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A B S T R A C T   

Watershed water quality modeling is a valuable tool for managing ammonium (NH4
+) pollution. However, 

simulating NH4
+ pollution presents unique challenges due to the inherent instability of NH4

+ in natural envi
ronment. This study modified the widely-used Soil and Water Assessment Tool (SWAT) model to simulate non- 
point source (NPS) NH4

+ processes, specifically incorporating the simulation of land-to-water NH4
+ delivery. The 

Jiulong River Watershed (JRW) is the study area, a coastal watershed in Southeast China with substantial sewage 
discharge, livestock farming, and fertilizer application. The results demonstrate that the modified model can 
effectively simulate the NPS NH4

+ processes. It is recommended to use multiple sets of observations to calibrate 
NH4

+ simulation to enhance model reliability. Despite constituting a minor proportion (5.6 %), point source 
inputs significantly contribute to NH4

+ load at watershed outlet (32.4~51.9 %), while NPS inputs contribute 
15.3~17.3 % of NH4

+ loads. NH4
+ primarily enters water through surface runoff and lateral flow, with negligible 

leaching. Average NH4
+ land-to-water delivery rate is about 2.35 to 2.90 kg N/ha/a. High delivery rates mainly 

occur at agricultural areas. Notably, proposed NH4
+ mitigation measures, including urban sewage treatment 

enhancement, livestock manure management improvement, and fertilizer application reduction, demonstrate 
potential to collectively reduce the NH4

+ load at watershed outlet by 1/4 to 1/3 and significantly enhance water 
quality standard compliance frequency. Insights gained from modeling experience in the JRW offer valuable 
implications for NH4

+ modeling and management in regions with similar climates and significant anthropogenic 
nitrogen inputs.   

1. Introduction 

Ammonium (NH4
+) is a common toxicant form of nitrogen in soils and 

water bodies. The term NH4
+ refers to both the ionized and un-ionized 

states (ammonia, NH3) in this study. NH4
+ plays a crucial role in the 

terrestrial nitrogen cycle. In soils, NH4
+ can be taken up by plants, 

oxidized to nitrate (NO3
–), volatilized into air as NH3, or transported into 

rivers or lakes via surface runoff. In aquatic environment, NH4
+ is often a 

preferred source of nitrogen for aquatic organism (Zhou et al., 2017). 
Elevated NH4

+ concentrations can lead to water quality deterioration and 
stimulate the growth of algae and aquatic plants, potentially 

contributing to eutrophication Ding et al. (2022). Accordingly, NH4
+ is 

often used as an indicator for the surface water quality assessment (Zaidi 
Farouk et al. 2023). Over the past few decades, global emissions of 
reactive nitrogen (of which NH4

+ is one major form) have steadily 
increased (Zhang et al., 2021), which has exacerbated nitrogen pollution 
in rivers, lakes, and coastal waters (Gu et al., 2023). Xu et al. (2024) 
estimated the global NH3 gas emissions from rice, wheat, and maize 
fields in 2018 to be 4.3 Tg N/a, accounting for 3.6 % of chemical fer
tilizer usage (120 Tg N/a) (Gu et al., 2023). Nevertheless, accurate es
timates of NH4

+ released from land to water on a global scale are 
currently lacking. China also faces a severe issue of nitrogen pollution in 
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its water bodies (Yu et al., 2019). Despite China’s efforts to control NH4
+

pollution, achieving complete control of NH4
+ for attaining a good 

ecological status requires a significant amount of time (Zhang et al., 
2023). 

NH4
+ may originate from various sources. In China, NH4

+ primarily 
originates from domestic sewage discharge (73 %), livestock farming 
(12 %), and fertilizer application (9 %) (MEE 2020). Among these three 
sources, domestic sewage is a typical point source (PS) pollution, fer
tilizers are non-point source (NPS) pollution, and livestock manures can 
be either PS pollution or NPS pollution. To understand the linkage be
tween these sources and their water quality impacts, it is crucial to 
comprehend the transport and biogeochemical processes of NH4

+ within 
the watershed. In this context, watershed water quality (WWQ) models 
that offer quantitative, spatially-distributed, and process-based infor
mation are valuable tools (Wellen et al., 2015). WWQ models typically 
encompass the simulation of pollutant generation, land-to-water de
livery, and in-stream processes (Fu et al., 2019). Presently, there are 
dozens of WWQ models documented in the literature, among which 
some widely used models include Soil and Water Assessment Tool 
(SWAT) (Neitsch et al., 2011), Hydrological Simulation 
Program-FORTRAN (HSPF) (Bicknell et al., 1997), Annualized AGri
cultural Non-Point Source pollution model (AnnAGNPS) (Bingner et al., 
2018), SPAtially Referenced Regression On Watershed attributes 
(SPARROW) (Schwarz et al., 2006) and Integrated Catchment Model 
(INCA) (Wade et al., 2002). 

SWAT is the most widely used model (Fu et al., 2019). SWAT’s 
popularity is primarily due to its comprehensive functionality and reli
able results. It can simulate a wide range of hydrological processes, soil 
erosion, sediment transport, nutrient cycling, plant growth, as well as 
various agricultural and water management practices (Neitsch et al., 
2011). In terms of NH4

+ simulation, SWAT considers multiple NH4
+ in

puts, including atmospheric deposition, fertilization, and PS discharges. 
It also simulates NH4

+ nitrification and NH3 volatilization in soil and 
in-stream NH4

+ transport and transformation. However, in the SWAT 
model, NH4

+ is considered immobile in soil, resulting in a lack of 
land-to-water delivery simulation, which is crucial for addressing NPS 
NH4

+ pollution. One main reason for this limitation is the strong reten
tion of NH4

+ by soils. Nevertheless, observational studies have reported 
that NH4

+ can be flushed or transported into receiving water bodies via 
surface runoff and lateral flow (Ao et al., 2020; Daniels et al., 2012; 
O’Mara et al., 2019; Xing et al., 2023). Considering the low mobility of 
NH4

+ and its inherent instability (easily oxidize into NO3
–), such simpli

fication is acceptable when the focus is on NO3
– simulation. However, 

given the significance of NH4
+ in water quality management and the 

substantial worldwide SWAT community, some enhancements to the 
NH4

+ simulation in SWAT are considered necessary. 
There have been several studies in the literature that utilize WWQ 

models to simulate NH4
+ pollution. Some popular models include HSPF, 

INCA, SPARROW, and SWAT. For instance, Zhu et al. (2023) employed 
HSPF to simulate nitrogen pollution (including NH4

