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A B S T R A C T   

Greening is the optimal way to mitigate climate change and water quality degradation caused by agricultural 
expansion and rapid urbanization. However, the ideal sites to plant trees or grass to achieve a win–win solution 
between the environment and the economy remain unknown. Here, we performed a nationwide survey on 
groundwater nutrients (nitrate nitrogen, ammonia nitrogen, dissolved reactive phosphorus) and heavy metals 
(vanadium, chromium, manganese, iron, cobalt, nickel, copper, arsenic, strontium, molybdenum, cadmium, and 
lead) in China, and combined it with the global/national soil property database and machine learning (random 
forest) methods to explore the linkages between land use within hydrologically sensitive areas (HSAs) and 
groundwater quality from the perspective of hydrological connectivity. We found that HSAs occupy approxi
mately 20 % of the total land area and are hotspots for transferring nutrients and heavy metals from the land 
surface to the saturated zone. In particular, the proportion of natural lands within HSAs significantly contributes 
8.0 % of the variability in groundwater nutrients and heavy metals in China (p < 0.01), which is equivalent to 
their contribution (8.8 %) at the regional scale (radius = 4 km, area = 50 km2). Increasing the proportion of 
natural lands within HSAs improves groundwater quality, as indicated by the significant reduction in the con
centrations of nitrate nitrogen, manganese, arsenic, strontium, and molybdenum (p < 0.05). These new findings 
suggest that prioritizing ecological restoration in HSAs is conducive to achieving the harmony between the 
environment (improving groundwater quality) and economy (reducing investment in area management).   

1. Introduction 

To mitigate the effects of global climate change, China proposed the 
"3060″ goals for peaking carbon dioxide emissions by 2030 and 
achieving carbon neutrality by 2060 (China updated nationally deter
mined contributions, 2021). Thus, a series of ecological restoration and 
protection measures are undergoing to realize these goals (Liu et al., 
2021). For decades, the afforestation (or “Grain for Green”) program has 
been one of the important measures of ecological governance in China 
(Deng et al., 2017). In fact, China is the global leads in greening (Li et al., 
2018), contributing 25 % of the global net increase in leaf area via only 
6.6 % of the global vegetation area (Chen et al., 2019). Since national 
investment in ecological restoration is not limitless, policy–makers need 

to identify priority planting areas to maximize ecological benefits (Ge 
et al., 2023). 

For a long time, groundwater quality in China and around the world 
has faced great challenges from overloads of nutrients and heavy metals 
(Gu et al., 2013; Li et al., 2023; Mitchell et al., 2011). Previous studies 
have shown that groundwater quality is significantly affected by land 
uses and hydrogeological properties (Liang et al., 2022; Kellner et al., 
2015; Fatichi et al., 2020). Land use/cover change (e.g., agricultural 
expansion and rapid urbanization) is thought to be the main cause of 
groundwater nutrient overload (Gu et al., 2013; Basu et al., 2022; 
McDonough et al., 2020; Schilling et al., 2015). Groundwater heavy 
metal concentrations are also generally affected by human activities in 
land surfaces, such as wastewater irrigation (Yang et al., 2021), 
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fertilization (Fan et al., 2022), and pesticide application (Xu et al., 
2019). Pollutants are usually transported from the land surface to the 
saturated zone via hydrological connections (Leibowitz et al., 2023; 
Vereecken et al., 2022; Yue et al., 2023), but are controlled by hydro
geological properties (Fatichi et al., 2020). The high porosity or high soil 
saturated hydraulic conductivity (Ksat) of sandy soil is conducive to the 
vertical migration of pollutants under hydrological connections, but the 
opposite is true for clay soil (Zhu et al., 2018; Gupta et al., 2021). 
Moreover, the soil structure influences both hydrological connectivity 
and the material cycle, by changing the soil water capacity or avail
ability, adsorption/desorption processes and redox conditions (Fatichi 
et al., 2020; Zhu et al., 2018) and further affects groundwater quality. 
Previous researchers have reported the positive effects of ecological 
restoration (e.g., afforestation and grass planting) on groundwater 
quality (Kellner et al., 2015). However, the ideal sites to plant trees or 
grass to obtain high ecological benefits (especially for improving 
groundwater quality) with low investment costs remain largely 
unknown. 

