No.
D

(pixel/cm)
Location x
(pixel)

Location y
(pixel)

Area
(pixel2/cm2)

1 1500/4.5 1 268 12 987 1 767 146/15.9
2 1900/5.7 3 926 12 320 2 835 287/25.5
3 2200/6.6 7 015 19 662 3 801 327/34.2
4 1700/5.1 9 721 15 973 2 269 801/20.4
5 4100/12.3 10 549 11 114 13 202 543/118.8
6 4800/14.4 20 998 12 857 18 095 573/162.9
7 9200/27.6 14 625 15 861 66 476 101/598.3
8 2600/7.8 21 070 18 235 5 309 292/47.8
9 6300/18.9 27 113 19 718 31 172 453/280.1
10 2800/8.4 18 180 21 795 6 157 522/55.4
11 1400/4.2 12 279 22 129 1 539 380/13.9
12 2000/6.0 10 230 22 759 3 141 593/28.3
13 1500/4.5 6 762 23 074 1 767 146/15.9
14 2800/8.4 3 076 22 722 6 157 522/55.4

FIG. 6. Typical spatial scales of brush-
strokes for the numbers (5), (7), and (12)
eddies marked in Fig. 2 of the main text.
The width (red line) and length (black
line) are found roughly in the range
30 pixel! r! 500 pixel (i.e., 0:09 cm! r
! 1:5 cm) and 400 pixel! r! 2000 pixel
(i.e., 1:2 cm! r! 6 cm), respectively. The
variation of the luminance in this range is
thought to be caused by the preparation of
painting oil and diffusion of the solid
particles.
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models may be required. Taking into account an average particle
radius of r ¼ 10 lm and a dynamic viscosity of the linseed oil at
room temperature, that is, lf ¼ 0:055 Pa ) s, the mass diffusivity of
the stone powder in the linseed oil can be estimated to be around
jeff ’ 3:90' 10!16m2=s. Finally, we have an estimation of Schmidt
number as follows:

Sc ¼ "eff
jeff

’ 1:74' 1011 ¼ Oð1011Þ: (B6)

This value is above the value of the low bound estimated from Fourier
power spectrum. It is important to note that the aforementioned esti-
mation assumes that the particles are small enough so that they do not
interact with each other, which may not be the case for more concen-
trated suspensions or for particles with complex shapes.

APPENDIX C: EXAMINATION OF ADDITIONAL IMAGES

In this section, we examine two additional images: the painting
Chain Pier, Brighton by John Constable in 1826 and Jupiter Great
Red Spot by Voyage 1 on 5 March 1979. The same analysis as for
The Starry Night is performed. The Kolmogorov-like !5=3 power
spectra are evident since the turbulence-like pattern is well main-
tained in these two images.

1. Chain Pier, Brighton by John Constable
John Constable (11 June 1776–31 March 1837) was an English

landscape artist associated with the Romantic tradition. He is pri-
marily recognized for transforming the landscape painting genre.
He conducted many observational studies of landscapes and clouds,
aiming to be more scientific in capturing atmospheric conditions.
The impact of his physical effects was often evident even in the
large-scale paintings he displayed in London. The Chain Pier,
Brighton is one such painting, completed in 1826 and shown in
1827, in which the cloud/sky and beach/land are well separated.
Unlike The Starry Night, this painting lacks well-defined swirling

patterns, but the clouds are rich of structures with different scales,
resembling those frequently seen in the sky, see Fig. 7(a).

A digital version of Chain Pier, Brighton can be accessed from
https://www.tate.org.uk/art/artworks/constable-chain-pier-brighton-
n05957. The dimensions of the image are 183 cm' 127 cm, equivalent
to 1536 pixel' 1057 pixel, with a spatial resolution of approximately
0:12 cm=pixel. The original image is converted to gray-scale and treated
as a scalar field. The Fourier power spectrum EhðkÞ for both horizontal
(x) and vertical (y) directions is then calculated after excluding the land
area, as shown in Fig. 7(a). It is not surprising that the Kolmogorov-like
!5=3 spectrum is evident in Fig. 7(b) for both EhðkxÞ and EhðkyÞ, as
Constable accurately captured the cloud patterns.