+) in a coastal 
watershed in North America. Nevertheless, HSPF does not comprehen
sively depict in-stream water quality processes, so the authors integrated 
HSPF with the Water Quality Analysis Simulation Program (WASP) in 
their study. Moreover, HSPF lacks a plant growth module, thus it cannot 
depict the intricate interaction between crop growth and soil nutrient 
cycle. Vaighan et al. (2019) used INCA to simulate the impacts of climate 
and land use changes on NH4

+ pollution in the Kor River Basin, Iran. 
INCA has a simple model structure and simulates the dynamics of NH4

+

in soils and rivers by solving a series of differential equations. INCA does 
not simulate plant growth processes, too. Dai et al. (2021) used the 
SPARROW model to simulate the sources and transport of NH4

+ in a karst 
watershed in China. Compared to mechanistic models like SWAT, 
SPARROW is primarily a statistical model, which limits its applicability 
in terms of process understanding. Jiang et al. (2023) used SWAT to 
simulate NH4

+ pollution in the Dongjiang River Watershed in China. 
However, they utilized the original SWAT model, which does not 

simulate the land-to-water delivery of NH4
+. The NPS NH4

+ pollution in 
their study is indirectly represented through the NPS pollution of 
organic nitrogen (orgN), which is hydrolyzed into NH4

+ in the water. 
In this study, we modified the SWAT model by enabling the simu

lation of NH4
+ movement in soils and the land-to-water delivery. This 

modification can potentially expand the applications of SWAT in the 
context of NH4

+ simulation, NH4
+ management, and agriculture-water 

quality nexus issues. Using the modified model, we simulated NH4
+

pollution in the Jiulong River Watershed (JRW), a coastal watershed in 
Southeast China. The JRW is characterized by notable sewage discharge, 
substantial livestock farming, and significant fertilizer application, 
which aligns closely with the sources of NH4

+ pollution in China. It serves 
as an ideal study area for researching NH4

+ pollution and its modeling 
methods. We comprehensively considered the specific sources of NH4

+

pollution in the watershed, including atmospheric deposition, domestic 
sewage, livestock farming, fertilizer application, and industrial dis
charges. The model was calibrated against multiple sets of observational 
data using an advanced optimization algorithm, DYnamic COordinate 
search using Response Surface models (DYCORS) (Regis and Shoemaker 
2013). With the calibrated model, we examined the features of NH4

+

pollution originating from various land uses and quantified the contri
butions of PS and NPS inputs to NH4

+ load at watershed outlet. Based on 
the source-contribution analysis, we proposed three NH4

+ pollution 
mitigation measures and evaluated their effectiveness in improving 
water quality. The insights gained from the JRW can serve as valuable 
references for watershed-scale NH4

+ simulations and the development of 
mitigation strategies in other areas. 

2. Materials and methods 

2.1. SWAT model modification 

2.1.1. SWAT model description 
The SWAT model is developed by USDA Agricultural Research Ser

vice and Texas A&M AgriLife Research (Neitsch et al., 2011). In SWAT, a 
watershed is divided into a number of subbasins, and each subbasin is 
further divided into multiple hydrological response units (HRUs). Each 
HRU exhibits homogeneous land use, soil, and slope conditions. The 
river network is segmented into multiple reaches, where each subbasin 
contains one reach. During daily simulations, the SWAT model initially 
performs land phase simulation and delivers the water and pollutants 
generated from HRUs to respective reaches. Subsequently, the water and 
pollutants are routed downstream through the river network to the 
watershed outlet. 

The SWAT model specifically simulates the nitrogen cycle in soils 
due to its fundamental importance and critical role in plant growth. 
Within the model, five nitrogen forms are considered: two inorganic 
forms (i.e., NO3

– and NH4
+) and three organic forms. As depicted in Fig. 1, 

orgN and NH4
+ can be transformed into NO3

– via mineralization and 
nitrification, respectively. NO3

– can be removed from soil by plant uptake 
and denitrification. NH4

+ can be lost through nitrification and NH3 
volatilization. Due to the anionic nature, NO3

– is very susceptible to move 
in soils. SWAT simulates the transport of NO3

– in surface runoff and 
lateral flow, as well as its leaching into groundwater. Conversely, in 
SWAT, NH4

+ is assumed to be adsorbed by soils and is not permitted to 
move. For a comprehensive understanding of these processes, please 
refer to the theoretical documentation (Neitsch et al., 2011). 

2.1.2. Modifications of SWAT to enhance NH4
+ simulation 

The modifications include altering the mineralization product of 
orgN from NO3

– to NH4
+, simulating NH4

+ movement with runoff and 
lateral flow, simulating the leaching process, and modeling NH4

+ trans
port in groundwater (Fig. 1). The first modification is undertaken 
because NH4

+, rather than NO3
–, is the immediate product of orgN 

mineralization (Schimel and Bennett 2004). For example, orgN is 
mineralized to NH4

+ in DNDC (UNH-ISEOS 2017) and DayCent 

F. Han et al.                                                                                                                                                                                                                                     



Water Research 254 (2024) 121372

3

(Delgrosso et al., 2005), which are two classic biogeochemical models. 
The mathematical methods for other three modifications are provided as 
follows. 

In soils, NH4
+ exists in either an aqueous phase or an adsorption 

phase. The equilibrium between the two phases is described by a 
partition coefficient, KNH4 (L/kg). Aqueous NH4

+ can be transported with 
surface runoff, lateral flow, and percolation water. The concentration of 
aqueous NH4

+ in mobile soil water [cNH4, kg N/(ha⋅mm H2O)] is deter
mined as follows: 

cNH4 =
NH4tot
wmobile

[

1 − exp
(

− wmobile

SAT + KNH4⋅ρb⋅thk

)]

(1)  

where NH4tot is NH4
+ amount in a soil layer (kg N/ha), wmobile is mobile 

water (mm H2O), SAT is water amount at saturation (mm H2O), ρb is the 
bulk density (g/cm3), and thk is soil thickness (mm). The derivation of 
Eq. (1) is provided in Text S1 in the Supplementary Materials (SM). 

