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Abstract The elemental ratios of carbon, nitrogen, and phosphorus (C:N:P) within organic matter play a
key role in coupling biogeochemical cycles in the global ocean. At the cellular level, these ratios are controlled
by physiological responses to the environment. But linking these cellular‐level processes to global
biogeochemical cycles remains challenging. We present a novel model framework that combines knowledge of
phytoplankton cellular functioning with global scale hydrographic data, to assess the role of variable carbon‐to‐
phosphorus ratios (RC:P) on the distribution of export production. We implement a trait‐based mechanistic
model of phytoplankton growth into a global biogeochemical inverse model to predict global patterns of
phytoplankton physiology and stoichiometry that are consistent with both biological growth mechanisms and
hydrographic carbon and nutrient observations. We compare this model to empirical parameterizations relating
RC:P to temperature or phosphate concentration. We find that the way the model represents variable
stoichiometry affects the magnitude and spatial pattern of carbon export, with globally integrated fluxes varying
by up to 10% (1.3 Pg C yr− 1) across models. Despite these differences, all models exhibit strong consistency
with observed dissolved inorganic carbon and phosphate concentrations (R2 > 0.9), underscoring the challenge
of selecting the most accurate model structure. We also find that the choice of parameterization impacts the
capacity of changing RC:P to buffer predicted export declines. Our novel framework offers a pathway by which
additional biological information might be used to reduce the structural uncertainty in model representations of
phytoplankton stoichiometry, potentially improving our capacity to project future changes.

Plain Language Summary Phytoplankton play a vital role in Earth's carbon cycle. The ratios of
carbon, nitrogen, and phosphorus in these tiny marine plants influence how much carbon they absorb at the
surface and export to the deep ocean. Yet, many models overlook the global variability of these ratios. Our study
introduces an innovative model that combines microscopic knowledge of phytoplankton growth with global
ocean data. We use this model to predict how the elemental ratios in phytoplankton vary on a global scale. By
comparing this detailed model to simpler models based on individual environmental controls, we reveal that the
way we represent these ratios significantly impacts carbon export patterns. Different representations of these
ratios lead to estimates of carbon export from the ocean's surface that differ by over 1 billion tons annually. We
also find that the flexibility of elemental ratios can counteract future declines in ocean productivity to varying
degrees, depending on the assumed environmental controls of these ratios. Our findings highlight the critical
role of understanding the connection between phytoplankton elemental composition and their environment and
underscore the need for improved models to better anticipate future changes in the ocean's carbon cycle.

1. Introduction
The stoichiometry of carbon, nitrogen, and phosphorus (C:N:P) within organic matter plays a crucial role in
coupling biogeochemical cycles in the global ocean. Biogeochemical models have historically assumed a fixed
ratio of C:N:P= 106:16:1, known as the “Redfield” ratio, based on early observations of consistent stoichiometry
between suspended organic matter and seawater (Redfield, 1934, 1958). While many global models still rely on
fixed ratios (Séférian et al., 2020), stoichiometric variability has been increasingly recognized as an important
control on biological carbon fluxes over the past decade (Galbraith &Martiny, 2015; Kwon, Sreeush, et al., 2022).
The elemental ratios of phytoplankton link nutrient cycles and carbon fixation, thus impacting the distribution of
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organic carbon production and export to the deep ocean. In the latest generation of climate models, global par-
ticulate organic carbon (POC) export rates range widely, from 4.5 to 12 Pg C yr− 1, for the preindustrial era
(Henson et al., 2022). This uncertainty arises from differing model representations of several processes that drive
export, including inconsistent representations of phytoplankton stoichiometry (Henson et al., 2022; Kwiatkowski
et al., 2018; Séférian et al., 2020). Observations of particulate organic matter (POM) in the surface ocean have
revealed spatial patterns in C:P ratios (RC:P), with higher ratios in warm, nutrient‐limited regions and lower ratios
in nutrient‐replete regions, leading to enhanced or diminished carbon export, respectively (Martiny et al., 2013;
Tanioka, Garcia, et al., 2022). The geographic variations in RC:P of phytoplankton and exported organic matter
could significantly impact the long‐term distribution of carbon pools between the atmosphere and ocean.
Environmentally driven shifts in organic matter stoichiometry may buffer decreases in biological carbon uptake
under future climate scenarios (Tanioka &Matsumoto, 2017). For instance, increasing phosphorus use efficiency
has been shown to compensate for declining nutrient inputs, leading to stable carbon export at the Bermuda
Atlantic Time‐series Site despite warming, increased stratification, and reduced nutrient supply in recent years
(Lomas et al., 2022). A number of modeling studies have shown that increasing phytoplankton nutrient use ef-
ficiency could buffer expected future declines in carbon export (Kwiatkowski et al., 2018; Kwon, Sreeush,
et al., 2022; Tanioka &Matsumoto, 2017). However, the magnitude of this buffering effect is uncertain and could
range from a small effect (Kwiatkowski et al., 2018; Tanioka & Matsumoto, 2017) to entirely offsetting the
effects of diminished surface nutrients to maintain relatively constant carbon export by the end of the 21st century
(Kwon, Sreeush, et al., 2022). Therefore, accurately accounting for stoichiometric variability is essential for
understanding how ocean carbon and nutrient cycles respond to environmental change.