Hydrologically sensitive areas (HSAs) refer to the soils in the land
scape most likely subject to runoff under saturation (Thomas et al., 
2016). They usually occupy only approximately 20 % of the total 
watershed area but have high hydrological connectivity affecting the 
migration and transformation of pollutants (Anderson et al., 2015; Wang 
et al., 2023). Previous studies showed that river pollutant concentra
tions could be greatly reduced by increasing the proportion of forestland 
within HSAs (Giri et al., 2017; Zhou et al., 2022; Wang et al., 2023). This 
highlighted that HSAs have strong connectivity and are considered as 

hotspots for hydrological activities in horizontal direction (Qiu et al., 
2019). Hydrological connectivity is also commonly manifested in ver
tical leaching and long–distance transport of saturated soil water (Yue 
et al., 2023; Jiang et al., 2019; Zhu et al., 2018). However, there are still 
limited reports on the effects of greening in HSAs on groundwater 
quality, especially at a national scale. This is mainly due to the difficulty 
in determining the spatial distribution of actual soil Ksat. Ksat usually 
controls the allocation among precipitation, infiltration, and runoff 
(Gupta et al., 2021) and is also an essential parameter to constrain the 
spatial distribution of HSAs (Qiu et al., 2019). Recently, the develop
ment of a global database for Ksat (Gupta et al., 2021) and the wide
spread use of machine learning methods (Koch et al., 2019; Li et al., 
2017; Knoll et al., 2020) have provided convenience for the spatial 
extrapolation of Ksat at a large scale. Given the potential of HSAs in 
characterizing hydrological connectivity (Giri et al., 2018; Thomas 
et al., 2016), we speculate that ecological restoration in HSAs could be 
beneficial in improving the groundwater quality at national scale. 

We therefore performed a nationwide groundwater quality survey 
(specifically for nutrients and heavy metals) and delineated regional 
HSAs across the country. The main objectives of this study are to explore 
the relationship between land uses within HSAs and groundwater 
quality, and further discuss the feasibility of ecological restoration in 
HSAs to achieve a win–win solution between the environment 
(improving groundwater quality) and the economy (reducing invest
ment in area management). 

Fig. 1. Spatial distribution of groundwater sampling sites (n = 90) and land uses in China.  
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2. Materials and methods 

2.1. Nation–wide survey on groundwater nutrients and heavy metals 

In this study, a total of 90 groundwater samples were collected based 
on the Undergraduate Winter Practice Program of Xiamen University in 
2016 (n = 55), 2018 (n = 13) and 2019 (n = 22). These sampling sites 
cover 25 (74 %) provincial–level administrative regions in China 
(Fig. 1). The water samples were obtained from 89 domestic wells 
(sampling depth ranging from 2 to 200 m) and 1 spring. Approximately 
0.5 L of groundwater was collected into a clean polyvinyl chloride 
bottle, sealed with plastic film. All the samples were transported to the 
laboratory for further analysis under cold–chain logistics. 

Groundwater samples were filtered through GF/F membranes for 
nutrient analysis. The concentrations of dissolved nutrients (nitrate ni
trogen, NO3–N; ammonia nitrogen, NH4–N; dissolved reactive phos
phorus, DRP) were determined using segmented flow automated 
colorimetry (San++ analyser, Germany). The concentrations of heavy 
metals (vanadium, V; chromium, Cr; manganese, Mn; iron, Fe; cobalt, 
Co; nickel, Ni; copper, Cu; arsenic, As; strontium, Sr; molybdenum, Mo; 
cadmium, Cd; lead, Pb) in groundwater were determined by ICP–MS 
(Agilent 7700) according to the method of Wang et al. (2012). 

2.2. Extrapolation of Ksat by the random forest model 

The SoilKsatDB (a global Ksat database) comprises 13,258 Ksat 
measurements from 1,908 sites collected from the published literature 
and other sources (Gupta et al., 2021). Here, we used the SoilKsatDB 
combined with a machine learning model (random forest, RF) to 
construct the RF model between Ksat and environmental variables. 
Furthermore, based on the constructed RF model, we extrapolated the 
spatial distribution of Ksat in China. Considering the feasibility of the 
extrapolation method, only environmental variables appearing in both 
Chinese national databases and SoilKsatDB were used for modelling, i.e., 
clay, silt, sand, bulk density (BD), and soil organic carbon (SOC). These 
soil properties have a strong influence on the hydrological process in 
terrestrial systems (Zhu et al., 2018) and were therefore selected for Ksat 
modelling. The details for all data are given in Table S1. 