Then, the NH4
+ transported with surface runoff, lateral flow, and 

percolation water, namely, NH4surf, NH4lat and NH4perc (kg N/ha), can 
be calculated as follows: 

NH4surf = Qsurf ⋅cNH4⋅β1 (2)  

NH4lat =

{
Qlat⋅cNH4⋅β1for the 1st layer

Qlat⋅cNH4⋅β2for lower layers
(3)  

NH4perc = wperc⋅cNH4 (4)  

where Qsurf is surface runoff (mm H2O), Qlat is lateral flow (mm H2O), 
and wperc is percolation water (mm H2O), and β1 and β2 are two 
adjustment coefficients. β1 and β2 can be determined through model 
calibration. 

NH4
+ adsorbed to soil particles can be eroded and transported to 

reaches by surface runoff. The amount of eroded NH4
+, NH4sed (kg N/ha), 

is calculated as follows: 

NH4sed = 0.001⋅
sed
A

⋅csolid⋅εr (5)  

where sed is sediment yield (t), A is HRU area (ha), csoild is concentration 
of adsorbed NH4

+ in top layer (mg N/kg soil), and εr is the enrichment 
ratio. 

NH4
+ that leaches out of the soil zone (i.e., NH4perc for the bottom 

layer) will move with percolation water through the vadose zone and 
enter shallow groundwater. The exponential decay weighting function, 
utilized to account for the time delay in NO3

– leaching from soil zone to 
groundwater, is also employed to account for the delay in NH4

+

transport: 

NH4rchrg,i = [1 − exp( − 1/δNH4)]⋅NH4perc + exp( − 1/δNH4)⋅NH4rchrg,i− 1

(6)  

where NH4rchrg,i is the amount of NH4
+ entering groundwater on day i (kg 

N/ha), and δNH4 is the delay time in NH4
+ transport (d). In SWAT, the 

delay time for NO3
– (δNO3) is equal to the delay time for percolation water 

(δgw). This assumption is not applicable for NH4
+. According to Böhlke 

et al. (2006), NH4
+ moves at a rate about 0.25 times the groundwater 

velocity. In this study, δNH4 is assumed to be δgw/rNH4, where rNH4 is an 
adjustment coefficient with a default value of 0.25. 

The nitrification of NH4
+ in the vadose zone is considered as follows: 

NH4nit,unsat,i = Fnit,unsat⋅NH4unsat,i (7)  

NH4unsat,i =
exp( − 1/δNH4)

1 − exp( − 1/δNH4)
⋅NH4rchrg,i (8)  

where NH4nit,unsat,i is the NH4
+ nitrified in the vadose zone on day i (kg N/ 

ha), Fnit,unsat is the nitrification rate in the vadose zone (1/d), and 
NH4unsat,i is the amount of NH4

+ stored in the vadose zone (kg N/ha). The 
calculated NH4nit,unsat,i will be subtracted from NH4unsat,i and added to 
the NO3

– storage in the vadose zone. Consequently, the amount of NH4
+

and NO3
– entering groundwater for the following day will be propor

tionally adjusted. 
Similar to NO3

–, NH4
+ in the shallow aquifer can either remain in the 

aquifer, be transported to deep aquifer (GWseep), or move with ground
water flow into the reaches (GWq). The calculation methods for NH4

+

movements are similar to the methods used for NO3
–. The key distinction 

Fig. 1. Schematic overview of the nitrogen cycle processes in the original and modified SWAT model. NO3
–, NH4

+ and orgN represent nitrate, ammonium, and organic 
nitrogen, respectively. 
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lies in that NH4
+ concentrations in GWseep and GWq are rNH4 times the 

NH4
+ concentration in groundwater. This adjustment accounts for the 

retardation effect of NH4
+ transport in groundwater. The nitrification of 

NH4
+ in groundwater is considered similar to Eq. (7), introducing a 

parameter, Fnit,sat (1/d). 

2.2. Study area 

The JRW is in Fujian province, China (Fig. 2a), spanning an area of 
~14,700 km2. The Jiulong River comprises two main tributaries, North 
River and West River (Fig. 2b). The two tributaries converge near the 
estuary and discharge into Xiamen Bay. The North River Watershed 
(NRW) and West River Watershed (WRW) cover areas of 9640 km2 and 
3940 km2, respectively. The JRW experiences a subtropical monsoon 
climate, characterized by hot and rainy summers, and warm and humid 
winters. The annual precipitation is 1656 mm, and the average tem
perature is 22 ◦C. The topography in the JRW is mostly hilly. Most 
mountain areas are covered by natural forests. According to the 2018 
land use map, the JRW is characterized by 71.8 % forest, 7.8 % cropland, 
7.6 % orchard, 6.7 % urban or built-up area, 3.3 % tea garden, and 2.8 % 
other land use types (e.g., grassland, bareland, water). The cropland 
primarily cultivates rice, corn, peanuts, and vegetables, while the or
chard mainly grows pomelos, lychees, and bananas. 

Nitrogen pollution, especially NH4
+, is a major environmental 

concern in the JRW due to rapid economic development, urbanization, 
and population growth in the region (Fig. S1a in the SM). The Gross 
Domestic Product (GDP) of the 10 counties/districts/county-level cities 
(referred to as “counties” hereafter) within the JRW was below 50 
billion Chinese Yuan (CNY) in 2000. By 2019, it was approximately 500 
billion CNY. Fertilizer application (Fig. S1b in the SM) and livestock 
farming (Fig. S1c in the SM) also increased significantly since 1980. The 

surge in anthropogenic nitrogen inputs has led to excessive nitrogen 
released into Xiamen Bay, which now faces a serious threat of eutro
phication (Chen et al., 2021; Luo et al., 2022). Despite years of dedicated 
efforts to address nutrient pollution, nitrogen pollution remains a 
persistent challenge in the JRW (Kong et al., 2015). Exploring effective 
management strategies for nitrogen reduction is crucial for ensuring the 
long-term green development of the JRW. 

2.3. Simulating nitrogen pollution in the JRW 

2.3.1. Data description 
Table S1 in the SM lists the data used for establishing, calibrating, 

and validating the model. The digital elevation model (DEM) and river 
network map were used to delineate the watershed. The land use and 
soil data were used to define and parameterize HRUs, where soil texture 
data has been transformed from the Chinese standard to the U.S. stan
dard using the SPAW model (Saxton and Willey, 2005). Meteorological 
data from 10 weather stations were used to force the model. Atmo
spheric nitrogen deposition data were collected to determine the rates of 
dry and wet deposition of NO3

– and NH4
+. 

