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ABSTRACT Microeukaryotic plankton (0.2–200 µm), which are morphologically and 
genetically highly diverse, play a crucial role in ocean productivity and carbon consump­
tion. The Pacific Ocean (PO), one of the world’s largest oligotrophic regions, remains 
largely unexplored in terms of the biogeography and biodiversity of microeukaryotes 
based on large-scale sampling. We investigated the horizontal distribution of micro­
eukaryotes along a 16,000 km transect from the west to the east of the PO. The 
alpha diversity indices showed a distinct decreasing trend from west to east, which 
was highly correlated with water temperature. The microeukaryotic community, which 
was clustered into the western, central, and eastern PO groups, displayed a signifi­
cant distance-decay relationship. Syndiniales, a lineage of parasitic dinoflagellates, was 
ubiquitously distributed along the transect and dominated the community in terms 
of both sequence and zero-radius operational taxonomic unit (ZOTU) proportions. The 
prevailing dominance of Syndiniales­affiliated ZOTUs and their close associations with 
dinoflagellates, diatoms, and radiolarians, as revealed by SparCC correlation analysis, 
suggested that parasitism may be an important trophic strategy in the surface waters of 
the PO. Geographical distance and temperature were the most important environmental 
factors that significantly correlated with community structure. Overall, our study sheds 
more light on the distribution pattern of both alpha and beta diversities of microeukary­
otic communities and highlighted the importance of parasitisms by Syndiniales across 
the tropical PO.

IMPORTANCE Understanding the biogeographical and biodiversity patterns of 
microeukaryotic communities is essential to comprehending their roles in biogeochemi­
cal cycling. In this study, planktonic microeukaryotes were collected along a west-to-east 
Pacific Ocean transect (ca. 16,000 km). Our study revealed that the alpha diversity indices 
were highly correlated with water temperature, and the microeukaryotic communities 
displayed a distinct geographical distance-driven pattern. The predominance of the 
parasitic dinoflagellate lineage Syndiniales and their close relationship with other 
microeukaryotic groups suggest that parasitism may be a crucial survival strategy for 
microeukaryotes in the surface waters of the Pacific Ocean. Our findings expand our 
understanding of the biodiversity and biogeographical pattern of microeukaryotes and 
highlight the significance of parasitic Syndiniales in the surface ocean.

KEYWORDS microbial eukaryotes, protists, Syndiniales, SSU rRNA gene, high 
throughput sequencing

M icroeukaryotic plankton (0.2–200 µm in size, including protists, fungi, and 
small zooplankton) are widely recognized as significant contributors to marine 

productivity and carbon consumption (1–4). Due to their remarkable morphological 
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and genetic diversity, microeukaryotes are present in virtually all marine habitats and 
serve multiple and essential roles in the biogeochemical cycling of the world’s 
oceans (5). Photosynthetic microeukaryotes, including diatoms and dinoflagellates, 
constitute the base of the ocean food webs as major primary producers in the euphotic 
zone (6). Higher trophic level microeukaryotes, such as ciliates and diverse flagellates, 
which consume picophytoplankton and bacteria, are preyed upon by larger zooplankton 
(6–8). Mixotrophic microeukaryotes, which are capable of performing both phototrophy 
and phagotrophy, can increase trophic transfer to higher levels in the marine food web, 
enhance the efficiency of the biological carbon pump, and increase carbon sequestration 
in the deep ocean (9). These intricate behavioral strategies and organismal interactions 
have complicated the construction of a comprehensive model of the carbon cycle (6).

The surface layer of the world’s oceans serves as a biogeochemical membrane 
separating the atmosphere and the interior of the ocean (10). Over the past two 
decades, advances in high-throughput sequencing have enabled the examination of 
microeukaryotic biodiversity and the investigation of their ecological significance in 
marine environments (10). Previous research has established a significant correlation 
between marine planktonic microeukaryotes and abiotic factors, including spatial 
factors, temperature, salinity, chlorophyll (Chl) a, and nutrients (11–13). Recent evidence 
also indicates that biotic factors, such as prey availability, top-down grazing, and 
various ecological processes, such as dispersal limitation and environmental stresses, 
also influence microeukaryotic community structure (14–18). Furthermore, a deeper 
understanding of the co-occurrence patterns of microeukaryotes may contribute to the 
advancement of knowledge regarding the interactions between microbes in diverse 
natural marine environments (17–20).

