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Abstract The El Niño‐Southern Oscillation (ENSO) significantly disrupts Pacific Ocean watershed
hydrology, affecting water supply reliability. However, the specific ways in which ENSO affects seasonal river
discharge remain underexplored, presenting a significant gap in our understanding of climate‐water interactions.
Our study reveals that ENSO exacerbates river discharge variability, evident in the dynamics of maximum rise
(Dr) and fall (Df) in standardized discharge, and their duration (M). Notably, ENSO augments Dr but shortens
M in major rivers like the Yangtze. Employing a novel metric, the Discharge Instability Index (DII), we find that
DII surges by at least 69% in El Niño years, particularly in southwestern North American watersheds.
Vegetation and precipitation emerge as pivotal in shaping the discharge response to ENSO. Predictive modeling
with DII suggests an escalation in discharge instability under climate warming, with a 0.11%–9.46% increase.
This insight calls for water managers to integrate ENSO‐induced seasonal variations into strategic planning,
blending immediate actions like dam regulation with long‐term initiatives such as afforestation, to counteract
climate‐induced water scarcity.

1. Introduction
Water resources play a critical role in human societies and ecosystems (Vörösmarty et al., 2010). Water resource
allocation, dependent on water availability, is vital for balancing supply and demand (Eliasson, 2015; Larsen
et al., 2016). Climate change has been linked to an increased frequency of El Niño Southern Oscillation (ENSO)
events (Cai et al., 2015, 2017; Singh et al., 2022). ENSO impacts wide regions including North and South
America, southern and Eastern Asia, South Africa, Australia, and Europe (Sun et al., 2015). Particularly, East
Asia, South Asia, and North America are distributed in the terrestrial monsoon regions of the Northern Hemi-
sphere (NHTMR), which significantly influence global and regional hydrological cycles (Wang et al., 2017).
These regions have dense populations relying on rainfed agriculture and potable water. ENSO alters precipitation
patterns by affecting atmospheric circulation (Good et al., 2021), leading to spatio‐temporal changes in river
discharge variability (Shrestha & Kostaschuk, 2005). Extremely uneven distribution of river discharge among dry
and wet seasons undoubtedly challenges the allocation of water resources (Liu & Yang, 2012), and even causes
intensive socio‐economic impacts (e.g., human casualties and economic losses) (McPhaden et al., 2006; Siegert
et al., 2001). Understanding the air‐land‐water interaction during ENSO events is crucial in bridging knowledge
gaps related to seasonal river discharge anomaly and supporting adaptive management of watershed water re-
sources in a changing climate.

A number of studies have investigated the impact of ENSO on river discharge. It has been observed that ENSO
exerted a significant enhancement on the long‐term mean and interannual variability of river discharge (Amar-
asekera et al., 1997; Siam & Eltahir, 2017). ENSO signals were significantly causal for annual river flow in over
36% of global rivers tested (Su et al., 2018). ENSO is often associated with frequent and severe floods as well as
droughts (Emerton et al., 2017; Singh et al., 2022). Specifically, El Niño events have been found to result in an
increase in the annual maximum streamflow of the lower Yangtze River (Zhang et al., 2007), leading to a 15%
increase in flood frequency (Ma et al., 2018). It is worth noting that the impact of ENSO‐induced streamflow
varies in terms of timing and intensity across different watersheds. For instance, ENSO influences summer and
autumn streamflow in the Yangtze River, while it primarily affects winter and spring streamflow in the Pearl
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River. Moreover, the Pearl River experiences larger differences in streamflow (monthly variations exceeding
15%) due to ENSO, compared to the Yangtze River (below 10%) (Ouyang et al., 2014). Recent research has found
that watershed characteristics are critical in determining the variability of ENSO‐streamflow relationships at the
watershed scale, and it has the potential to reveal long‐term hydrologic response mechanisms to recurring climate
variability (Rice & Emanuel, 2017). Specifically, the normal seasonal distribution pattern of river discharge,
indicating the stability of the flow regime (Krasovskaia, 1997), can be disturbed by the ENSO events. However,
the research on the underlying mechanisms connecting ENSO events and river discharge instability across
different watersheds and regions remains limited.

Our analysis focuses on the regions of South Asia, East Asia, and North America around the Pacific Ocean to
investigate the impact of ENSO on seasonal fluctuations in river discharge. ENSO events were grouped based on
the Oceanic Niño Index (ONI), which includes strong El Niño, weak El Niño, normal, weak La Niña, and strong
La Niña (Table S1 in Supporting Information S1; see Methods for Data collection). First, we observed a sig-
nificant positive relationship between the river discharge and ONI during strong El Niño years (ONI > 1, shown
as El Niño year below) but no clear relationship during other years in three long‐term monitored rivers in the
period of 1960–2019 (Figure S1 in Supporting Information S1). We then identified the disturbed seasonal dis-
tribution patterns via key hygrograph features such as the maximum rise (Dr) and fall (Df) of monthly stan-
dardized discharge and their timespan (M) in eleven monitored watersheds representing South Asia, East Asia,
and North America regions (Figure 1). Subsequently, we proposed a new index called discharge instability index
(DII) incorporating key hygrograph features (see Methods for Discharge instability index creation) to quantify the
uneven seasonal distribution of river discharge during El Niño years compared to normal years. Further, we
constructed a DII model (see Methods for DII model construction) incorporating precipitation anomaly and
watershed characteristics to explore the current status and the future trend of river discharge instability across 284
watersheds in the study regions. Finally, we discussed regulatory measures aimed at mitigating water resource
allocation pressures in watersheds caused by climate change.