The RF model is a machine learning algorithm based on an enhanced 
utilization of classification or regression trees, which was first proposed 
by Breiman (2001). It is a nonparametric multivariate modelling tech
nique, with good performance in capturing nonlinear dependence (Koch 
et al., 2019). Because the RF model does not assume any probability 
distribution for the data, no overfitting problem occurs as the number of 
trees increases (Li et al., 2017). The RF model, as a powerful tool, is 
widely used to evaluate the spatial distribution of geochemical param
eters from regional (He et al., 2022) to national (Koch et al., 2019) scale. 

In the present study, a five–fold cross validation method was used to 
construct the RF model. It usually divides all data into five equal parts, 
four for training and one for testing. The five rounds of training and 
testing ensure that all data can be used in the construction of the RF 
model. The advantage of this approach is that it ensures that the final 
model can be evaluated by an average result of five training and testing 
runs. To better identify important environmental variables for predict
ing Kast, we constructed 31 RF models considering all combinations 
between Ksat and five environmental variables (soil clay, silt, sand, BD, 
and SOC) (Table S2). Here, the RF model followed the default parameter 
settings. For the best–performing RF model, we further adjusted the four 
main parameters to improve the simulation accuracy using Grid
SearchCV (a Python package from sklearn.model_selection). The four 
main parameters include [n_estimators], [min_samples_split], [min_
samples_leaf], and [max_depth]. These parameters generally control the 
structure of trees in the RF model, as described in detail in Table S3. 
Moreover, the influence of environmental variables on the prediction 
results in the best–performing RF model was explored by SHapley Ad
ditive exPlanations (SHAP) analysis and shown in Fig. S1. SHAP analysis 

is a post–hoc explanation method based on the ideas of game theory, 
which can decompose global predictions into additive contributions of 
local features, keeping the global and local explanations consistent (Li 
et al., 2022). The importance of environmental variables can be ranked 
according to the magnitude of the mean absolute SHAP value (Wang 
et al., 2022). 

The RF model performance was evaluated based on three objective 
functions, including the root mean squared error (RMSE), the 
Nash–Sutcliffe efficiency (NSE) and the coefficient of determination 
(R2). A satisfactory RF model usually has a RMSE approximating zero 
and both NSE and R2 close to one. Lastly, we finally estimated the spatial 
distribution of Ksat in China using the RF model with the best simulation 
accuracy (Fig. 2). 

2.3. Soil topographic index 

The soil topographic index (STI) method can assess the probability of 
saturated excess runoff at a landscape location by considering spatial 
variations in hydrologically related soil properties (Qiu et al., 2019). The 
STI can be calculated using the following equation (Giri et al., 2017):  

STI = ln (α/tanβ) ‒ ln (Ksat × D)                                                     (1) 

where ln (α/tanβ) is the topographic wetness index (TWI), which in
dicates the control of soil moisture saturation by topographic features at 
different landscape positions. Here, α is the upslope area per unit con
tour length (m), and β is the topographic slope (mm− 1). The TWI is 
calculated based on a digital elevation model (DEM) with 30 m spatial 
resolution (Geospatial Data Cloud, http://www.gscloud.cn/). The ln 
(Ksat × D) term represents the soil transmissivity. Ksat is the soil satu
rated hydraulic conductivity (m d− 1), which is extrapolated based on the 
RF model in Section 2.2. D is the soil thickness above the restrictive layer 
(m). The data sources are listed in Table S1. 

2.4. Hydrologically sensitive areas 

A high STI value usually indicates a strong tendency toward runoff 
production and contaminant transfer (Thomas et al., 2016). Previous 
studies have reported that the STI threshold method can be used to 
delineate HSAs (Giri et al., 2018; Qiu et al., 2019). In the method, a 
predetermined STI threshold is selected, and the areas where the STI 
value is greater than the threshold are identified as HSAs. This approach 
typically focuses on the areas with high STI values that comprise 20 % of 
the total area (Giri et al., 2017; Zhou et al., 2022). The current study 
delineated the HSAs using an STI threshold value of 10. A higher STI 
threshold is usually associated with a smaller area of HSAs (Giri et al., 
2018). The spatial distribution of HSAs is presented in Fig. 2. 