In August 2020, we conducted a field survey on crop management 
practices within the JRW and obtained 86 valid questionnaires. Through 
this survey, the fertilizer application rate for each crop type was deter
mined (Fig. S2 in the SM). We also collected JRW’s annual data on ni
trogen fertilizer application, livestock farming, population and GDP 
from local statistical yearbooks, as well as PS discharge data from 
China’s Second National Census of Pollution Sources (MEE 2020). These 
data were used to determine the crop management practices, especially 
fertilizer application, and PS discharges in the SWAT model. Addition
ally, streamflow observations at 2 stations (PN and ZD in Fig. 2c), 
sediment observations at 2 stations (PN and ZD in Fig. 2c), and nitrogen 

Fig. 2. Overview of the Jiulong River Watershed (JRW). (a) Location, (b) land use, and (c) watershed delineation. Punan (PN) and Jiangdong (JD) stations are to 
observe North River, while Zhengdian (ZD), Zhongshanqiao (ZSQ) and Qiaozha (QZ) stations are to observe West River. 
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observations (both NO3
– and NH4

+) at 3 stations (JD, ZSQ and QZ in 
Fig. 2c) were collected or monitored to calibrate and validate the model. 

To accurately simulate nitrogen pollution within the JRW, we 
quantitatively assessed the anthropogenic nitrogen inputs over the past 
20 years (2000–2019). These inputs encompass urban domestic sewage, 
rural domestic sewage, manure generated from livestock farming, in
dustrial wastewater, and chemical fertilizer application. The assessment 
was conducted at the county level and on an annual basis. The detailed 
description of the assessment methods for these inputs was provided in 
Text S2 in the SM. 

2.3.2. Model setup 
The watershed was discretized into 168 subbasins (Fig. 2c) and 1828 

HRUs. The simulation period is from 2000 to 2019, with the first 2 years 
being the warm-up period. The model configuration for nitrogen simu
lation primarily involves three components: atmospheric nitrogen 
deposition, agricultural management practices (especially fertilization), 
and PS discharges. Nitrogen deposition rates for each subbasin and year 
were determined using the nitrogen deposition dataset in China (Jia 
et al., 2019, 2021). In the JRW, the average deposition flux for NH4

+ and 
NO3

– is 15.83 and 11.09 kg N/ha/a, respectively. The scheduled man
agement practices for each crop type were determined based on the field 
survey, and the fertilization rate in a certain year was adjusted according 
to the estimated nitrogen input for that year (Text S2 in the SM). In 
addition to chemical fertilizer, cropland also receives rural domestic 
sewage (i.e., Nrur,2), and manure from livestock farming (i.e., M1) (Text 
S2 in the SM). Nrur,2 and M1 were estimated at the county level, and they 
were evenly distributed to all cropland within the county. The PS dis
charges comprises urban domestic sewage (i.e., Nurb,1 and Nurb,2), rural 
domestic sewage (i.e., Nrur,1), manure from livestock farming (i.e., M2 
and M3), and industrial wastewater (e.g., NH4ind,ij) (Text S2 in the SM). 
Nurb,1, Nurb,2, Nrur,1, M2, and M3 were also estimated at the county level. 
Nurb,1 and Nurb,2 in a county was allocated to the subbasin where the 
central urban area of that county is located, Nrur,1 was distributed among 
the subbasins in that county based on residential area, and M2 and M3 
were distributed among the subbasins based on cropland area. Industrial 
wastewater was directly assigned to the subbasin where the factory is 
located. 

2.3.3. Sensitivity analysis, model calibration and validation 
Before model calibration, 43 parameters affecting the simulation of 

streamflow, sediment, NO3
–, and NH4

+ were initially selected from hun
dreds of SWAT parameters (Table S2 in the SM). The key parameter for 
NH4

+ transport simulation, KNH4, was included, with a specified range of 
0.5~8 L/kg. This range refers to the laboratory investigation by the 
Environment Agency in England (EA 2005). Additionally, a fertilization 
rate adjustment factor (FRT_ADJ) and a PS load adjustment factor 
(PS_ADJ) were introduced to account for uncertainties in estimating 
anthropogenic nitrogen inputs. The aggregate parameter method (Yang 
et al., 2007) was employed to adjust the parameter values: varying the 
parameter value directly (type I); adding a deviation to the prior 
parameter (type II); and applying a multiplier to the prior parameter 
(type III). The Morris method (Campolongo et al., 2007; Morris 1991) 
was employed to select sensitive parameters. Text S3 in the SM provides 
a brief introduction of the algorithm and the parameter configuration in 
this study. Ultimately, we identified 13 streamflow-sensitive parameters 
(θH), 5 sediment-sensitive parameters (θS) and 12 nitrogen-sensitive 
parameters (θN). Table S3 in the SM lists the selected sensitive 
parameters. 

In this study, a stepwise calibration approach was applied to 
parameterize the model. The NRW and WRW were calibrated individ
ually due to notable differences in topography, hydrological conditions, 
and pollution patterns between the two watersheds. During the cali
bration process, the simulation results of streamflow, sediment and ni
trogen were evaluated as follows: 

fH = − NSE(YH ,ZH) (9)  

fS = − NSE(YS,ZS) + |PBIAS(YS,ZS)/100| (10)  

fN = − NSE(YNH4,ZNH4) + |PBIAS(YNH4,ZNH4)/100|
− NSE(YNO3,ZNO3) + |PBIAS(YNO3,ZNO3)/100| (11)  

where Y represents the simulation results, Z represents the observations, 
subscripts H, S and N (NH4 and NO3) respectively denote streamflow, 
sediment, and nitrogen (NH4

+ and NO3
–), NSE represents the 

Nash–Sutcliffe Efficiency coefficient, and PBIAS represents Percent Bias. 
The evaluation functions for sediment and nitrogen were designed this 
way because of the inherent higher uncertainty in water quality 
modeling, making it impractical to achieve very high NSE values. 
Excessively focusing on high NSE values may lead to adverse effects, 
such as notable simulation bias. By introducing an error metric (e.g., 
PBIAS), the composite metric not only assesses the model’s daily per
formance but also evaluates overall error. This practice, i.e., aggregating 
multiple evaluation indices into a single metric, has been commonly 
employed to seek more coherent calibration results (Althoff and Rodri
gues 2021). 