Recent years have seen the advances of biodiversity studies on microeukaryotes 
in the Pacific Ocean (PO), the largest marine habitat on Earth, by applying sequenc­
ing-based techniques. Studies have shown a significant distance-decay relationship 
on the horizontal scaling of microeukaryotic communities (21), the different ecologi­
cal processes governing the assembly processes of microeukaryotic communities in 
different depth zones (18), the temporal dynamics of microeukaryotic communities 
and the environmental driving factors (22–24), and the spatial distribution pattern and 
metabolic activities of microeukaryotic communities (4, 10, 25–28). However, previous 
studies were either based on a local scale sampling of a relatively small number of 
stations, focused on the vertical distribution of microeukaryotic communities, integra­
ted data from multiple independent cruises, targeted only specific microeukaryotic 
groups, or examined the temporal dynamics of microeukaryotes at a fixed station. To 
our knowledge, no attempts have ever been made to infer the distribution pattern of 
microeukaryotes along the west-to-east transect across the tropical PO. More research 
needs to be done on the diversity distribution, community composition, community 
assembly process, and environmental driving factors of planktonic microeukaryotes in 
the PO.

By utilizing high-throughput sequencing on the V9 hyper-variable regions of the 
SSU rRNA gene, we surveyed microeukaryotes spanning 16,000 km of the PO in this 
study. The objectives of this study were to (i) disclose the spatial distribution patterns 
of the biodiversity, composition, and community assembly processes of major microeu­
karyotic groups and (ii) identify the abiotic and biotic factors that shape microeukaryotic 
communities.

MATERIALS AND METHODS

Sample collection

Samples were collected onboard R/V Dayang No. 1 from 25 October to 11 December 
2011 along a 16,000 km transect from the western to eastern PO (Fig. 1). In total, 41 
samples of surface (0.5 m) seawater were collected. At each sampling station, 2 L of 
seawater was collected with Niskin bottles attached to a CTD rosette system. Seawater 
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samples were pre­filtered through a 200-µm mesh (Nitex, Sefar), and the filtrates were 
collected on a membrane with a pore size of 0.22 µm and a 47-mm diameter (PALL, 
USA). The membranes were then flash frozen in liquid nitrogen and stored at −80°C for 
further DNA extraction. The environmental parameters, including sea water tempera­
ture, salinity, Chl a concentration, and abundance of Prochlorococcus, Synechococcus, 
pico-sized pigmented eukaryotes (PPEs), bacteria, and viruses [including high fluores­
cence virus (HFV) and low fluorescence virus (LFV)], were derived from Liang et al. (29) 
during the same cruise with the present study (29).

DNA was extracted using the PowerWater DNA Isolation Kit (MoBio Laboratories, Inc., 
Carlsbad, CA) according to Xu et al. (30). The obtained DNA was used to amplify the 
hypervariable V9 region of the SSU rRNA gene using the primer set 1389F/1510R (31). 
Each sample underwent three separate PCRs, which were then combined to obtain 
sufficient amplicons for sequencing. The Wizard SV Gel and PCR Clean-Up System 
(Promega, Beijing, China) was used to pool and purify PCR amplicons from the same 
sample. Paired-end (2 × 250 bp) multiplexed sequencing was performed by a commercial 
company using the Illumina MiSeq platform. All the sequences from this study have 
been deposited in the public NCBI Sequence Read Archive database under BioProject 
accession number PRJNA1060468.

Sequence data processing

Trimmomatic (32) and Flash (33) were used to screen and assemble raw reads, and 
the employed criteria followed Li et al. (34) (34). The quality­filtered reads were then 
dereplicated using Usearch 11 (35). Reads were denoised (including the removal of 
potential chimeras) and clustered into biological zero-radius operational taxonomic units 
(ZOTUs) using UNOISE3 (36). The taxonomic assignment of the generated ZOTUs was 
achieved using SINTAX (37) by comparing them against the Protist Ribosomal Reference 
database (PR2, 38). The ZOTUs identified were classified into four trophic functional 
groups, i.e., phototrophs, heterotrophs, mixotrophs, parasites and not determined, 
according to references (39–41). Singletons and ZOTUs unaffiliated with Eukaryota were 
excluded from subsequent analyses.