While phytoplankton stoichiometry plays a crucial role in the biological carbon pump, parameterizing stoichi-
ometry in global models remains a challenge, as there is no clear consensus on the dominant mechanism driving
global variability. Fixed stoichiometry continues to be used widely in biogeochemical models (Henson
et al., 2022; Séférian et al., 2020). The global models that have transitioned to variable stoichiometry typically
rely on simple empirical relationships between RC:P and environmental conditions instead of explicitly modeling
the underlying physiological mechanisms controlling RC:P (e.g., Long et al., 2021; Moore et al., 2013). Multiple
hypotheses could explain how environmental conditions drive varying C:P ratios in phytoplankton (see review by
Moreno and Martiny (2018)). For example, the translation‐compensation hypothesis posits that global patterns of
C:P ratios are primarily driven by temperature. This hypothesis assumes the total phosphorus requirement of a cell
is controlled primarily by the cellular content of phosphorus‐rich ribosomes. This is based on the idea that the
synthesis rate of ribosome‐specific proteins is temperature‐sensitive, so cells require higher ribosome content at
lower temperatures to achieve the same growth rate (Toseland et al., 2013; Yvon‐Durocher et al., 2015). Another
hypothesis suggests that phytoplankton decrease intracellular phosphorus demand under phosphorus‐limited
conditions, for example, by substituting phospholipids with sulpholipids (Lin et al., 2016; Van Mooy
et al., 2009). Due to the covariation of temperature and nutrient availability on large scales and the limited data set
of in situ measurements, the relative influence of these different environmental factors remains unclear (Tanioka,
Garcia, et al., 2022). Because the dominant driver remains ambiguous, empirical models differ in how they link
the environment to stoichiometry. Proposed models include simple functions of temperature (e.g., Yvon‐
Durocher et al., 2015), nutrients (e.g., Galbraith & Martiny, 2015), or a combination of multiple environ-
mental factors (e.g., Tanioka, Garcia, et al., 2022). However, all of these models lack a mechanistic link to
biological processes that control phytoplankton composition, which can limit their predictive power, particularly
under novel or changing environmental conditions. Furthermore, these empirical relationships are derived from
suspended POM observations, which may not be representative of the organic matter exported from the euphotic
zone. To predict future changes to the biological carbon export flux, it is necessary to understand the mechanistic
links between observed variables and the stoichiometry of exported material.