As illustrated in Fig. S3 in the SM, the first step is to calibrate 
streamflow simulation. In this step, θS and θN were fixed at default 
values (i.e., θS,0 and θN,0), while θH was optimized by DYCORS, with the 
objective being to minimize fH. The second step is to calibrate sediment 
simulation. In this step, θH took the calibrated values (θH,C), θN were 
fixed at default values, and θS was optimized, with the objective being to 
minimize fH + fS. In this step, fH was also included in the objective to 
ensure that the sediment simulation calibration does not significantly 
deteriorate the streamflow simulation. The last step is to calibrate NH4

+

and NO3
– simulation. In this step, θH and θS took their calibrated values (i. 

e., θH,C and θS,C), and θN was optimized, with the objective being to 
minimize fH + fS + fN. Details of the data, stations, and periods for model 
calibration and validation are presented in Table S4 in the SM. 

2.4. Simulation scenarios 

An important goal of this study is to assess the contributions of 
various NH4

+ inputs to the NH4
+ load at watershed outlet, with a specific 

focus on NPS inputs. To achieve this goal, we designed several simula
tion scenarios. Here, the model described in Section 2.3 is considered as 
the baseline scenario, denoted as S0. Based on Scenario S0, we designed 
three simulation scenarios: S1, removing PS NH4

+ inputs and not simu
lating the NPS processes of NH4

+; S2, with PS NH4
+ inputs and not 

simulating the NPS processes of NH4
+; and S3, removing PS NH4

+ inputs 
and simulating the NPS processes of NH4

+. All other model settings 
remain the same as Scenario S0. 

Based on the results of source-contribution analysis (Section 3.2.3), 
we proposed three potentially effective measures for mitigating NH4

+

pollution in the JRW, namely, enhancing urban sewage treatment, 
improving livestock manure management, and reducing application of 
chemical fertilizers. Specifically, enhancing urban sewage treatment 
involves setting the minimum sewage collection rate to 0.9 (Rurb,1 in Eq. 
S10 in the SM) and setting the minimum nitrogen removal efficiency to 
0.7 (Rurb,2 in Eq. S10 in the SM). Improving livestock manure manage
ment refers to collecting and treating manure that was previously dis
charged into rivers (i.e., changing M3 to M2). As for the third measure, 
we consider a 30 % reduction in fertilization rates. The details and 
rationale for these measures have been outlined in Text S4 in the SM. By 
implementing these measures individually or collectively, four simula
tion scenarios were designed, denoted as S4-S7. All other model settings 
remain the same as Scenario S0. 
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3. Results 

3.1. Model calibration and validation 

Fig. 3 presents the observed and simulated streamflow, sediment, 
NH4

+, and NO3
– during calibration and validation periods. Corresponding 

evaluation metric values are listed in Table 1. As depicted in Fig. 3a and 
b, the SWAT model successfully reproduced the daily streamflow in both 
the NRW and WRW. The NSE values for both watersheds during 

calibration and validation periods are around 0.80, indicating an 
excellent model performance. The model also works well in sediment 
simulation. As illustrated in Fig. 3c and d, the model can reasonably 
predict sediment concentrations during both flood periods (high values) 
and baseflow periods (low values). The NSE values for daily sediment 
simulation during both calibration and validation periods range from 
0.27 to 0.45, which can be considered satisfactory from a water quality 
modeling perspective (Moriasi et al., 2007). 

Simulation results of NH4
+ and NO3

– are acceptable. The simulation 

Fig. 3. Comparison of observed and simulated streamflow, sediment, ammonium (NH4
+), and nitrate (NO3

–) in both North River Watershed (NRW) and West River 
Watershed (WRW) during calibration and validation periods at Punan (PN), Zhengdian (ZD), Jiangdong (JD), Qiaozha (QZ), and Zhongshanqiao (ZSQ) stations. Dots 
represent observations, while red lines represent simulation results. 
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results generally pass through the observations and to some extent, 
mirror their fluctuations (Fig. 3e–h). The NSE values for both NH4

+ and 
NO3

– during both calibration and validation periods range from − 1.00 to 
0.49, with the PBIAS varying from − 23.1 % to 3.2 %. The low PBIAS 
values indicate that the simulation results do not exhibit significant bias. 
The NSE values may not appear high; however, it is regarded as 
acceptable, and even satisfactory, for the following two reasons. Firstly, 
“concentrations” rather than “loads” was used in evaluating model 
performance. Typically, when “loads” are utilized as the evaluation 
target, performance metrics (e.g., NSE) may appear more favorable due 
to streamflow weighting (Wellen et al., 2015). In this case, when cali
brating the model based on “loads”, the NSE values for NH4

+ and NO3
– 

range from 0.17 to 0.81, with the average NSE increased by 0.69 
(Table S5 in the SM). We insist on using “concentrations” as the target is 
to focus on water quality simulation during the calibration process. 
Secondly, there may be notable errors in the PS inputs at the daily scale. 
As introduced in Section 2.3.1, PS inputs were estimated at an annual 
scale, and the model used corresponding averages in daily simulation. 
Although PS discharges are considered relatively stable, some input 
errors are inevitable. 

Fig. 3 also indicates that the model performs well in the NRW but 
exhibits slightly poorer performance in the WRW. This can be attributed 
to the heightened impact of human activities in the WRW, which may 
not be accurately represented by the model (such as PS inputs). 
Furthermore, the observation process in the WRW, particularly at the QZ 
station, was significantly influenced by tidal fluctuations, leading to 
notable variations in the observations (Fig. 3f and h). Consequently, the 
simulation results appear to be less satisfactory. Additionally, the NO3

– 

simulation outperforms the NH4
+ simulation, primarily because NO3

– 

simulation is predominantly influenced by NPS pollution, whereas NH4
+

is primarily influenced by PS pollution, and the estimated PS inputs 
exhibit more significant uncertainty. 