2. Jupiter Great Red Spot by Voyage 1
The Great Red Spot is a long-lasting high-pressure area in

Jupiter’s atmosphere, creating the largest anticyclonic storm in the
Solar System. It is the most distinctive feature on Jupiter, character-
ized by its red-orange hue. Situated 22+ south of Jupiter’s equator, it
generates wind speeds up to 432 km=h. The Jupiter’s Great Red
Spot rotates counterclockwise with a period of approximately 4.5
Earth days with roughly 16 400 km in width, making it 1.3 times the
diameter of Earth. The storm has persisted for centuries due to the
absence of a solid planetary surface to create friction; gas eddies in
the atmosphere continue for extended periods because there is no
resistance to their angular momentum.56

A high-resolution image of the Great Red Spot can be found
at https://www.planetary.org/space-images/voyager-1-view-of-the-
great-red-spot, with dimensions of 7400 pixel' 5550 pixel and a spa-
tial resolution of approximately 6 km=pixel. Captured by Voyager 1 on
5 March 1979, the image was taken using a green and violet filter
mosaic with its narrow angle camera (NAC), covering the majority of
the Great Red Spot. To highlight various details, the image’s color, con-
trast, and sharpness have been enhanced. It is the highest resolution
color data available for Jupiter before the Juno mission. A square
region with a size of 7300 pixel' 5050 pixel was cropped from the

FIG. 7. (a) Chain Pier, Brighton painted by John Constable in 1827, obtained from https://www.tate.org.uk/art/artworks/constable-chain-pier-brighton-n05957. The land and the cloud sky
are separated by the red line. (b) Experimental Fourier power spectrum EhðkÞ of Chain Pier, Brighton. The green and purple dashed lines indicate power-law behaviors in the range 5
'10!3 pixel!1! k! 2:5' 10!2 pixel!1 (i.e., 4:2' 10!2 cm!1 ! k! 2:1' 10!1 cm!1) and 10!2 pixel!1! k! 10!1 pixel!1 (i.e., 8:3' 10!2 cm!1 ! k!8:3 '10!1 cm!1)
for the data in the horizontal and vertical directions, respectively. For display clarity, the curve of EhðkyÞ has been shifted up vertically by multiplying a factor of ten. The red solid and brown
dashed lines are compensated curves EhðkÞk5=3 to highlight the!5=3 scaling.
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original by excluding the black edges of original stitched photo, see
Fig. 8(a). Visually, the Great Red Spot shows an ellipse-like pattern
approximately with a major axis of 4000 pixel and a minor axis of
2000 pixel, corresponding to 24 000 km and 12 000 km. In addition to
the Great Red Spot, very rich eddy-like structures can be seen, ranging
in size from 50 pixel to 2000 pixel, corresponding to 300 km to
12 000 km.

The raw image is converted to gray-scale and considered as a
scalar field. The Fourier power spectrum EhðkÞ for both the hori-
zontal (x) and vertical (y) directions is depicted in Fig. 8(b).
The Kolmogorov-like !5=3 spectrum is apparent in the range
4' 10!4 pixel!1 ! k! 1:5' 10!2 pixel!1 (i.e., 6:7' 10!5 km!1 ! k
! 2:5' 10!3 km!1) in both horizontal and vertical directions. It is
important to note that this scaling range aligns well with the measured
spatial size of the eddy-like structures, see Fig. 8(a). Similar to our obser-
vations forThe Starry Night, both the spatial distribution and the relative
intensity of these eddy-like structures adhere to the Richardson–
Kolmogorov cascade picture. Here, the Kolmogorov-like!5=3 spectrum
spontaneously emerged due to hydrodynamic interactions between dif-
ferent eddies.