FIG 1 Location of the sampling sites.
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Statistical analyses

The alpha diversity indices, including ZOTU richness, Shannon, and Faith’s phylogenetic 
diversity (PD), were computed in Mothur (42) based on multiple random resampling at 
the lowest read counts (11,783) among all samples. Spearman’s correlation coefficients 
between alpha diversity indices and environmental variables were calculated using SPSS 
V.20.0 (43). To assess the combined effects of environmental variables on alpha diversity, 
multiple linear regression (MLR) models using the “lm” function in R were constructed 
(44). Before performing the MLR analysis, the logarithmic transformation of the data was 
performed, and the discrete points were excluded. We assessed the collinearity of the 
variables by calculating the variance inflation factor (VIF) using the “vif” function of the 
“car” package in R (45). The factors were included in the MLR analyses, only when the 
collinearity VIF <10. For selecting the optimal subset of variables in the final multiple 
regression models, we employed backward selection with the “stepAIC” function from 
the “MASS” package (46), and the insignificant variables were subsequently deleted. 
Finally, the relative importance of the variables for the final models was calculated using 
the “relweights” function (44).

The beta diversity was measured using Bray-Curtis distances and unweighted Unifrac 
distance, and the results were displayed by principal coordinate analysis (PCoA) with 
the “vegan” package in R (47). Using the same package, a similarity analysis (ANOSIM) 
was conducted to determine the significance of differences in community composition 
between the identified sample groups. To assess correlations between environmental 
variables and community variability, Mantel tests were conducted with the “vegan” 
package (48). With variance partitioning analysis (VPA) based on canonical correspond­
ence analysis, the contributions of geographical distance, environmental, and biotic 
factors to the variances of microeukaryotic communities were analyzed. VPA was 
conducted using the “vegan” package (49).

To determine the relationships between Syndiniales and other microeukaryotic 
groups, correlation analyses were conducted using SparCC (50). To reduce the com­
plexity of the network analysis, ZOTUs found in less than 1/3 of samples and with a 
relative abundance of less than 0.01% were excluded from the analysis. Following these 
thresholds, a total of 1,082 ZOTUs were run against one another using SparCC to identify 
significant correlations. The robust correlations were exported as a GML (Graph Modeling 
Language) format network file with correlation coefficient (r) values of ≥0.6 and false 
discovery rate-corrected P values of 0.01 (51). The network was visualized using Gephi 
v.0.9.2 (52).

RESULTS

The partitioning of microeukaryotic communities

Microeukaryotic communities were clustered into three regional groups based on 
Bray-Curtis dissimilarities and unweighted Unifrac distances (Fig. 2). These groups 
basically corresponded to their locations along the transect, i.e., the eastern PO group 
(EP, including ZH1–ZH9), the central PO group (CP, including ZH10–ZH29), and the 
western PO group (WP, including ZH30–ZH50). The unweighted pair group method with 
arithmetic mean (UPGMA) clustering dendrogram exhibited the identical pattern (Fig. 
S1). Statistically significant differences were identified among these groups using the 
ANOSIM (Table 1; r = 0.939, P < 0.001).

Alpha diversity indices and microeukaryotic community composition

After quality filtering and the removal of singletons and ZOTUs unaffiliated with 
Eukaryota, a total of 6,199 ZOTUs, ranging from 1,457 to 3,206 ZOTUs per sample, were 
obtained (Table S1). After being rarefied at the lowest sequence count (11,783, sample 
ZH48) among all samples, a total of 5,957 ZOTUs were recovered, ranging from 1,012 
to 1,817 per sample (Table S1). All three indices demonstrated a statistically significant 
decreasing trend from the western PO to the eastern PO (P < 0.01; Fig. 3; Fig. S2). All 
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three alpha diversity indices were significantly correlated with temperature and the 
abundances of Synechococcus, PPEs, and HFV, according to a Spearman correlation 
analysis between the alpha diversity indices and environmental variables (Table S2). 
The MLR model showed that water temperature was the most important environmental 
factor that correlated with the alpha diversity indices. It explained ca. 77%, 34%, and 58% 
of the variations in ZOTU richness, PD, and Shannon, respectively (Fig. S3).