To further validate the model, simulated NH4
+ and NO3

– concentra
tions in surface runoff were compared with 20 concentration measure
ments observed at two stations in a subbasin of the JRW (Fig. S4 in the 
SM). Since NH4

+ and NO3
– concentrations in surface runoff can be directly 

influenced by local agricultural activities (e.g., fertilizer application), 
the time series of observed concentrations at the field scale may differ 
significantly from the simulated average concentrations at the HRU 
scale. Therefore, the comparison focuses on the variation in NH4

+ and 
NO3

– concentrations across different surface runoff events. As illustrated 
in Fig. S4, the simulated ranges of NH4

+ and NO3
– concentrations closely 

match the observed concentration ranges, thus validating the reliability 
of NH4

+ and NO3
– transport simulation to a certain degree. 

The calibrated values of sensitive parameters for the NRW and WRW 
were presented in Table S3 in the SM. For the NRW, FRT_ADJ and 
PS_ADJ are calibrated to − 0.199 and 0.192, respectively, close to their 
lower and upper limits. This suggests that the fertilization rates and PS 

loads for the NRW may be overestimated and underestimated, respec
tively. Conversely, in the case of the WRW, FRT_ADJ and PS_ADJ are 
calibrated to 0.199 and − 0.199, indicating that the fertilization rates 
and PS loads may be underestimated and overestimated, respectively. 

3.2. Sources and contributions of NH4
+ pollution 

3.2.1. NH4
+ inputs 

The total NH4
+ input in the JRW was estimated to be 162,952 t N/a 

(~110 kg N/ha/a). NPS inputs are 153,753 t N/a (94.4 %), while PS 
inputs are 9199 t N/a (5.6 %). Fig. 4a and b summarize the NH4

+ inputs 
in the NRW and WRW, respectively. The total inputs for these two wa
tersheds are 60,345 and 91,667 t N/a, or 63 and 228 kg N/ha/a, 
respectively. The WRW received higher NH4

+ input, primarily due to the 
more intensive agricultural practices in this region. Among the six ni
trogen sources, fertilizer application is the predominant one, followed 
by atmospheric deposition. PS inputs primarily originated from live
stock farming, as well as urban domestic sewage, collectively comprising 
over 90 % of the PS inputs in both watersheds. Detailed values for each 
NH4

+ input source are provided in Table S6 in the SM. Notably, the 
correction effects of FRT_ADJ and PS_ADJ have been considered. Fig. S5 
in the SM shows the annual PS and NPS NH4

+ inputs during the simu
lation period. Generally, the NH4

+ inputs are relatively stable, with a 
slight decrease trend in recent years. 

3.2.2. Land-to-water delivery 
While NPS inputs dominate the NH4

+ inputs in the JRW, their con
tributions to NH4

+ loads in streamflow remains unclear, regarding the 
strong retention effect of NH4

+ by soil. To address this issue, we exam
ined the movement of NH4

+ in soil zone simulated by the modified 
SWAT. Fig. 5a summarizes the amounts of NH4

+ leaving the soil zone via 
surface runoff, lateral flow, and percolation water. It is found that NH4

+

primarily moves with surface runoff, constituting 84.1 % and 82.1 % of 
the total movement in the NRW and WRW, respectively. Lateral flow 
also carries a portion of NH4

+, 15.8 % in the NRW and 17.4 % in the 
WRW. NH4

+ in percolation water is minimal, only about 0.1 % and 0.5 % 
in the NRW and WRW, respectively. This result contrasts with the land- 
to-water process of NO3

–, where a substantial portion of NO3
– leaches into 

groundwater and subsequently reaches the rivers through return flow 
(Wang et al., 2024). Additionally, the minimal NH4

+ leaching in the JRW 
does not imply that the groundwater simulation of NH4

+ is unnecessary. 
Because, in some specific cases, such as artificial recharge of treated 
wastewater (Böhlke et al., 2006; Liu et al., 2023), NH4

+ leaching can be 
significant. Dai et al. (2021) also found that NH4

+ leaching in a karst 
watershed is very significant, leading to a reduction of NH4

+ delivery to 
surface waters for about 36.9 %. 

The above results indicate that the land-to-water delivery of NH4
+

predominantly occurs through surface runoff and lateral flow. In the 
NRW, the delivery rate of NH4

+ is 2260 t N/a, ~2.35 kg N/ha/a, and in 
the WRW, the delivery rate is 1164 t N/a, ~2.90 kg N/ha/a. Fig. 5b 
presents subbasin level NH4

+ delivery rate for five land use categories 
(cropland, orchard & tea garden, grassland, forest, urban & other areas). 
The spatial variability of delivery rates is significant, ranging from 0.3 to 
33 kg N/ha/a. Fig. 5c and d illustrate the distribution of delivery rates 
for these five categories in the NRW and WRW, respectively. It is 
observed that cropland and orchard & tea garden exhibit high delivery 
rates due to extensive fertilization, at 8.46 and 5.37 kg N/ha/a, 
respectively. In the WRW, orchard & tea garden show higher delivery 
rates, attributed to the extensive cultivation of pomelo, which has the 
highest fertilization rate (Fig. S2 in the SM). Grassland and forest, 
receiving no fertilizer, have low NH4

+ delivery rates, at 1.29 and 1.19 kg 
N/ha/a, respectively. Delivery rates for urban & other areas are also 
significant, at 4.96 kg N/ha/a, primarily due to the presence of fertil
ization in these areas. Fig. 5 indicates that there could be significant 
difference in NH4

+ delivery among different land uses due to varying 
NH4

+ inputs. Even within the same land use, significant differences may 

Table 1 
SWAT model performance in the Jiulong River Watershed.   

Model 
response 

Calibration Validation   

NSE PBIAS NSE PBIAS 

North River 
Watershed 

Streamflow 0.79 \ 0.78 \  

Sediment 0.31 5.4 % 0.45 − 40.6 
%  

NH4
+ 0.00 − 15.5 

% 
0.20 0.1 %  

NO3
– 0.14 − 8.0 % 0.49 3.2 % 

West River 
Watershed 

Streamflow 0.81 \ 0.76 \  

Sediment 0.27 10.1 % 0.39 4.4 %  
NH4

+ − 0.13 − 23.1 
% 

− 0.80 − 0.1 %  

NO3
– − 1.00 − 7.8 % − 0.07 0.6 %  
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also exist due to the variations in soil properties, slope, precipitation, or 
even the timing of fertilization. This result highlights the necessity of 
employing WWQ models, such as SWAT, for spatially distributed 
simulation of NPS NH4

+ processes. It is also worth noting that the JRW is 
a subtropical humid watershed. Therefore, the NH4

+ delivery results 
from this study serve as a good reference for watersheds with similar 
climatic conditions. 