APPENDIX D: THE STARRY NIGHT IN EVERYDAY LIFE

The Starry Night frequently appears in our everyday lives.
Several instances are illustrated in Fig. 9. For instance, Fig. 9(a)
shows an exhibition in Pattaya, Thailand, during Ms. X. L.’s visit on
19 February 2018. She captured this image with her husband stand-
ing in front of the replicated The Starry Night. In Fig. 9(b), a repro-
duced The Starry Night decorates the wall of a kindergarten in
Randeng, a small town in Fengyang County, Anhui Province,
China, during Y.H.’s attendance at his niece’s wedding on 7
February 2024. The Starry Night is also cherished by children. For
example, Fig. 9(c) showcases a practice piece by a 9-year-old girl,
Ms. Ruoyi Xie, on 2 August 2021. Meanwhile, Ms. Xuan Lei used a
LEGO# jigsaw puzzle version of The Starry Night to embellish her
room in Shenzhen, Guangdong Province, China, see Fig. 9(d).
Several thousand kilometers from Shenzhen, Ms. Xiangying Li also

FIG. 8. (a) The Great Red Spot obtained from https://www.planetary.org/space-images/voyager-1-view-of-the-great-red-spot with a cropped size of 7300 pixel' 5050 pixel. Courtesy
of NASA/JPL-Caltech/Bj€orn J!onsson. (b) Experimental Fourier power spectrum EhðkÞ, in which the green and purple dashed lines indicate power-law behaviors in the range
4' 10!4 pixel!1 ! k! 1:5' 10!2 pixel!1 (i.e., 6:7' 10!5 km!1 ! k! 2:5' 10!3 km!1) for the data in horizontal and vertical directions, respectively. For display clarity, the
curve of EhðkyÞ has been shifted vertically by multiplying a factor of 10. The red solid and brown dashed lines are compensated curves EhðkÞk5=3 to highlight the !5=3 scaling.

FIG. 9. Incorporating van Gogh’s The Starry Night into everyday life. (a) A man
with a reproduction of The Starry Night during an exhibition in Pattaya, Thailand.
Photographed by X.L. on 19 February 2018. (b) A picture of The Starry Night
adorns the wall of a kindergarten in Randeng, a small town located in Fengyang
County, Anhui Province, China. Photographed by Y.H. on 7 February 2024. (c) A
practice painting of The Starry Night by a 9-year-old girl, Ruoyi Xie, on 2 August
2021. Photographed by X.L. in Fuzhou, Fujian Province, China, on 16 March
2024. (d) An image of a LEGO# jigsaw puzzle depicting The Starry Night.
Photographed by Ms. Xuan Lei in Shenzhen, Guandong Province, China, on 24
March 2024. (e) The Starry Night graces a family home in Jiuquan, Gansu
Province, China. Photographed by Ms. Xiangying Li, Jiuquan, Gansu Province,
China, on 16 March 2024. (f) The Starry Night on an advertisement board at the
Pudong International Airport, Shanghai, China. Photographed by Mr. Fulian Gan on
7 April 2024.
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selected a reproduced The Starry Night to beautify her family home in
Jiuquan, Gansu Province, China, see Fig. 9(e). It is fascinating to
observe The Starry Night on an advertising board at the Pudong
International Airport and Hongqiao International Airport, Shanghai,
China, see Fig. 9(f). This advertisement promotes the artist Mr. Jesse
Woolston’s exhibition in Shanghai, China, since the Mid-Autumn
Festival, 10 September 2022. Mr. Woolston created a series of stunning
works inspired by The Starry Night and physics, which can be found
at https://www.youtube.com/watch?v=noycF6xQlBY and https://www.
tiktok.com/@jessewoolston_/video/6933767826008329477.

We believe more examples can be found worldwide. We hope that
the work showcased here will inspire the younger generation to partici-
pate in fundamental research, as sparking curiosity through captivating
artwork is a crucial approach for advancing scientific progress. Finally,
we would like to quote the words directly from Ref. 18:

“We argue that although art has no systematic conventions for
conveying knowledge in the way science does, the arts often play an
important epistemic role in the production and understanding of
scientific knowledge. We argue for what we call weak scientific cog-
nitivism, the view that the production and distribution of scientific
knowledge can benefit from engagement with art.”
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