The combination of a trait‐based mechanistic model of phytoplankton growth and a global biogeochemical in-
verse model presents a novel framework for investigating the underlying mechanisms driving global patterns of
C:P ratios. Recent advances in inverse modeling have enabled the prediction of global patterns of exported
organic matter C:P ratios using extensive biogeochemical tracer observations (e.g., phosphate and dissolved
inorganic carbon) combined with a data‐constrained ocean circulation model. By optimizing a biogeochemical
inverse model across 11 ocean provinces, Teng et al. (2014) found regionally distinct RC:P values which aligned
well with the patterns seen in surface POM observations. Kwon, Holzer, et al. (2022) extended the inverse
modeling framework to constrain how C:P ratios covary with sea surface phosphate concentrations. Building
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upon these advancements and drawing upon recent progress in computational ecology, we further develop the
inverse‐modeling framework by incorporating biological mechanisms that drive C:P ratios globally. This inte-
gration represents a novel combination of cellular‐level processes with global‐scale hydrographic data, ac-
counting for the joint uncertainty of hydrographic and biological observations. Our approach embeds a trait‐based
mechanistic model of phytoplankton growth into a global steady‐state biogeochemical inverse model. Trait‐based
approaches, which define the phytoplankton community in terms of cellular‐level physiological traits that trade‐
off in response to different environmental conditions, are increasingly common in community ecology (Kiørboe
et al., 2018; Litchman & Klausmeier, 2008). Our trait‐based cellular growth model relates phytoplankton growth,
elemental stoichiometry, and environmental factors including light, temperature, and nutrient availability. We use
an optimality‐based approach (Smith et al., 2011), in which cellular growth rates are maximized by reallocating
resources to different functional or macromolecular pools under given growth conditions (e.g., Daines
et al., 2014; Inomura et al., 2020; Moreno et al., 2018). To avoid any sampling bias that could be reflected in
observations of suspended particulate organic matter, we optimize the cellular growth model using only the
imprint of cellular stoichiometry on the global hydrographic tracer fields. This approach allows us to predict
global patterns of phytoplankton stoichiometry and biological carbon export that are jointly consistent with both
hydrographic observations and biological growth mechanisms.

Here, we assess the impacts of different RC:P parameterizations on the global total organic carbon export flux and
the capacity for changes in phytoplankton RC:P to buffer predicted declines in export production. To do this, we
optimize a steady‐state biogeochemical inversemodel using a variety of parameterizations for phytoplanktonRC:P.
This includes a globally constant RC:P parameter as a baseline of comparison, as well as two simple empirical
functions of the environment: (a) a hyperbolic function of temperature and (b) a hyperbolic function of phosphate
concentration. Next, to address the lack of mechanistic basis of these simple empirical models, we implement a
more complex mechanistic cellular growth model to determine the spatial pattern of RC:P. We investigate how the
cellular growth model can provide a more mechanistic understanding of the emergent RC:P patterns than empirical
models and demonstrate the potential of using hydrographic observations to constrain a generalizable model of
cellular‐scale phytoplankton growth. Finally, we test the sensitivity of the carbon cycle to the predicted RC:P

patterns under a hypothetical future climate. Overall, our findings emphasize the critical role of accurately rep-
resenting phytoplankton stoichiometry in global biogeochemical models.

2. Methods
We optimize a biogeochemical inverse model using each of the four parameterizations for organic matter RC:P

described below. The optimizable parameters are summarized in Table 2. The inverse model optimization,
described in Section 2.2, finds the parameter set that produces the best possible fit to climatological mean hy-
drographic observations. We next project these models under an idealized future climate scenario to demonstrate
the effect of different RC:P parameterizations on predictions of future carbon export and atmospheric pCO2.

2.1. Stoichiometric Models

2.1.1. Constant Model

To establish a baseline of comparison, we optimize the biogeochemical inverse model using a globally constant
value for organic matter RC:P. This stoichiometric model adds a single optimizable parameter, rconstC:P , to the base
biogeochemical model (described in Section 2.2 and Appendix A).

2.1.2. Phosphate‐Only Model

The nutrient‐only stoichiometric model is based on the RP:C regression of Galbraith and Martiny (2015). This
model expresses phytoplankton RC:P as a hyperbolic function of the ambient phosphate concentration:

RC:P =
1

c1[DIP]obs + c2
, (1)

where c1 and c2 are optimizable parameters, and [DIP]obs is the climatological observed phosphate concentration
field from the World Ocean Atlas 2013 (H. E. Garcia et al., 2014). In this model, the reciprocal of RC:P,
phytoplankton RP:C, is a linear function of phosphate. Using the observed [DIP], rather than the modeled [DIP], in
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the RC:P parameterization allows us to circumvent potential errors stemming from bias in modeled surface
phosphate concentrations.

2.1.3. Temperature‐Only Model

The temperature‐only stoichiometric model expresses phytoplankton RC:P as a hyperbolic function of
temperature:

RC:P =
1

c3Tobs + c4
, (2)

where c3 and c4 are optimizable parameters. This functional form was chosen for ease of comparison with the
nutrient‐only model. Tobs in this equation is the climatological observed temperature from World Ocean Atlas
2013 (Locarnini et al., 2013). In this model RP:C is a linear function of temperature.