3.2.3. Contributions of PS and NPS NH4
+ inputs 

As Fig. 6 shows, the NH4
+ load in the baseline scenario (S0) is 1909 t 

N/a in the NRW and 2209 t N/a in the WRW. It can be decomposed into 
background load, PS-contributed load, NPS-contributed load, and an 
interactive impact between PS and NPS inputs. The background NH4

+

load is 998 t N/a in the NRW and 686 t N/a in the WRW, accounting for 
52.3 % and 31.0 % of the total load, respectively. The background load 

Fig. 4. NH4
+ inputs in the North River Watershed (NRW) and West River Watershed (WRW). Subplots (a) and (b) are Sankey diagrams depicting NH4

+ inputs from six 
sources in the NRW and WRW, respectively. PS and NPS represent point source and non-point source, respectively. 

Fig. 5. NH4
+ movement through surface runoff (surf. rf), lateral flow (lat. flw), and percolation water in the North River Watershed (NRW) and West River Watershed 

(WRW). Subplots b, c, and d summarize the delivery rate of NH4
+ at the subbasin level for five land use categories. “Orc. & Tea” denotes “orchard and tea garden”. 
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mainly originates from the hydrolysis of orgN in the streamflow. PS 
inputs contribute significantly, with 620 t N/a in the NRW (32.4 %) and 
1147 t N/a in the WRW (51.9 %). This result indicates that controlling 
PS pollution is still the key to alleviate NH4

+ pollution in the JRW. NPS 
inputs also play a role, contributing 291 t N/a of NH4

+ in the NRW (15.3 
%) and 381 t N/a in the WRW (17.3 %). This result underscores the 
importance of addressing NPS NH4

+ processes in SWAT, which is over
looked. The interactive impact is minimal and can be disregarded. 

Based on the above results, the in-stream NH4
+ transport efficiencies 

in both the NRW and WRW can been estimated. Specifically, PS inputs 
and NPS loads (i.e., land-to-water loads) in the NRW amounted to 5534 
and 2260 t N/a, resulting in corresponding NH4

+ transport efficiencies of 
0.116 and 0.129, respectively. In the WRW, the transport efficiencies for 
PS inputs and NPS loads were 0.454 and 0.327, respectively. This 
discrepancy can be attributed to the greater length of North River, where 
PS are mostly located upstream, affording NH4

+ more time for oxidation 
into NO3

–. In contrast, the shorter West River with PS closer to the outlet 
results in a smaller portion of NH4

+ oxidation. This result reflects the 
complexity of simulating NH4

+ at the watershed scale, given its suscep
tibility to oxidation, compared to the more stable NO3

–. 

3.3. Management scenarios for the mitigation of NH4
+ pollution 

As mentioned in Section 2.4, three measures were proposed for 
mitigating NH4

+ pollution in the JRW. Fig. 7a and b show the reduction 
effects on NH4

+ loads in the NRW and WRW when these measures were 
implemented individually (S4-S6) and collectively (S7). As shown, 
enhancing urban sewage treatment and improving livestock manure 
management can significantly reduce NH4

+ load. Particularly in the 
WRW, these two measures have reduced NH4

+ loads by 409 (18.5 %) and 
321 (14.5 %) t N/a, respectively. Reducing chemical fertilizer has also 
led to a slight decrease in NH4

+ pollution, with reductions of 48 (2.5 %) 
and 88 (4 %) t N/a in the NRW and WRW, respectively. When the three 
measures are implemented simultaneously, the NRW experiences a 
reduction of 452 (23.7 %) t N/a in NH4

+ load, and the WRW exhibits a 
reduction of 818 (37 %) t N/a. These results indicate that the three 
measures are effective in reducing the NH4

+ load in the JRW. 
Compared with the “loads”, managers may be more concerned about 

whether the “concentrations” meet the standards. Fig. 7c presents the 
simulated NH4

+ concentrations at the outlet of the NRW under Scenarios 
S0 and S7. NH4

+ concentrations in Scenario S0 show a decreasing trend 
over time. This is mainly attributed to the continuous improvement in 
treatment levels of PS pollution. The simulation differences between 

Scenarios S0 and S7 also decrease over time, mainly because the PS 
pollution treatment levels in Scenario S0 already approach the enhanced 
measures in Scenario S7 in the later stages of the simulation period 
(particularly since 2016). Notable seasonal fluctuations were observed, 
with high concentrations mainly occurring during the winter (i.e., low- 
flow periods). This result suggests that managers should particularly 
emphasize PS pollution control in winter. 

Furthermore, we evaluated the water quality at the outlet using 
China’s surface water quality standards (SEPA 2002). Based on NH4

+

concentration, the water quality at the outlet was categorized into four 
classes: Class I (≤0.15 mg N/L), Class II (≤0.5 mg N/L), Class III (≤1 mg 
N/L), and Class >III (>1 mg N/L). The classification of waters into 
Classes I, II and III is not mutually exclusive, but compatible. For 
example, a concentration of 0.1 mg N/L will be classified as Class I, as 
well as Classes II and III. This classification method, not a typical 
management practice, is solely used to facilitate assessing water quality 
improvements. By examining daily concentrations, we calculated the 
frequency of each class in both scenarios (Fig. 7d). The three measures 
resulted in increased frequencies of water quality falling into Classes I, 
II, and III. Particularly, the Class II frequency increased from 0.79 to 
0.95. Fig. 7e and f illustrate the results for the WRW. The NH4

+ con
centrations in the WRW are higher than those in the NRW, indicating a 
more severe pollution situation. The mitigation effects of the three 
measures are quite significant, with the Class III frequency increasing 
from 0.64 to 0.92. 