Figure 1. Locations and drainage area of the eleven monitored rivers. Triangles show the hydrological stations in river outlet.
The watersheds inside the red circle are the three watersheds for which XGboost is used to simulate natural discharge. The
pink watersheds are the watersheds for which monitored discharge is used. The blue watersheds are the 284 watersheds
which DII model simulated and predicted in this study.
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2. Data and Methods
Our study primarily consists of four modules: (a) Creation of discharge instability index (DII) based on monitored
flow in eleven rivers: Identifying watershed differences in DII; (b) Simulation of natural discharge by XGboost
model for three specific rivers: Investigating the relationship between ENSO and annual natural discharge, and
assessing the impact of the dam on DII via natural discharge versus monitored discharge; (c) Construction of a
predictive model of DII based on watershed characteristics in eleven rivers; (d) Simulation of current DII, and
projection of DII under future warming and precipitation scenarios in 284 watersheds. These components are
presented in the workflow diagram (Figure 2) and further explained in the subsequent sections.

2.1. Study Area and Rivers

Our analysis focuses on the regions of South Asia, East Asia, and North America to investigate the impact of
ENSO on seasonal fluctuations in river discharge. Eleven monitored rivers located in ENSO‐impacted regions
were selected for the study (Ward et al., 2014). In order to assess the long‐term correlation between ENSO and
natural river discharge (see Methods for Natural discharge simulation), we chose three specific rivers: the Jiulong
River (represented by its major tributary, the North River), the Min River, and the Yangtze River. These three
rivers were selected due to their distinct watershed characteristics and availability of complete long‐term hy-
drometeorological data. Additionally, the monitored discharge data of eleven rivers were used to study seasonal
river discharge fluctuations pattern (e.g., Jiulong River, Min River, Yangtze River, Jin River, Mulan River, Dong
River, Dongjiang River, Beijiang River, and Pearl River in East Asia, Mekong River in South Asia, and Mis-
sissippi River in North America). These eleven rivers representing South Asia, East Asia, and North America
regions are different in size, climate, and geographic conditions (Figure 1). To explore the region distribution of
river discharge instability (DII, see Methods for Discharge instability index), the DII model (see Methods for DII
model construction) was applied to 284 watersheds located in the study regions. These watersheds were the
individual watersheds of at least 10,000 km2 collected from HydroBASINS data, which breakdown sub‐basin
based on river branch meetings (Lehner & Grill, 2013).

Figure 2. The workflow of the study.
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2.2. Data Collection

The Niño Index (ONI) data was collected from Golden Gate Weather Services (https://ggweather.com/enso/oni.
htm), a resource that has become the de‐facto standard that NOAA uses for classifying El Niño (warm) and La
Niña (cool) events. It is the running 3‐month mean sea surface temperature (SST) anomaly for the Niño 3.4 region
(i.e., 5°N–5°S, 120°–170°W). El Niño events are defined as 5 consecutive overlapping 3‐month periods with an
SST anomaly of +0.5 or higher, while La Niña events are defined as periods with an SST anomaly of − 0.5 or
lower. In this study, El Niño year was grouped into weak El Niño year (0.5 ≤ ONI < 1) and strong El Niño year
(1 ≤ ONI), likewise, La Niña year was recorded as weak La Niña year (− 1 ≤ ONI < − 0.51) and strong La Niña
year (ONI ≤ − 1); others were grouped as normal years (− 0.5 ≤ ONI ≤ 0.5) (Table S1 in Supporting
Information S1).

The national station near the outlet of the watershed is used as the discharge data of the entire watershed. Daily
discharge data from 1960 to 2019 were collected from the Punan station on the Jiulong River, the Zhuqi station on
the Min River, and monthly discharge data from Datong station on the Yangtze River. Monthly discharge data
from other stations (i.e., Shijiao, Boluo, and Gaoyao on Pearl River, Laixi on Mulan River, Zhao'an on Dong
River, Shilong on Jin River, Kratie on Mekong River, and Vicksburg on Mississippi River) were obtained from
the Global Runoff Data Centre (https://www.bafg.de) and Fujian Water Resources Survey Center. These stations
are national stations whose locations were carefully determined to ensure representativeness, and the quality of
data collected at these stations is high. Additionally, daily meteorological (including precipitation, temperature,
wind speed, relative humidity, and solar duration) during the same period were obtained from various weather
stations in the watersheds (China Meteorological Data Service Centre, https://www.cma.gov.cn/ and Climatic
Research Unit gridded Time Series V4 (https://crudata.uea.ac.uk/cru/data/hrg/). Watershed vegetation indices
(Normalized Difference Vegetation Index) and topographic indices (slope) were collected to investigate the
impact of watershed characteristics on DII variations. The GIMMS 3g Normalized Difference Vegetation Index
(NDVI) with a spatial resolution of 0.0833° from ECOCAST (http://ecocast.arc.nasa.gov) and Digital Elevation
Model (DEM) on a 30 by 30 m grid was obtained from the geospatial data cloud platform (https://www.gscloud.
cn/) for calculating watershed slope. The MODIS NDVI (https://modis.gsfc.nasa.gov/data) and the precipitation
of DWD's GPCC (https://opendata.dwd.de/climate_environment/GPCC/) were collected to explore bias and
potential impacts on results in the uncertainty and limitation section.