2.5. Land use at HSA and regional scales 

In typical irrigated agricultural areas, approximately 7 observation 
wells are usually set up within 100 km2 for monitoring agricultural 
pollution, and one monitoring well is set up per an average of 14 km2 

(China technical specifications for environmental monitoring of 
groundwater, HJ 164–2020). To better explore the relationship between 
land use and groundwater quality, a total of 4 concentric circles with 
different radii (r = 1, 2, 3 and 4 km, respectively; area= 3, 13, 28 and 50 
km2, respectively) centred around the sampling site were set up to 
extract land use at both the HSA and regional scale. The land use map 
(2018 year) with a spatial resolution of 30 m was obtained from the Data 
Center for Resources and Environmental Sciences, Chinese Academy of 
Sciences (RESDC) (http://www.resdc.cn). Land uses were reclassified 
into three categories, including agricultural land, built–up land and 
natural land (30 % forestland, 36 % grassland, 30 % unused land, and 
the rest was water). The spatial distribution of land use is shown in 
Fig. 1. 
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2.6. Statistical analysis 

The t–test was used to assess the differences in groundwater nutrient 
and heavy metal concentrations between different sampling depths. 
Spearman rank correlation and linear regression analysis were con
ducted using SPSS software (version 19.0) to determine the relationship 
between land uses and groundwater nutrient (or heavy metal) concen
trations at both the regional and HSA scales. Before regression analysis, 
all data were logarithmically transformed to satisfy the comparability of 
models at different scales and avoid the impacts of data skewness (Giri 
et al., 2018). Four main evaluation parameters were used to determine 
the model performance at different scales, including the adjusted R2, 
Akaike information criterion (AIC), Bayesian information criterion (BIC) 
and log–likelihood. Usually, a higher adjusted R2 and log–likelihood but 
lower AIC and BIC indicate an optimal model. 

Redundancy analysis (RDA) is a multivariate direct gradient 
analytical method and a form of principal component analysis 

performed under the constraint of environmental factors (Xie et al., 
2021; Wang et al., 2023). RDA can well reflect the relationship between 
target variables and environmental factors and identify factors with 
significant contributions (Tang et al., 2023; Jiang et al., 2019). In the 
present study, we used RDA to explore the contribution of land use to 
groundwater quality at the regional and HSA scales. The statistical sig
nificance was tested by a Monte Carlo permutation method based on 999 
runs with randomized data. RDA was performed in Canoco for Windows 
software (version 5.0). 

3. Results and discussion 

3.1. Spatial characteristics of land use within HSAs 

The Ksat map is an important component in the workflow of calcu
lating HSAs (Fig. 2). It describes the rate of water movement, which is a 
key variable affecting the transfer of pollutants in both the horizontal 

Fig. 2. Two examples (site 1 and site 2) of the extraction of both hydrologically sensitive areas (HSAs) and their land use. Here, we first constructed a random forest 
(RF) model between soil saturated hydraulic conductivity (Ksat) and environmental variables (bulk density, clay, silt, and soil organic carbon) based on a global 
database (see Section 2.2). Then, we extrapolated the spatial distribution of Ksat in China through the established RF model combined with the soil property database 
of China. Finally, we calculated the spatial distribution of HSAs at the 90 sampling sites based on Eq. (1), and further overlaid land use with HSAs. The locations of 
both site 1 and site 2 are shown in Fig. 1. The ranges of STI values based on a total of 90 circular areas (each circular area= 50 km2; r = 4 km). SOC, soil organic 
carbon. TWI, topographic wetness index. STI, soil topographic index. 
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and vertical directions (Gupta et al., 2021). However, the spatial dis
tribution of soil properties is usually difficult to obtain at large scales 
with high spatial resolution (Vereecken et al., 2022). Here, we used the 
global Ksat database (Gupta et al., 2021) combined with the RF model 
(Breiman, 2001) to extrapolate the distribution of Ksat in China (Fig. 2). 
A total of 31 RF models were constructed to determine the optimal 
combination of parameters for modelling (Table S2). The parameters of 
BD, clay, silt, and SOC were identified as the best combination to 
construct the RF model, which exhibited the highest R2 and NSE but the 
lowest RMSE in the test sets. After optimizing the model parameters 
(Table S3), the R2 and NSE increased to 0.610 and 0.600 respectively, 
while RMSE is lowered to 0.638 m d− 1 in independent test sets (Fig. 3). 
Soil clay had the greatest contribution to Ksat prediction in the RF 
model, followed by BD, silt and SOC based on the mean absolute SHAP 
value (Fig. S1). Overall, the model performances in all aspects were 
higher than those of other RF models applied at regional (Li et al., 2017) 
and national (Knoll et al., 2020; Koch et al., 2019) scales. We finally used 
the constructed RF model and combined it with the Chinese database 
(maps of BD, clay, silt, and SOC) to extrapolate the Ksat map and 
implement the spatial computation of STI in China (Fig. 2). 