4. Discussions 

The NH4
+ simulation method developed in this study is specifically 

designed for permeable areas within the watershed. In impervious urban 
areas, the SWAT model only simulates NO3

– and orgN, despite certain 
experimental studies indicating that NH4

+ dominates the composition of 
total nitrogen in urban runoff (Wang et al., 2022). We refrained from 
modifying the urban simulation process primarily due to the lack of data 
for improving the model. Additionally, the contribution of NH4

+ from 
impervious areas is negligible in the JRW. However, when simulating 
highly urbanized watersheds, careful consideration should be given to 
the simulation of NH4

+ pollution in urban runoff. 
The modeling experience in the JRW emphasizes that simulating 

NH4
+ at the watershed scale is more challenging compared with the 

relatively stable NO3
–. Traditionally, in the model setup process, NO3

– 

simulations primarily focus on the total input of mineral nitrogen, 
neglecting the distinction between NH4

+ and NO3
– input, as NH4

+ can be 

S1

PS-contributed 

load

NPS-

contributed 

load

Interaction

S0

998 (52.3%)

620 (32.4%)

291 (15.3%) -0 (-0%) 1,909 Interaction

686 (31.0%)

1,147 (51.9%)

381 (17.3%) -5 (-0.2%) 2,209

WRW)b(WRN)a(

(Unit: t N/a)

0S1S3S2S S2 S3

PS-contributed 

load

NPS-

contributed 

load

Background load
Background load

Fig. 6. Attribution of the NH4
+ load at the outlets of (a) the North River Watershed (NRW) and (b) the West River Watershed (WRW) through scenario analysis. S1, 

S2, S3 and S0 represent four simulation scenarios (Section 2.4). 
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rapidly nitrified into NO3
–. However, in NH4

+-targeted simulations, pre
cise estimation of NH4

+ input is crucial. Considering the transformation 
relationship between NH4

+ and NO3
–, it is necessary to simultaneously 

calibrate NO3
– when calibrating NH4

+. NO3
– observations can assist in 

constraining the oxidation of NH4
+, potentially enhancing the reliability 

of the model. In addition to NO3
–, streamflow should also be calibrated, 

which provide reasonable hydrological driving for water quality simu
lations. Other relevant model responses, such as sediment, leaf area 
index, etc., can also be considered in the calibration process. Our pre
vious research demonstrated that multi-response calibration can 

Fig. 7. NH4
+ simulation results for the baseline scenario (S0) and several management scenarios (S4-S7). Subplots a and b illustrate the effect of proposed measures in 

reducing NH4
+ loads within the North River Watershed (NRW) and West River Watershed (WRW), respectively. Subplots c and e show the simulated NH4

+ con
centrations at the outlets of NRW and WRW, respectively. Subplots d and f show the frequencies of water quality classifications for the NRW and WRW, respectively. 
Concentration thresholds for Classes I, II and III are 0.15, 0.5 and 1 mg N/L, respectively. 
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improve the reliability of simulation results (Han and Zheng 2016). 
The source-contribution analysis demonstrates that PS pollution 

plays a crucial role in NH4
+ pollution in the JRW. This finding indicates 

that the control of PS pollution, such as domestic sewage and livestock 
farming discharges, remains a priority in NH4

+ pollution mitigation. It 
also suggests that modelers should pay more attention to the collection 
and assessment of PS pollution data, which has been simplified or 
overlooked. NPS pollution also plays a role in NH4

+ pollution. By 
implementing measures such as near-channel management (Hansen 
et al., 2021) and reduction of fertilization rate, it is possible to reduce 
NH4

+ pollution to a certain extent. Given that NH4
+ primarily moves with 

surface runoff and lateral flow, efforts to control NPS pollution should be 
concentrated during precipitation periods. For example, no fertilization 
during rainy days could be a viable approach. Additionally, a significant 
portion of the NH4

+ in rivers originates from the hydrolysis of orgN, 
making the reduction of orgN from PS and NPS another potential solu
tion for NH4

+ mitigation. 
In real-world management, a series of candidate NH4

+ mitigation 
measures should be initially designed, based on the watershed’s pollu
tion sources and their contributions. Then, appropriate mitigation 
measures can be selected through cost-effectiveness optimization 
(Ahmadi et al., 2013; Hansen et al., 2021). WWQ models can serve as 
effective decision-support tools. In this regard, ensuring the precise 
representation of these measures in the model and considering their 
inherent uncertainty in optimization are crucial for making effective 
decisions (Dai et al., 2018). Note that this study mainly focuses on 
evaluating the effectiveness of measures rather than implementing a 
complete decision-making process, so we didn’t systematically evaluate 
the cost of the three proposed measures. 

5. Conclusions 

In this study, the classical SWAT model was enhanced to simulate 
NPS NH4

+ processes. The modification is process-based, specifically 
incorporating the simulation of land-to-water NH4

+ delivery. The modi
fied model was applied to the JRW, a coastal watershed with significant 
anthropogenic nitrogen inputs. The model was well calibrated, and the 
simulation results are deemed satisfactory. The study examined NPS 
NH4

+ processes, identified key NH4
+ sources, quantified their contribu

tions to in-stream loads, and evaluated several pollution mitigation 
measures. The main findings of this study are as follows:  

• The modified SWAT model can effectively simulate the NPS NH4
+

pollution processes. The inherent instability of NH4
+ makes it chal

lenging to calibrate NH4
+ simulation. It is recommended to use 

multiple sets of observations, especially NO3
–, to calibrate the model 

to enhance model reliability.  
• NPS inputs dominate the NH4

+ input in the JRW (94.4 %), but PS 
inputs makes a more significant contribution to the NH4

+ load at 
watershed outlet. Specifically, PS inputs contributes 32.4 % and 51.9 
% to the NH4

+ load in the NRW and WRW, respectively, while NPS 
inputs contribute 15.3 % and 17.3 %, respectively. The remaining 
load originates from the hydrolysis of orgN.  

• NH4
+ primarily enters water through surface runoff (83.4 %) and 

lateral flow (16.3 %). NH4
+ leaching into groundwater (0.2 %) is 

negligible. Average NH4
+ delivery rates in the NRW and WRW are 

2.35 and 2.90 kg N/ha/a, respectively. The delivery rate exhibits 
significant spatial heterogeneity, from 0.3 to 33 kg N/ha/a. High 
delivery areas primarily occur at agricultural areas.  

• Three NH4
+ mitigation measures, i.e., enhancing urban sewage 

treatment, improving livestock manure management, and reducing 
fertilizer application, were proposed and evaluated. These measures 
can collectively reduce approximately 1/4 and 1/3 of the NH4

+ load 
in the NRW and WRW, respectively. They also raise the frequencies 
of the North River and West River meeting Class II and Class III water 
quality standards to over 90 %, respectively. 
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