Combining data from all sites gave an initial insight into the composition of the 
microeukaryotic community across the PO. Over half of the reads were affiliated with 
Alveolata (primarily Dinoflagellata and Ciliophora). Stramenopiles represented 11.7% of 
reads, followed by Opisthokonta, Hacrobia, Archaeplastida, and Rhizaria. The rest groups 
collectively contributed only 1.4% of all reads (Fig. S4A and C). In terms of ZOTU richness, 
Alveolata (mainly Dinoflagellata and Ciliophora) and Stramenopiles accounted for 67.6% 
and 13.1% of the total ZOTUs, respectively, being the top 2 contributors of ZOTU richness 
(Fig. S4B and D).

Major microeukaryotic assemblages exhibited distinct spatial distribution patterns. 
Dinoflagellata dominated Alveolata, comprising ca. 60.8% of total reads (Fig. 4A; Fig. 
S4C). Notably, their proportion decreased from WP (ca. 70.71%) to EP (ca. 41.79%). Within 
Dinoflagellata, the sequence proportion of Syndiniales was higher in the WP than in 
the EP (Fig. 5). Dino-group-I and Dino-group-II dominated Syndiniales, with the latter 
accounting for 40% of the total Syndiniales ZOTUs (Fig. 4B). The sequence proportions 
of Bacillariophyta, Chloropicophyceae, Pelagophyceae, and Spirotrichea increased from 
WP to EP, whereas those of Dinophyceae, Syndiniales, MAST, Apicomplexa, Eugleno­
zoa, Dictyochphyceae, Bicoecea, Chrysophyceae, Picozoa_X, and MOCH decreased (Fig. 

FIG 2 Principal coordinate analysis (PCoA) plots of microeukaryotic communities based on Bray-Curtis dissimilarities (A) and unweighted Unifrac distance (B).

TABLE 1 Analysis of similarities of microeukaryotic communities among different groupsa

R ρ

Global 0.939 0.0001
EP vs CP 0.850 0.0001
EP vs WP 0.893 0.0001
CP vs WP 0.924 0.0001
aEP, the eastern Pacific Ocean group; CP, the central Pacific Ocean group; WP, the western Pacific Ocean group.
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5). The highest sequence proportions of Prymnesiophyceae, Phyllopharyngea, Prasino-
Clade-9, and RAD-B were observed in CP, whereas those of Polycystinea and Telonemia_X 
did not differ significantly between WP, CP, and EP (Fig. 5).

The majority of the 150 ZOTUs found across all samples belonged to Dinoflagellata, 
with 18 belonging to Dino-Group-I, 16 to Dino-Group-II, and 1 to Dino-Group-III (Fig. S5). 
Only one ZOTU (ZOTU 3) was found to be abundant (representing >1% of sequences 
within a given sample) in all samples. ZOTU one was abundant in all samples except 
for ZH8. Several ZOTUs, including ZOTU 6, ZOTU 5, ZOTU 7, ZOTU 10, and ZOTU 13, 
were abundant in the majority of samples while intermediate (representing 0.01%–1% 
of sequences within a given sample) but never rare (representing <0.01% of sequences 
within a given sample). The remaining ZOTUs were intermediate in the majority of 
samples, never found to be abundant, and rare only in a few samples (Fig. S5).

To infer the possible interactions between Syndiniales and hosts, a co-occurrence 
network analysis was conducted using SparCC. After screening, 434 ZOTUs were 
left, which included members affiliated with Dino-Group-I (52), Dino-Group-II (67), 

FIG 3 Comparison of alpha diversity indices (ZOTU richness, Shannon, and PD) among the three geographic groups as demonstrated by boxplots. The upper 

and lower boundaries of each box represent the 75th and 25th quartile values, respectively, while the lines within each box represent the median values. Bars 

without shared letters indicate significant differences at the level of P < 0.05 according to the Kruskal-Wallis test. WP, the western Pacific Ocean group; CP, the 

central Pacific Ocean group; EP, the eastern Pacific Ocean group.