In the present study, the STI ranged from 0.16 to 44.7 within 90 
circular areas with each area being 50 km2 (Fig. 2). A STI threshold 
value of 10 was used to obtain the HSAs that accounted for 20.8 % of the 
total circular areas (Fig. S2). Furthermore, we obtained the composition 
of land use within HSAs by superimposing both HSAs and land use 
(Fig. 4). We found that with the expansion of circular areas, agricultural 
land always maintained a stable and large proportion. This showed that 
human modification of the land surface was centred around agriculture, 
while the use of agricultural fertilizers and pesticides greatly increased 
the risk of water pollution (Winkler et al., 2021; Xu et al., 2019; Gu et al., 
2013). We also found that the spatial composition of land use within 
HSAs was similar to that at the regional scale (Fig. 4). HSAs usually have 
strong hydrological connectivity to transfer pollutants into the water 
environment (Giri et al., 2018). Therefore, high–intensity human ac
tivities within HSAs could aggravate the degradation of river and 
groundwater quality (Wang et al., 2023). 

3.2. Effect of land use within HSAs on groundwater nutrients and heavy 
metals 

We investigated the concentrations of nutrients and heavy metals in 

groundwater at 90 sites across the country. Descriptive statistics for the 
groundwater nutrient and heavy metal parameters at the total and 
different sampling depths can be found in Tables S4 and S5, respectively. 
Overall, all groundwater parameters presented high spatial variability. 
This may be attributed to the high environmental heterogeneity across 
the national scale, e.g., topography and hydrology (Jarsjo et al., 2020; Li 
et al., 2020; Scanlon et al., 2022). A significant positive correlation was 
found between groundwater parameters (nutrients and heavy metals) 
(Fig. S3). This implies that they may show similar behaviour charac
teristics when migrating from the land surface to the saturated zone. We 
further found that high rainfall and steep slopes are generally associated 
with low concentrations of most groundwater nutrient and heavy metal 
parameters, but with high concentrations of groundwater DRP (p <
0.01) and Cd (p < 0.05) (Fig. S3). This may be attributed to the acti
vation of hydrological connectivity in the soil system by rainfall, espe
cially at steep slopes (usually with high groundwater flow rates), which 
exacerbate nutrient loss and pollutant migration (Giri et al., 2018; Li 
et al., 2020; Zhu et al., 2018). Some studies have shown that extreme 
rainstorm events facilitate the transfer of land matter from the surface to 
the deep soil or saturated zone (Mihiranga et al., 2021; Mo et al., 2022). 
The above results indicate that the behaviour characteristics of nutrients 
and heavy metals entering groundwater are generally highly responsive 
to regional hydrological connectivity. This implies that the HSAs that 
are most likely to produce runoff may also be the critical areas for the 
vertical migration of nutrients and heavy metals. 

It is difficult for humans to directly change regional topography and 
rainfall conditions to control the vertical transport of pollutants and 
reduce groundwater pollution. Considering that the sources of both 
nutrients and heavy metals in groundwater mainly come from human 
activities on land surfaces (Gu et al., 2013; Yang et al., 2021; Yuan et al., 
2020), while land use is a comprehensive reflection of human activities 
(Winkler et al., 2021). Thus, changing land uses within HSAs based on 
hydrological connectivity may be a feasible approach to achieve an ideal 
groundwater quality. In the present study, at the HSA scale, ground
water nutrient and heavy metal concentrations were positively corre
lated with both agricultural land and built–up land but negatively 
correlated with natural land (Fig. S4). This suggests that human activ
ities (e.g., agricultural expansion and rapid urbanization) significantly 
elevate groundwater nutrients and heavy metals (Yang et al., 2021; 
Yuan et al., 2020), but natural land has a profound impact on the pu
rification of the water environment (Giri et al., 2018). Generally, at the 
HSA scale, natural land contributes 8.0 % (p < 0.01) of the variation to 
all groundwater parameters, while agricultural land contributes 6.4 % (p 
< 0.01) of the variation (Fig. 5). The low but significant contribution 
rate may be attributed to the small sample size and complex environ
ment at a national scale (Scanlon et al., 2022). Notably, the contribution 
rate of natural land on groundwater quality at the HSA scale is basically 
consistent with that at the regional scale (Fig. 5). This result is the same 
for the different sampling years (Table S6). These findings also support 
that HSAs are hotspot areas affecting groundwater quality in China. 