2.3. Natural Discharge Simulation

To examine the long‐term correlation between ENSO and natural river discharge, which refers to the discharge
unaffected by damming, we simulated the natural discharge during periods significantly impacted by dams in
three specific rivers (the Jiulong River, the Min River and the Yangtze River) using the XGBoost model (Wang
et al., 2023). XGBoost is an ensemble learning algorithm based on decision trees, which can better capture
nonlinear relationships in data. The long‐term monthly flow data (60a) from those three watersheds supported the
application of XGBoost model (see Text S1 in Supporting Information S1 for details of XGBoost model con-
struction process). However, due to incomplete meteorological data, we were unable to simulate the natural
discharge for the remaining eight monitored watersheds.

The initiation years of extensive dam constructions in the Jiulong River, Min River, and Yangtze River were
1980, 1982, and 2003, respectively (Zhang et al., 2020). For building the monthly natural discharge model for the
Jiulong River, Min River, and Yangtze River, the watershed‐wide monthly mean meteorological value (e.g.,
precipitation, temperature, relative humidity, and wind speed) during 1960–1975, 1960–1975, and 1960–1992
data were used for training, while the data during 1976–1979, 1976–1981, and 1993–2002 were used for vali-
dation (Figure S2 in Supporting Information S1) and the data during 1980–2019, 1982–2019, and 2003–2019
were used for testing. The Nash–Sutcliffe model efficiency coefficient (NSE) during the validation period
yielded values of 0.73, 0.74, and 0.55, and the square of the Pearson correlation coefficient (R2) of 0.75, 0.77, and
0.68 for the Jiulong River, Min River, and Yangtze River, indicating acceptable simulation results.

The simulated natural discharge was used for statistical analysis to investigate the correlation between ONI and
annual river discharge in the three watersheds. Moreover, in order to investigate the impact of dams on seasonal
discharge instability, we compared the difference between natural discharge instability (calculated from simu-
lated natural discharge) and dam regulated discharge instability (calculated frommonitored discharge) in the three
watersheds.
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2.4. Discharge Instability Index Creation

A new index called discharge instability index (DII) was proposed to assess
the uneven seasonal distribution of river discharge during El Niño years
compared with normal years, which was proposed by Equations 1–5 and
Figure 3.

SDi,j =
(Di,j − D)

σ
(1)

Drj = max(SDi+1,j − SDi,j) (2)

Dfj = min(SDi+1,j − SDi,j) (3)

Mj = iDf j − iDrj (4)

DIIj = (Drj/Dfj) × (Drj + Dfj) ×
1
Mj

(5)

where i, j is the i th month of j th year; D is the monitored monthly discharge
and D is multi‐year mean of monitored monthly discharge; σ is the standard
deviation; SD is the monthly standardized discharge; Drj is the maximum rise
of monthly SD between two adjacent months in j th year; Dfj is the maximum
fall of monthly SD between two adjacent months in j th year; iDfj is the i th
month which Df appeared in the j th year; iDrj is the i th month which Dr
appeared in the j th year;Mj is the timespan of months with the maximum rise

(Drj) and the maximum fall (Dfj) in j th year. (Drj/Dfj) is the discharge fluctuation deviation term, which reflects
the symmetry of the discharge fluctuations. (Drj + Dfj) is the magnitude of discharge fluctuations, and 1

Mj
re-

flects the speed of changes in the discharge fluctuation. The three terms with different units and magnitudes are
normalized using the maximum and minimum methods, resulting in values ranging from 1 to 5. This normali-
zation allows for the multiplication of the three terms while maintaining isotropy.

To identify the disturbed seasonal distribution pattern, Mann‐Whitney Test was used to assess the significant level
of difference inDr,Df ,M, and DII between El Niño years and normal years in eleven monitored rivers. Here,Dr,
Df , M, and DII were calculated from the monitored discharge in eleven watersheds.

2.5. DII Model Construction

To explore the current status and the future trend of river discharge instability in study regions, a DII model based
on watershed characteristics was constructed. The monitored discharge data and watershed characteristics in
eleven watersheds were used for the DII model development. The variables having significant correlation with
monitored DII using Pearson's correlation analysis were selected as target variables for the DII model con-
struction. The significance level (p < 0.05) was used to identify major watershed characteristics in DII variations
across eleven monitored watersheds during El Niño and normal years. Watershed characteristics including annual
mean NDVI, watershed mean slope, annual mean Precipitation anomaly (Pa), drainage area (Area), annual mean
temperature (Ta), annual mean relative humidity (RH), annual mean wind speed (WS), and annual sunshine
duration (SD), which represent the watershed climate, vegetation coverage, and topography. Watershed mean
NDVI, Ta, Pa, WS, and SD were counted in El Niño years and normal years. Pa was calculated by Equation 6.

Pa =
Pre − Pre

Pre
× 100% (6)

where Pre is the mean of precipitation in the El Niño and normal years; Pre is the multi‐year mean precipitation.
NDVI, Pa (%), slope (°), and drainage area (104 km2), which showed a significant correlation with monitored DII
variations in eleven watersheds (Figure S3 in Supporting Information S1), were finally selected as the major

Figure 3. The calculation process of discharge instability index.
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watershed characteristics for DII model development. Additionally, the XGBoost model was utilized to ascertain
the feature importance of major watershed characteristics in the DII variation. The 100 sets of different random
seeds were used to construct the XGBoost model to compute the relative feature importance, and the average was
finally taken.