FIG 4 Proportions of reads and ZOTU richness of total microeukaryotes (A) and Dinoflagellata (B) in the three geographical groups (WP, CP, and EP). WP, the 

western Pacific Ocean group; CP, the central Pacific Ocean group; EP, the eastern Pacific Ocean group.
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FIG 5 Box plots of the top 20 microeukaryote classes with the highest sequence proportions in three geographical groups (WP, CP, and EP). The upper and 

lower boundaries of each box represent the 75th and 25th quartile values, respectively, while the lines within each box represent the median values. Bars without 

shared letters indicate significant differences at the level of P < 0.05 according to the Kruskal-Wallis test.
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Dino-Group-III (3), Dino-Group-V (3), and Syndiniales_X (3), representing ca. 29.5% of all 
ZOTUs (Fig. S6). There were 8,584 significant (P < 0.01) correlations with r ≥ 0.6, of which 
3,753 involved a Syndiniales ZOTU (3,170 were related to non-Syndiniales taxa and 583 
were among Syndiniales, respectively) (Table S3). Significant correlations among 
Syndiniales ZOTUs and with other ZOTUs included members belonging to dinoflagellates 
(72), diatoms (43), ciliates (16), chlorophytes (18), metazoans (33), MAST (17), hapto­
phytes (11), and other groups (53).

Distribution of the functional groups

Phototrophs were found to be more abundant (29.8% vs 22% of reads) but less diverse 
(18.2% vs 23.8% of ZOTU richness) than heterotrophs. The ratio of phototrophs to 
heterotrophs decreased from west to east (Fig. S7 and S8). The parasitic group exhibi­
ted greater abundance and diversity, comprising 26%–54% of reads and 64% of ZOTU 
richness. In addition, mixotrophic group was more prevalent in the WP, where its 
abundance and diversity occasionally surpassed those of metazoans (Fig. S7 and S8).

Effects of environmental variables on the microeukaryotic communities

The Mantel test revealed a significant positive correlation (r = 0.71, P < 0.001, Table 2) 
between the community dissimilarity and geographic distance (i.e., the distance-decay 
pattern, Fig. S9). In addition, other variables, including temperature, salinity, Chl a, 
and the abundances of Synechococcus, PPEs, bacteria, and viruses, were significantly 
correlated with the dissimilarity of the communities.

The VPA confirmed that geographic distance was the most influential factor on 
microeukaryotic communities, accounting for 6.87% of the variance. Environmental 
factors, including temperature, salinity, and Chl a, explained 3.28% of the variance, 
whereas biotic factors, including the abundance of Prochlorococcus, Synechococcus, 
bacteria, PPEs, and viruses, accounted for only 0.77% (Fig. 6). The residual 62.7% of the 
variance could not be explained by the model.

The phylogenetic null model analysis showed that dispersal limitation (40.1%) and 
heterogeneous selection (30.7%) were the primary drivers of microeukaryotic communi­
ties, followed by ecological drift (17.1%), homogenizing dispersal (10.9%), and homoge­
neous selection (1.1%) (Fig. 7).

DISCUSSION

Temperature as the main driver of the alpha diversity of microeukaryotes

In the present study, seawater temperature was positively and significantly correlated 
with all three alpha diversity indices of microeukaryotes along the 16,000 km PO 
transect. In fact, it has been widely reported that temperature is one of the most 
important factors influencing changes in the alpha diversity of terrestrial, freshwater, 

TABLE 2 Mantel test for the correlation between microeukaryotic community and environmental factorsa