Land surface pollutants tend to contaminate groundwater through 
both vertical leaching and long–distance transport under the dynamics 
of subsoil and groundwater hydrology (Zhu et al., 2018). Therefore, we 
further constructed regression models under different sampling radii at 
different scales to explore the effective radius for performing ecological 
restoration to significantly improve groundwater quality (Table S7). For 
both natural land and groundwater parameters (NO3–N, Mn, As, Sr, and 
Mo), a negligible difference was found in the model slope, significance 
level, adjusted R2, AIC, BIC, and log–likelihood at both the regional and 
HSA scales. This suggests that the effectiveness of ecological restoration 
on groundwater improvement at the HSA scale is equivalent to that at 
the regional scale. This further demonstrates the potential of increasing 
the proportion of natural land in HSAs to improve groundwater quality. 
From the perspective of distance at both the regional and HSA scales, 
groundwater quality (Mn, As, Sr, and Mo) can be significantly improved 
by increasing the proportion of natural land within a radius of 1 km, but 

Fig. 3. Results of the random forest model for soil saturated hydraulic con
ductivity (Ksat) after adjusting parameters using five–fold cross validation in 
the independent test sets (each test, n = 1,812). R2, the coefficient of deter
mination. NSE, Nash–Sutcliffe efficiency. RMSE, root mean squared error. 
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the distance needs to be within a radius of 2 km for groundwater NO3–N. 
Notably, lowering groundwater Cu requires a reduction in the agricul
tural area within a 3–km radius at the HSA scale (Table S8). 

Overall, we highlight the key effects of land use composition within 
HSAs on groundwater quality at a national scale. The underlying 
mechanisms and the major pathways for these effects are fully 

summarized in the conceptual schematic (Fig. 6). We conclude that 
increasing the proportion of natural land and decreasing the proportion 
of both agricultural and built–up land at the HSA scale can significantly 
improve the river (Wang et al., 2023) and groundwater quality. 

Fig. 4. Compositions of land use under different study radii and scales (n = 90). HSA, hydrologically sensitive area.  

Fig. 5. Redundancy analysis (RDA) ordination plots of the relationship between land use and groundwater quality at the regional (a) and hydrologically sensitive 
area scales (b). The solid arrows with solid lines represent the response variables, while the hollow arrows with dashed lines represent explanatory variables. The 
positive and negative correlation between two variables are indicated by the same or opposite direction of the arrows, and the strength of correlation is proportional 
to the projection length of the arrows of the two variables. Numbers next to land use indicate the relative contribution rate of land use to groundwater quality. 
Numbers on the axis indicate the degree of explanation of the total variation. 
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3.3. Application 

Over the past 60 years (1960–2019), global forest areas have expe
rienced a net decrease of 81.7 million hectares due to intensive human 
activities (e.g., agricultural expansion and rapid urbanization) (Estoque 
et al., 2022). Human activities have also exacerbated the deterioration 
of the climate and soil and water around the world (Winkler et al., 
2021). Afforestation (or “Grain for Green”), an important ecological 
restoration approach, has been widely reported to positively impact the 
global environment (Chen et al., 2019; Deng et al., 2017). However, 
which sites should be selected for planting trees/grass to alleviate the 
environmental crisis? Through this study, we firmly advocate that future 
ecological restoration should focus on the hydrological connectivity of 
terrestrial ecosystems, especially from the aspect of HSA regulations (e. 
g., the enhancement of natural land proportions) to improve ground
water and river quality. Here, we further discuss the feasibility of 
ecological restoration within HSAs to achieve a win–win solution be
tween the environment and the economy.  