DII model (Linear regression equations) was developed using stepwise regression. The stepwise regression
model, which imposes lower demands on the data set, can reduce multicollinearity issues to maintain the stability
and reliability of the model. This model incorporates major watershed characteristics (NDVI, Pa (%), slope (°),
and drainage area (104 km2)) across eleven monitored rivers in the El Niño and normal years, respectively. To
validate the regression equations, we utilized a leave‐one‐out cross‐validation approach, with ten out of the eleven
monitored watersheds forming the training set and the remaining one serving as the testing set. The Root Mean
Squared Error (RMSE) and the square of the Pearson correlation coefficient (R2) were used to evaluate the model
performance. The best‐fit model was determined by selecting the equation that showed the smallest RMSE and
largest R2 between the monitored and predicted values. Among the derived regression equations (Figure S4a in
Supporting Information S1), the linear regression model for El Niño years (DIIE) was determined as Equation 7
with the smallest RMSE and the largest R2. Similarly, the best‐fit linear regression model for normal years (DIIN)
was determined as Equation 8 (Figure S4b in Supporting Information S1).

DIIE = 65.21 − 88.85NDVI + 1.55Pa + 0.32slope − 0.02Area (7)

DIIN = 24.28 − 30.54NDVI − 0.12Pa + 0.10slope − 0.01Area (8)

Considering the significant variations in hydrologic and geographic attributes between the modeled watersheds
and other western US watersheds, the DII models (DIIE and DIIN) were also validated in western North America
watersheds. The comparison of monitored DII (DIIE andDIIN) and predicted DII (DIIE andDIIN) was conducted
in five watersheds with a drainage area of 53,410–634,520 km2 (Sacramento River, San Joaquin River, Rio Bravo
River, Rio Panuco River, and Colorado River) (Figure S5c in Supporting Information S1). The Root Mean
Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) of DIIE and DIIN models were 1.50% and
6.35%, 0.57% and 8.64%, respectively (Figures S5a and S5b in Supporting Information S1). These validation
results have substantiated that our DII model was capable to be applied in broader watersheds not restricted in the
selected eleven watersheds.

2.6. DII Simulation and Prediction

The DII models (DIIE and DIIN) were used to simulate watershed mean DII for 284 watersheds in El Niño and
normal years respectively. The selected 284 watersheds are geographically close to the eleven monitored wa-
tersheds and are similar in climate and drainage area (>10,000 km2). In addition, these watersheds are located
between 0 and 40°N around the Pacific Ocean, which is the ENSO‐impacted region.

To predict the future trend of DII across the 284 watersheds in response to future climate warming, the DII model
of El Niño year (DIIE) was performed with two scenarios: SSP2‐4.5 (moderate warming) and SSP5‐8.5 (intense
warming). SSP2‐4.5 and SSP5‐8.5 comprise representative concentration pathways and shared socio‐economic
pathways (Text S2 in Supporting Information S1). The scenario assumes that the future NDVI and Pa are
changed, and the slope and drainage area remain unchanged in 284 watersheds. The NDVI in the two scenarios
were the current NDVI in El Niño years with a decrease of 0.04% and 0.29%, respectively (Lian et al., 2023). The
future precipitation anomaly (Pa) in the two scenarios was the current Pa of the El Niño year with an increase of
15% (Power & Delage, 2018). The predicted DII variation (δDII) was indicated by relative deviation (%) of future
warming scenarios from current El Niño years to explore the future trend of river discharge instability in 284
watersheds.

2.7. Uncertainty Analysis

The DII model incorporates major watershed characteristics (NDVI, Precipitation anomaly (Pa, %), slope (°), and
drainage area (104 km2)). Comparisons with other data sets were used to explore potential uncertainty in data
sources (i.e., NDVI and Pa) and their impact on the findings. Slope and watershed area were not compared with
different data sets because they are fixed values for the watershed. The precipitation data in DWD's GPCC based
on high observation count was selected for comparison (Harris et al., 2020), which shows high‐frequency
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agreement with CRU TS v4 used in this study (Becker et al., 2013). For NDVI, the MODIS NDVI was chosen for
its high fidelity as comparison to the GIMMS3g NDVI used in this study (Kawamura et al., 2005). Compared to
MODIS NDVI, the GIMMS3g NDVI had higher annual mean values (3% higher) (Zhang et al., 2017). However,
MODIS NDVI data products have only been available since 2000, which cannot support the construction of DII
models. Therefore, we use GIMMS3g NDVI with a 3% decrease to represent MODIS NDVI in this study. The DII
models were reconstructed using GPCC and MODIS NDVI, respectively. The comparisons of simulated and
predicted DII variations using different data sets in 284 watersheds were used to explore the impact of bias in data
sources on results.

The 95% confidence interval estimated via SPSS software (SPSS Statistics 19) was used to explore the potential
uncertainty in the stepwise regression method and their impact on the findings.

3. Results
3.1. Seasonal River Discharge Instability

The DII values during El Niño years were significantly higher than during normal years across eleven monitored
watersheds (p < 0.05, Figure 4a). Meanwhile, the Dr exhibited a similar trend, except for the Mekong River
(Figure 4b). The M of the Yangtze River, Mississippi River, and Mekong River were significantly shorter during
El Niño years compared to normal years (p < 0.05, Figure 4c). No significant difference in Df between El Niño
and normal years was found across eleven watersheds (Table S2 in Supporting Information S1). Based on the
variations of Dr and M from normal years to El Niño years, these watersheds were classified into three patterns:
DII‐I (increased Dr, including Jin River, Mulan River, Jiulong River, Dong River, Min River, Beijiang River,
Dongjiang River, and Pearl River), DII‐II (increased Dr and decreased M, including Mississippi River, Yangtze
River), and DII‐III (decreased M, including Mekong River) (Table S2 in Supporting Information S1,
Figures 4d–4f).