ρ R

Geographical distance 0.0001 0.711
Temperature 0.001 0.564
Salinity 0.001 0.308
Chl a 0.001 0.461
Prochlorococcus 0.023 0.133
Synechococcus 0.001 0.496
PPE 0.001 0.587
Bacteria 0.001 0.336
HFV 0.001 0.422
LFV 0.001 0.483
Total viruses 0.001 0.505
aThe numbers in bold indicate statistically significant results.
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and marine organisms, especially on large spatial scales. For example, temperature was 
proposed to be the major factor responsible for the latitudinal diversity gradient (LDG) 
of organisms (41, 53, 54). For surface water planktonic microeukaryotes, the maximum 
alpha diversity was usually found in tropical to subtropical regions and then decreased 
toward the poles (53). The present study only encompassed a relatively limited latitudinal 
gradient, from the equatorial to 25 N, and alpha diversity indices increased rather than 
decreased from the equatorial to 25 N. The observed decreasing of seawater tempera­
ture from the equatorial (the eastern PO) to 25 N (the western PO) (Fig. S10) was one of 
the prominent atmosphere-ocean state features in the tropical PO, which is characterized 
by high sea surface temperature in the western Pacific warm pool and low sea surface 
temperature in the eastern Pacific tongue (55). Our findings appear to contradict the 
LDG. Nonetheless, the Spearman correlation analysis revealed a significant and positive 
correlation between seawater temperature and the alpha diversity indices of microeukar­
yotes. Furthermore, the MLR model analysis identified water temperature as the most 
important environmental factor that correlated with alpha diversity indices, which may 
serve as evidence that temperature is the primary driving factor responsible for the LDG.

FIG 6 Variation partitioning analysis showing the effects of geographic distance, biotic factors, and environment on the 

community structure of microeukaryotes.
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The prevalence of syndiniales across the PO

It has been reported that the dinoflagellate lineage Syndiniales is a major parasitic group 
of protists. Members of Syndiniales are parasites of dinoflagellates, ciliates, and even 
multicellular animals (56). In contrast to other parasitic organisms, Syndiniales parasites 
typically kill their hosts, thus being named as parasitoids (15). For example, it has been 
reported that certain members of the genus Euduboscquella can infect tintinnids and 
phagocytize part or the entire host cell (57). Overall, Parasitoids induced host mortality 
can rival grazing effects of larger zooplankton and promotes recycling of material within 
the microbial loop (58). The parasitic dinoflagellate lineage Syndiniales, which consists of 
Dino-Group-I, -II, -III, -IV, and -V (also known as marine alveolate, MALV I–V), was found to 
be the most abundant (sequence proportion) and diverse (ZOTU richness) microeukary­
otic group in this study. In addition, 150 ZOTUs were found in all samples, of which 35 
were affiliated with Syndiniales (18 with Dino-Group-I, 16 with Dino-Group-II, and 1 with 
Dino-Group-III, respectively). With the exception of a few samples, the majority of these 
Syndiniales ZOTUs were either abundant or intermediate in most samples, confirming 
their prevalence in the surface waters of the PO. A large proportion of Dinoflagellata 
sequences from various marine ecosystems have been reported to be represented by 
Syndiniales (19, 59, 60). Using data from the Tara Ocean global expedition, a study 
found that Syndiniales are highly abundant and ubiquitous in the world’s oceans (10). 
Based on weekly sampling at the Scripps Institution of Oceanography pier over the 
course of a year, Nagarkar and Palenik (61) determined that Syndiniales is the most 
species-rich and abundant taxonomic group (61). In the present study, based on the 
SparCC correlation analysis, after screening (see Materials and Methods for details), 434 
ZOTUs with significant pairwise correlations were identified, 128 of which belonged 
to Syndiniales, accounting for ca. 29.5% of all ZOTUs. Of the 8,584 significant pairwise 
correlations discovered, 3,753 (43.7%) involved a Syndiniales ZOTU. The aforementioned 
results indicated that Syndiniales­affiliated ZOTUs were not only dominant but may also 
interact closely with microeukaryotic community members (62). Meanwhile, our study 
identified a wide variety of potential Syndiniales hosts (i.e., correlation-based interac­
tions), including dinoflagellates, diatoms, ciliates, chlorophytes, MAST, metazoans, and 
haptophytes, which is consistent with previous studies based on laboratory cocultures 
and environmental surveys (19, 56, 61, 63–65). However, the correlations found between 
Syndiniales and certain microeukaryotic groups should not necessarily be interpreted 
as parasitisms. For example, it has been reported that the oligotrich ciliate Strobilidium 