(i) Water storage. Some studies have expressed concerns about soil 
and groundwater storage after afforestation (Feng et al., 2016; Jia 
et al., 2017; Li et al., 2018). However, it has also been shown that 
afforestation usually results in a limited decrease in the ground
water table. For example, Zhang and Hiscock (2010) indicate that 
afforestation will lead to a less than 0.3 m decline in the water 
table in the East Midlands, UK. HSAs are areas in watersheds that 
are highly prone to runoff generation due to soil saturation 
(Thomas et al., 2016). Therefore, compared with non–HSAs, 
HSAs are suitable sites that meet the water requirements of 
plants. The implementation of afforestation in HSAs will also 
minimally influence water storage. 

(ii) Soil erosion. Anthropogenic–induced land use/cover change in
creases regional extreme climate events (Findell et al., 2017) and 
soil erosion (Borrelli et al., 2020). Forestland has a natural 
advantage in dealing with flooding and soil erosion. Spatially, 
HSAs have a high degree of consistency with 100–year flood
plains (Qiu et al., 2020). Afforestation in HSAs showed a 

significant effect on reducing the concentrations of total sus
pended solids in rivers (Giri et al., 2018). 

(iii) Water quality and ecology. Afforestation can weaken the hydro
logical connectivity of watersheds and reduce pollutant transfer 
(López-Vicente et al., 2016). Increasing the proportion of forest
land within HSAs has a positive impact on the improvement of 
river water (Wang et al., 2023) and groundwater quality (this 
study). Qiu et al. (2019) indicated that the degradation of aquatic 
ecosystems can be alleviated by reducing human activities and 
protecting forest landscapes in HSAs. 

(iv) Biogeochemical cycles. Previous research showed that the avail
ability of soil organic carbon restricted microbial denitrification 
in the deep vadose zone (Chen et al., 2018). Afforestation 
contributed significantly to global soil carbon/nitrogen stocks (Li 
et al., 2012) and nutrient availability (Li et al., 2019). Affores
tation in HSAs is expected to facilitate biogeochemical carbon/
nitrogen cycles and reduce nitrous oxide emissions (Deng et al., 
2019). HSAs have high soil saturated water content, which 
greatly limits the penetration of oxygen, and thus facilitates 
denitrification (Zhu et al., 2018). Anderson et al. (2015) further 
indicated that the area of high STI value was usually accompa
nied by high denitrification rates (R2 = 0.86).  

(v) Management investments. HSAs usually account for approximately 
20 % of the total watershed area (Zhou et al., 2022). Ecological 
restoration or pollution control in HSAs can significantly reduce 
investment in area management within a watershed (Thomas 
et al., 2016). 

Currently, chemical oxidation, biodegradation, and adsorption are 
the major technologies for groundwater remediation (Zhang et al., 
2017). However, the field application of these technical methods re
quires a large financial investment and faces great challenges due to 
complex environmental conditions. Recently, coupling human and 
natural systems in ecological restoration to achieve sustainable devel
opment has attracted increasing attention (Fu et al., 2023; Hannah et al., 
2022). This is especially true from the perspective of land use manage
ment to improve water quality (Fernandes et al., 2021). The Outline of 
the National Land Greening Plan (2022–2030) indicates that China 

Fig. 6. Schematic showing the land management strategies based on hydrological connectivity to improve river water (Wang et al., 2023) and groundwater quality 
(this study). 
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plans to complete the greening of approximately 0.33 million km2 in the 
following years. The above (i) to (v) aspects indicate the fact that HSAs 
are the priority areas for ecological restoration. Thus, we advocate 
prioritizing ecological restoration in HSAs to achieve harmony between 
the environment (improving groundwater quality) and the economy 
(reducing investment in area management). 