3.2. The Relationship Between DII and Watershed Characteristics

The link between monitored DII and watershed characteristics was used to identify the major watershed char-
acteristics in DII variations in eleven watersheds. The mean monitored DII during El Niño years showed a
positive correlation with watershed slope and precipitation anomaly (Pa) in the eleven monitored watersheds. On
the other hand, it exhibited a negative correlation with NDVI and drainage area (Figure S3 in Supporting In-
formation S1). Specifically, lower NDVI indicates reduced water retention capacity, while smaller drainage areas
result in shorter water residence time within a watershed (Chen et al., 2021), contributing to higher DII values.
The XGBoost model showed that NDVI, precipitation anomaly and slope accounted for 48%, 40%, and 10% of the
feature importance respectively in explaining the variability of DII among eleven rivers. Drainage area had a
significantly lower impact at 2% (Figure 5a).

Comparing the dam‐regulated DII (calculated from long‐term monitored discharge) with the natural DII
(calculated from natural discharge simulated by XGBoost, see Methods for Nature discharge simulation) to
explore the impact of dam on DII in three specific rivers. We observed a decrease of 4%–9% in the three wa-
tersheds with complete long‐term hydrometeorological data during El Niño years (Figure 5b). Notably, the impact
of dam regulation on reducing DII was more significant in large river (i.e., Yangtze River) than in small rivers
(i.e., Jiulong River and Min River).

3.3. The Modeled Discharge Instability Index

We applied DIIE (Equation 7) and DIIN (Equation 8) to the 284 watersheds (drainage area > 10,000 km2) in the
tropics and subtropics (0°–40°N) (Figure 6). It shows that DII in El Niño years are generally higher than in normal
years (≥69%). Specifically, the DII during El Niño years surpasses that of normal years by more than 3.6 times in
top 10% watersheds (Figure 6 inset). The DII increment (ΔDII) was indicated by the difference in mean DII
between El Niño years and normal years. In the regions of South Asia and East Asia, approximately 72% of
watersheds exhibit a ΔDII ranging from 150% to 250%, while 14% of watersheds exceed 250%. However, in
North America, 40% of watersheds have a ΔDII within 150%–250% range, and 35% of watersheds are greater
than 250%.
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3.4. The Discharge Instability Index Under Future Climate Scenarios

The DII model of El Niño year (DIIE) was performed with SSP2‐4.5 and SSP5‐8.5 scenarios to predict the future
trend of DII across the 284 watersheds around the Pacific Ocean in response to future climate warming. The δDII
(the relative deviation (%) of future warming scenarios from current El Niño years) of the 284 watersheds ranged
from 0.11% to 9.21% under the SSP2‐4.5 scenario, and from 0.53% to 9.46% under the SSP5‐8.5 scenario (Figure
S6 in Supporting Information S1). The watersheds with high precipitation anomaly (Pa > 5%) have a major
increase in δDII compared to the medium Pa and low Pa watersheds (Figure 7 inset). The percentage difference of
δDII between two scenarios (δDII8.5–4.5) show that the δDII of SSP5‐8.5 scenario were relatively greater than
that of SSP2‐4.5 scenario (Figure 7).

Figure 4. Variations of characterized river discharge instability indexes (a, b, c) and variations of seasonal river discharge distribution patterns in three categories (d, e, f)
from El Niño years to normal years. The monthly standardized discharge was processed in El Niño years and normal years. Dr is the maximum rise of monthly
standardized discharge between two adjacent months; Df is the maximum fall of monthly standardized discharge between two adjacent months; M is the timespan of
months with the maximum rise and the maximum fall of river discharge; p < 0.05 indicates the significant difference between El Niño years and normal years based on
the Mann‐Whitney test. Standardized discharge in d, e, and f was the multi‐year average of standardized discharge in El Niño years (red line) and normal years (blue
line).
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4. Discussion
Our results suggest that ENSO‐induced abnormal precipitation largely determine the seasonal discharge fluc-
tuation patterns, from normal years to El Niño years (Figure 4). The DII‐I (increased Dr) watersheds are mainly
located in southern China like Pearl River under subtropical monsoon climate. The shift of the subtropical high‐
pressure system caused by El Niño triggers enhanced water vapor transportation (C‐mode) from the equatorial
region to southern China (Zhang et al., 2016), resulting in intensified precipitation anomaly during the rainy
season and the formation of the DII‐I pattern. Therefore, the DII‐II (increased Dr and decreasedM) watersheds are
mainly situated in the mid‐latitude region like Yangtze River and Mississippi River. This pattern arises from a
delay in spring precipitation but an increase in summer precipitation, caused by late convergence of water vapor
induced by ENSO (Chan & Zhou, 2005; Nakamura et al., 2013; Smith & Baeck, 2015). The DII‐III pattern
observed in the Mekong River does not exhibit an increase in Dr but displays abnormal lagged and shortened
flood seasons, likely influenced by the anomalous North Pacific monsoon (WNPM) and East Asian summer
winds (Räsänen & Kummu, 2013). In summary, ENSO disrupts water cycling and precipitation and impacts
seasonal hydrography in watersheds.