FIG 7 Partition of community assembly processes of microeukaryotes.
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sp. can rapidly consume the infective dinospores of Amoebophrya sp. (66). In a recent 
study that was based on the size fractionated sampling (i.e., comparing Syndiniales in 
the >0.2 µm and >10 µm fractions), Nagarkar and Palenik (61) proposed that the majority 
of the recovered Syndiniales sequences did not represent active infections but rather the 
free-living dinospore stage (61). In this study, the 0.2–200 µm fraction of the microeu­
karyotic community was collected. Therefore, we were unable to determine whether the 
Syndiniales recovered were free-living dinospores or whether they were in the infecting 
stages. Additional research employing size-fractionated sampling, RNA-based sequenc­
ing, and single-cell sequencing of Syndiniales and their potential hosts may shed more 
light on the stages, co-occurrence relationships, and potential roles of Syndiniales and 
their hosts in the biogeochemical cycling of the world’s oceans.

Environmental influencing factors of microeukaryote beta diversities

In recent years, there has been a surge in research that investigates the diversity 
and distribution of microeukaryotes across diverse marine environments, including the 
PO (10, 18, 21, 41, 67). In our study, a discernible horizontal distribution pattern of 
planktonic microeukaryotic communities in surface water across the PO was identified. 
These microeukaryotic communities were clustered into the EP, CP, and WP groups, with 
geographical distance being the most important factor, followed by other environmen­
tal factors. Meanwhile, different microeukaryotic groups exhibited distinct western-east­
ern PO distribution patterns (Fig. 5), in response to distinct environmental variables, 
as revealed by the Spearman correlation analysis between microeukaryotic groups 
and environmental variables (Fig. S11). Similar grouping patterns of microeukaryotic 
communities were also discovered in the western PO, with geographical distance, 
temperature, and salinity identified being the primary drivers (21). Our study revealed 
that 150 out of 5,957 ZOTUs occurred in all samples. These ZOTUs were not only widely 
distributed but also well presented in all samples, as the majority of ZOTUs were either 
abundant or intermediate and were only rare in a few samples. Sun et al. (68) proposed 
that the intermediate ciliate group played an important role in sustaining the stability 
and functionality of the ciliate community by transitioning between the abundant and 
rare groups (68). As demonstrated by our research, the intermediate group may also play 
an essential role in maintaining microeukaryotic communities on a much larger spatial 
scale in the PO.

In the present study, dispersal limitation and heterogeneous selection were found to 
be the primary determinants of the community structure of microeukaryotes, result­
ing in a negative correlation between community similarity and geographic distance 
(the distance-decay pattern) (69). Martiny et al. (70) discovered that the limitation on 
microbial dispersal increases with geographic distance (70). Studies have demonstrated 
that dispersal limitation caused by geographical distance is a key factor in shaping the 
planktonic microeukaryote community in the ocean (10, 34, 41, 71–73). Simultaneously, 
environmental gradients have a substantial effect on microeukaryotic assembly and, in 
conjunction with the geographic scales, explain the balance between deterministic and 
stochastic processes (69). According to the results of our VPA analysis, 62.7% of the 
variation remained unexplained, which may be due to unmeasured environmental and 
ecological factors. Studies have indicated that species interactions, such as competition, 
parasitism, predation, symbiosis, and phycosphere among microeukaryotes, play an 
important role in community structure (6) and distribution patterns (4, 15, 21, 65).

Conclusion

This study investigated the biodiversity and biogeography of planktonic microeukar­
yotes across the tropical PO. Alpha diversity indices of microeukaryotes decreased along 
the west-to-east PO transect, with water temperature being the most important driving 
factor. The microeukaryotic communities displayed a clear distance-decay pattern and 
were clustered into three discrete groups according to the sampling site locations: 
the western PO group, the central PO group, and the eastern PO group. Geographical 
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distance was identified as the primary driver of community changes, highlighting 
the significance of geographical distance in shaping microeukaryotic communities, 
particularly on large spatial scales. The parasitic dinoflagellate lineage Syndiniales was 
found to be the most abundant (sequence proportion) and diverse (ZOTU richness) 
microeukaryotic group, and their wide distribution and close correlation with other 
microeukaryotic groups, including dinoflagellates, ciliates, diatoms, and so forth, suggest 
that parasitism may be an important living strategy of planktonic microeukaryotes in 
surface waters of the PO, whose functions in biogeochemical cycling require further 
investigation.
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