3.4. Uncertainty analysis 

Capturing the distribution of Ksat on a national scale is an enormous 
challenge (Vereecken et al., 2022). Here, the distribution of Ksat is based 
on the extrapolation of the RF model combined with geographic 
parameter (BD, clay, silty, and SOC) maps at the national scale. Usually, 
the national distributions of these geographic parameters are also ob
tained based on both field observations and model simulations. This may 
increase the uncertainty of Ksat in space. Thus, we further consider the 
distribution of HSAs without Ksat. By comparison, we find that the HSA 
distribution usually has a mean difference of 15.6 % (ranging from 0 to 
37.4 %, n = 90) for both scenarios with and without considering Ksat 

(Fig. 7a). The difference % increases significantly with increasing mean 
slope and mean annual precipitation (p < 0.01) (Fig. 7b and c). This 
suggests that the hydrological connectivity is very sensitive to the spatial 
distribution of Ksat and should improve the Ksat prediction accuracy of 
in the future, especially in regions with high rainfall and steep terrain. 
Limited by computational power, we only extrapolated the distribution 
of Ksat within the sampling radius of 10 km (area= 314 km2) according 
to research needs. Finally, approximately 26.7 million rows of Ksat data 
were obtained, which were further transformed into a raster of 30 m 
spatial resolution for HSA calculation. In the future, a national and even 
global map of the distribution of HSAs with a high spatial resolution will 
be necessary for pollution control and ecological restoration. 

In the present study, groundwater sampling was mainly performed in 
the winter dry season, which reflects the relatively stable hydrological 
conditions. We found a significant impact of natural lands within HSAs 
on groundwater NO3–N, Sr, Mo, Mn, and As (Table S7). Previous studies 
have shown that seasonal changes in rainfall can significantly alter hy
drological processes (Mo et al., 2022; Yue et al., 2023). Hydrological 
connectivity may be more intense during the wet season, which further 

Fig. 7. Proportion of spatial difference for hydrologically sensitive areas when soil saturated hydraulic conductivity is considered or not (a), and how it relates to 
mean slope (b) and mean annual precipitation (c). Here, the locations of both site 1 and site 2 are shown in Fig. 1. The mean slope and mean annual precipitation 
(2016–2019, Table S1) are the mean values of the raster within a sampling radius of 4 km. 
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affects pollutant transport and groundwater quality (Good et al., 2015; 
Yue et al., 2023; Ebeling et al., 2021). In this study, groundwater 
collected at a depth of < 5 m had a higher NH4–N concentration than 
that collected at > 5 m depth, but the opposite was true for groundwater 
NO3–N (Table S5). Positively charged NH4–N tends to be adsorbed by 
negatively charged humus and thus mainly exported via surface runoff, 
while negatively charged NO3–N tends to be leached downwards to 
deeper saturation zones (Zhu et al., 2018). Mo et al. (2022) indicated 
that heavy rains promote the transfer of NH4–N from the land surface to 
deep soil. More observations of groundwater over seasons are needed to 
explore the seasonal dynamics of hydrological processes and their effect 
on groundwater quality variation in the future. 

The high heterogeneity of the vertical soil structure significantly 
alters the hydrological and material connections between land surface 
and groundwater (Oldham et al., 2013). This may promote a permanent 
or temporary hydrological and biogeochemical legacy in the deep 
vadose zone (Basu et al., 2022). Furthermore, such material legacies are 
regulated by retention times and reaction rates (Kolbe et al., 2019; 
Vautier et al., 2021; Severe et al., 2023). However, HSAs usually have 
strong hydrological connectivity, which may be frequently activated 
during rainfall events (Wang et al., 2023; Thomas et al., 2016). The 
influence of HSAs on groundwater quality may be less affected by time 
lag or material legacy caused by soil structure. In different years of 
groundwater sampling, we also found that the natural lands within HSAs 
had a positive impact on groundwater quality (p < 0.05 and p < 0.01), 
and the contribution was comparable to that at the regional scale 
(Table S6). Interdisciplinary studies integrating hydrogeology, pedology 
and biogeochemistry are still needed to address the lag and legacy issues 
in the process of pollutant transport from land to water. 

4. Conclusions 

We explored the effects of land use within HSAs on groundwater 
nutrients and heavy metals from the perspective of hydrological con
nectivity via nationwide survey and machine learning (random forest). 
Overall, the random forest model has good performance in extrapolating 
the distribution of Ksat and calculating HSAs at the national scale. HSAs 
occupied only approximately 20 % of the total land area, and their land 
use pattern explanation of the variability in groundwater quality is 
equivalent to that at the regional scale. Our study highlights the positive 
effects of increasing natural lands within HSAs on reducing groundwater 
nutrient and heavy metal concentrations in China. We therefore 
conclude that prioritizing ecological restoration in HSAs is conducive to 
achieving harmony between the environment and the economy. 
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