Characterizing seasonal river discharge instability across regions remains a substantial challenge. In this study,
we constructed a DII model incorporating watershed characteristics (NDVI, slope, and drainage area), in addition
to precipitation anomaly, as input parameters (Figure S4a in Supporting Information S1). Based on the simulated
DII increment (ΔDII) and the percentage difference of predicted DII variation between two scenarios (δDII8.5–
4.5), we have selected two regions (Southwestern North America and Eastern East Asia) with higher ΔDII

Figure 5. Feature importance of watershed characteristics to mean DII in eleven rivers by XGBoost model (a) and natural DII
versus dam regulated DII (b) in El Niño years. Error bars in b are the range of variation in multi‐year DII values. The number
in b are the percentage difference in dam‐regulated DII compared to natural DII.

Figure 6. The distribution of modeled DII increment (ΔDII = (the mean DII of El Niño years—the mean DII of normal
years)/the mean DII of normal years × 100%). The △DII was calculated in 284 watersheds (the fifth level watershed in
HydroBASINS data, see details in Methods), with data from 10 normal years and 7 El Niño years. Inset graph is, the ranking
and proportion of watershed mean DII in El Niño years (red line) and normal years (blue line) across 284 watersheds. The
black boundary shows six specific regions (1. Western East Asia; 2. Central East Asia; 3. Eastern East Asia; 4. Southwestern
North America; 5. South‐central North America; 6. Southern North America; detail in Table S3 in Supporting
Information S1).
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(>250%) and four regions (Western East Asia, Central East Asia, South‐central North America, and Southern
North America) with higher δDII8.5–4.5 (>150%) in 284 watersheds for further discussion. The modeled DII in
284 watersheds around the Pacific Ocean between the El Niño and normal years reveal that watersheds with large
DII increment (ΔDII > 300%) are primarily located in southwestern North America (Figure 6). This regional
difference is related to the impact of terrain on the advection of ocean water vapor. In southwestern North
America, the presence of vast plateaus and towering mountains like the West Madre lifts warm and moist air to
produce convective precipitation (Boos & Pascale, 2021). The ENSO‐impacted Pacific water vapor was
convergence on the windward side of the mountains, resulting in abnormally heavy precipitation in the south-
western North America (Table S3 in Supporting Information S1). The higher ΔDII watersheds are mainly
distributed on the windward side of the mountains in southwestern North America (including the Baja California
Peninsula, the Colorado Plateau, and the Mexican Plateau). The upstream of these watersheds is mountainous,
with lower NDVI (Table S3 in Supporting Information S1), indicating strong runoff production capacity.
Additionally, high precipitation variation in these watersheds due to the combined influence of ENSO, the
Pacific‐North American pattern (PNA), and the Madden‐Julian oscillation (MJO) (Grise et al., 2013). Along the
Pacific coast of southern North America (the Mexican Plateau), the mountains obstruct the eastward transport of
air masses (Boos & Pascale, 2021), resulting in little differences in precipitation between the El Niño year and
normal year (Table S3 in Supporting Information S1). Unlike North America, the topography of East Asia is low
in the east and high in the west, and the ENSO‐impacted Pacific Ocean moisture spreads across the eastern of East
Asia, leading to an increase in rainfall. The watersheds in the eastern plains of East Asia have a higher NDVI, and
less variations in precipitation which are influenced by the weakening effect of ENSO on the precipitation due to
the North Atlantic Oscillation (NAO) and Indian Ocean Dipole (IOD) (Xiao et al., 2015), corresponding to a
lower ΔDII compared to southwestern North America (Table S3 in Supporting Information S1). The watersheds
in western East Asia (Qinghai‐Tibet Plateau) have the lowest ΔDII, as this region is less influenced by the Pacific
Ocean (Tian et al., 2001).

The increased precipitation anomaly and decreased land vegetation jointly enhanced the seasonal river discharge
instability but such effect strength might vary across watersheds. Since the 1980s, there has been a significant
increase in global vegetation coverage, particularly in the Northern Hemisphere, referred to as “global greening”
(Piao et al., 2019). However, vegetation greening and NDVI would decrease under future warming (Lian
et al., 2023). Meanwhile, global warming likely produces more extreme precipitation events (i.e., Pa increase)
(Trenberth, 2011). Our results suggest that increased precipitation anomaly and decreased vegetation under future
warming scenarios will intensify the instability (δDII increase 0.11%–9.46%) during El Niño years, especially in
the high Pa watersheds (Figure 7 inset). The percentage difference of δDII between two scenarios (δDII8.5–4.5)
show that a higher δDII8.5–4.5 (≥80%) watersheds are mainly located in southern North America (the Mexican

Figure 7. The distribution of percentage difference of δDII between two scenarios (δDII8.5–4.5) across 284 watersheds.
δDII = (the mean DII of SSP2‐4.5 or SSP5‐8.5 scenario—the mean DII of El Niño years)/the mean DII of El Niño
years × 100%. δDII8.5–4.5 = (the δDII of SSP5‐8.5 scenario—the δDII of SSP2‐4.5 scenario)/the δDII of SSP2‐4.5
scenario × 100%. The black boundary shows six specific regions (1. Western East Asia; 2. Central East Asia; 3. Eastern East
Asia; 4. Southwestern North America; 5. South‐central North America; 6. Southern North America; detail in Table S3 in
Supporting Information S1). Inset graph is, the predicted DII variation (δDII) of different precipitation anomaly (Pa) level
watersheds under two warming scenarios across 284 watersheds. ** represents p < 0.01, indicating the significant difference
in δ DII between the two types of precipitation anomalies (Pa) based on the Mann‐Whitney test.
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Plateau), western East Asia (Qinghai‐Tibet Plateau), south‐central North America (the Great Plains of the United
States), and central East Asia (southern Sichuan Basin and eastern Yunnan‐Guizhou Plateau) (Figure 7). These
watersheds are located on the leeward slope of the mountain with higher NDVI (Table S3 in Supporting Infor-
mation S1) (Ruiz‐Barradas & Nigam, 2010; Zhang et al., 2021), and a drastic decrease in NDVI under future
climate warming will produce more unstable discharge.

The enhanced river discharge instability undoubtedly poses pressure on water resource allocation. Our research
implies that El Niño increases seasonal river discharge instability, leading to seasonal water shortages (Wada
et al., 2011). In DII‐I watersheds, there is a significant rise in floods, rendering a larger volume of floodwater
unusable as a resource. In DII‐II watersheds, there is an increase in floods with a shorter duration (e.g., M). This
not only increases the flood control pressure during the flood season but also poses challenges to water allocation
during the longer dry season. Compared to normal years, the dry season in El Niño years is prolonged by 0.1–
1.1 months, while the average low flow is reduced by 0.08%–1.1% and the minimum low flow is diminished by
4.8%–7.3% (Table S4, see Text S3 in Supporting Information S1 for low flow identification). In DII‐III water-
sheds, the dry season in El Niño years extends by 0.8 months compared to normal years, and both the average and
minimum low flows decrease by 2.3% and 4.2%, respectively. The scarcity of water resources exacerbates
competition among various water usage such as agricultural production, potable water supply, and the ecological
flows. In addition, the anomalous fluctuations in seasonal river discharge and the rising occurrence of extreme
events further contribute to the mounting water stress caused by population growth (Oki & Kanae, 2006).

The ENSO‐impacted watersheds require the implementation of specific regulatory measures as an adaptation
strategy to future climate change. For the DII‐I watersheds, it is necessary to utilize the functionality of dams in
regulating high flow pulses (Chaudhari & Pokhrel, 2022). For the DII‐II and DII‐III pattern watersheds, further
optimize the operation of the reservoir and improve its dispatching capacity during dry season and storage ca-
pacity during flood season. Meanwhile, coordinated regulation of cascade reservoir dams within the entire
watershed (across watersheds in some cases) is necessary to improve the seasonal allocation of water resources.
However, overuse of dams can lead to river fragmentation and eutrophication (Belletti et al., 2020; Xiang
et al., 2021). The conflict between promoting renewable hydropower and restoring aquatic ecosystems becomes
increasingly apparent (Carolli et al., 2023; Consuegra et al., 2021). Therefore, it is crucial to prioritize the
restoration of degraded lands or afforestation to enhance water‐holding capacity, especially in watersheds with
high precipitation anomalies. To sustain the current DII amidst future warming, a 9% rise in NDVI in south-
western North America and a 2%–4% increase in other regions is essential (see Text S4 in Supporting Infor-
mation S1). These measures aim to reduce seasonal river discharge instability and alleviate water resource
allocation pressure arising from ENSO event.

The efficacy of water resources management measures in response to ENSO is heavily contingent upon the
precision of ENSO forecasts. However, current forecasting models struggle to offer reliable predictions for lead
times extending beyond the 6–10 months mark (Ham et al., 2019). This limitation introduces significant chal-
lenges for seasonal ENSO management (Cai et al., 2018), which underscores the increased variability and
unpredictability of Eastern Pacific El Niño events under the influence of greenhouse warming. To effectively
manage water resources amidst the unpredictability of ENSO, we recommend a dual‐strategy approach that
combines short term action with long‐term planning. In the short term, water managers should employ advanced
real‐time monitoring and predictive model system to guide responsive dam operations and water flow allocation.
For the long term, we advocate for the development and implementation of comprehensive strategies that enhance
the resilience and sustainability of water systems. A key component of these strategies is watershed afforestation.
By restoring and preserving natural vegetation, we can reduce soil erosion, increase groundwater recharge, and
create a more robust buffer against extreme weather events. By integrating these short‐term adaptive measures
with long‐term resilience‐building strategies, water managers can more effectively manage the uncertainties
associated with ENSO and ensure the sustainable stewardship of water resources. This comprehensive approach,
underpinned by ongoing advancements in climate science and technology, is essential for adapting to the com-
plexities of a changing climate.

Furthermore, it is essential to recognize that a variety of climate change modes, beyond ENSO, significantly
influence water resource dynamics. The Pacific Decadal Oscillation (PDO), for instance, has been shown to
amplify the variability of water flows in southern East Asia (Delgado et al., 2012; Zhang et al., 2015). Addi-
tionally, the PDO has been linked to the creation of abnormally wet conditions in southwestern North America
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and Mexico (Dong & Dai, 2015; Villarini et al., 2014), which in turn can precipitate more frequent large‐scale
flooding events (Whited et al., 2007). Similarly, the North Atlantic Oscillation (NAO) has been identified as a
key factor that elevates the probability of extreme rainfall events (Wang et al., 2014; Whan & Zwiers, 2017). This
climatic pattern also plays a significant role in the severity of flood events in eastern North America. On the other
hand, the Atlantic Multi‐decadal Oscillation (AMO) has been found to exhibit a substantial negative correlation
with flood events across North America (Hodgkins et al., 2017; Valdés‐Manzanilla, 2016). This suggests that
periods of high AMO activity may be associated with a reduced risk of flooding.

In light of these findings, it is imperative for water resource managers to adopt a holistic approach when
formulating strategies to address climate change. This includes considering the collective impacts of various
climate modes, such as the PDO, NAO, and AMO, alongside the well‐recognized influence of ENSO. By
integrating a comprehensive understanding of these climate phenomena, managers can develop more effective
and adaptive water management plans that are resilient to the multifaceted challenges posed by climate change.

5. Uncertainty and Limitation
In the current El Nino year and future warming scenarios, the DII variations (ΔDII and δDII8.5–4.5) using GPCC,
show a decrease of 12%–38% compared to the DII variations using CRU in the 284 watersheds (Figure S7 in
Supporting Information S1). The ΔDII calculated using CRU is 1–3 times higher than that using GPCC in over
70% of the watersheds (Figure S7a in Supporting Information S1). In 80% of the 284 watersheds, the comparison
of δDII8.5–4.5 calculated using CRU and GPCC (δDII8.5–4.5(CRU)/δDII8.5–4.5(GPCC)) falls between 0 and 2
(Figure S7b in Supporting Information S1). These differences may be attributed to the fact that the GPCC
database includes around 3–4 times as many precipitation stations as CRU. The difference in DII variations using
MODIS compared to GIMMS3g is − 11%–37%. The ΔDII calculated using GIMMS3g is higher than that
calculated using MODIS (approximately 1–3 times) in 80% of the 284 watersheds (Figure S8a in Supporting
Information S1), and the δDII8.5–4.5 calculated using GIMMS3g is lower than that calculated using MODIS
(approximately 0–1 times) in 99% of the 284 watersheds (Figure S8b in Supporting Information S1). The results
from different data sets all demonstrate that intensifying the instability of seasonal river discharge, and future
warming will enhance the instability, which enhances the robustness of the findings from this study.

In the development of the DII model, data from eleven selected watersheds were utilized, with the limited sample
size dictating the application of a stepwise regression approach. The 95% confidence interval of the DIIE and DIIN
model ranges from − 12% to 14%. The biases related to the model in ΔDII range from − 3% to − 16% across the
284 watersheds, while the δDII8.5–4.5 shows no bias related to the DIIE model as it is a relative percentage
difference. Currently, the chosen watersheds are confined to Asia and North America. However, the ENSO event
exerts a distinct influence on the seasonal river flows in African, European, and Oceania basins, varying from
those in Asia and North America (Ward et al., 2014). To advance this field, future studies should prioritize data
integrity and augment the data set with a greater number of watershed examples, thereby facilitating the
employment of more predictive data‐driven models (such as machine learning models), and offering more precise
data support for seasonal ENSOmanagement on a global scale. Future warming scenarios are predicted to amplify
the instability of river discharge. The future ENSO‐driven precipitation anomaly rate (15% increase) used to
calculate precipitation anomalies under future warming scenarios is based on CMIP5 models (one of the climate
models). However, such climate models exhibit stubborn climate biases in the eastern equatorial Pacific, which
may affect their representation of feedback and ENSO complexity, as well as the fidelity of operational ENSO
forecasts (Timmermann et al., 2018). This may lead to an underestimation of ENSO precipitation variability
under future climate warming scenarios (Power & Delage, 2018). It is importance to prioritize the restoration of
degraded lands or afforestation to enhance water‐holding capacity to cope with enhanced ENSO precipitation
variability under future climate change. In addition, the variability of ENSO sea surface temperature will increase
in the future (Cai et al., 2018), and future water crisis could be more severe than anticipated (Zhang et al., 2023).
The impact of ENSO events on the instability of river flow under future climate warming requires a next‐
generation climate model that can better simulate ENSO for accurate prediction.

6. Conclusion
We investigated the impact of ENSO on seasonal fluctuations in river discharge across watersheds in the regions
of South Asia, East Asia, and North America surrounding the Pacific Ocean. Our results confirm that El Niño
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event led to more unstable discharge in the 284 analyzed watersheds of this region. The main conclusions are
highlighted below:

1. We identified the ENSO‐impact seasonal distribution patterns via key hygrograph features. ENSO intensifies
Dr in eleven monitored watersheds representing South Asia, East Asia, and North America regions, and de-
creases M in larger rivers like the Yangtze River.

2. We quantified the uneven seasonal distribution of river discharge through a new index called discharge
instability index (DII). ENSO intensifies the instability of seasonal river discharge during El Niño years
compared to normal years. The higher DII was observed in southwestern North American watersheds due to
higher precipitation anomaly. The increment in discharge instability will vary across 284 watersheds, mainly
influenced by vegetation and abnormal precipitation.

3. Future warming scenarios are projected to amplify the instability of river discharge. The watersheds with high
precipitation anomaly (Pa > 5%) has have a major increase in DII across 284 watersheds.

This research contributes to a better understanding of the complex interactions between ENSO, river discharge,
and water resources. It emphasizes the importance of addressing these challenges in order to ensure the reliability
and sustainability of water resource allocation. We champion the implementation of customized regulatory
strategies that consider the unique characteristics of individual watersheds. Our approach integrates immediate
interventions, such as dam management, with comprehensive long‐term initiatives like afforestation. This dual
strategy aims to alleviate the adverse effects of climate change on the distribution and management of water
resources.
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