2.1.4. Mechanistic Cellular Growth Model

The mechanistic stoichiometric model is a trait‐based model of phytoplankton growth that expresses phyto-
plankton RC:P as a non‐linear function of four environmental variables: temperature, phosphate concentration,
nitrate concentration, and photosynthetically active radiation (PAR). As in the temperature‐dependent and
phosphate‐dependent model, these environmental variables are set to the World Ocean Atlas gridded climato-
logical mean fields for temperature (Locarnini et al., 2013) and nutrient concentrations (H. E. Garcia et al., 2014),
as well as a satellite‐based estimate of euphotic zone PAR (NASA, 2018). Since we do not explicitly model a
nitrogen cycle, utilizing the observed dissolved inorganic phosphorus (DIP) concentrations in the RC:P param-
eterization, instead of relying on modeled [DIP], both prevents the propagation of biases in the surface DIP field
and ensures a realistic degree of covariance with the observed distribution of surface DIN concentrations. The
inverse model optimization, described in the following Section 2.2, optimizes five adjustable parameters within
this model (summarized in Table 2). The remaining fixed parameter values are listed in the appendix Table B1.

In this model, the phytoplankton C:P ratio is calculated as the ratio between cellular quotas of carbon, QCcell, and
phosphorus, QPcell, such that

RC:P =
QCcell
QPcell

. (3)

The full expression for the quotas, QPcell and QCcell, are shown in Equations 11 and 14. In our resource allocation
model, these cellular quotas are determined by optimizing the relative allocation of cellular dry mass to specific
functional apparatuses, each with fixed carbon and phosphorus content, in order to maximize growth rates in a
given environment. This model, based on the works of Shuter (1979) and expanded by Moreno et al. (2018),
captures essential physiological constraints and trade‐offs governing cellular growth in response to environmental
variations. Phytoplankton adapt to resource limitations by reallocating metabolic resources among different
cellular functions to optimize growth (Geider & La Roche, 2002; Moreno & Martiny, 2018). The model repre-
sents a trade‐off between investment in photosynthesis, biosynthesis, and nutrient acquisition.

The total dry mass of a cell with radius r is divided into fractional contributions to a set of functional pools: the
photosynthetic apparatus (L), the biosynthetic apparatus (E), and structural components (S(r)). The allocations to
these pools must satisfy:

L + E + S(r) = 1. (4)

Each functional compartment has a fixed stoichiometry, calculated by the weighted average stoichiometry of the
primary macromolecules (e.g., proteins, lipids, ribosomes, DNA) making up the compartment. Approximate
values for the elemental composition of each class of macromolecule are taken from Geider and La Roche (2002)
and listed in Table 1. We assume that 60% of the biosynthetic apparatus is composed of ribosomes, with proteins
making up the remaining 40% of this pool, and that 70% of the photosynthetic apparatus is composed of proteins
with the remaining 30% of this pool composed of lipids.
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The structural compartment includes cell membrane, nutrient uptake proteins, and a fixed allocation, γS, to other
necessary structural components such as DNA and other lipids that are not involved in photosynthesis or
biosynthesis,

S(r) =
αS
r
+ γS. (5)

The specific allocation to surface‐associated structure (i.e., machinery associated with the membrane and peri-
plasmic space), αS/r, is inversely proportional to cell size to account for the changing relative volume of a cell's
surface structure with radius (following Clark et al. (2011) and Clark et al. (2013)). For simplicity, we assume the
mass allocated to this pool is divided evenly between membrane and periplasm/nutrient uptake machinery. We
prescribe the specific allocation to the size‐independent structural pool as γS = 0.189.

The cellular growth rate is determined by the minimum of the mass‐specific photosynthetic, biosynthetic, and
nutrient (P & N) uptake rates

μL =
αIL
1 +ΦS

, (6)

μE = kSTE, (7)

μP =
4πrfPDP[DIP]

4
3πr3ρcell pdry (EPE + γSPS)

, (8)

and, μN =
4πrDN[DIN]

4
3πr3ρcell pdry (ENE + LNL + γSNS +

αS
2r ( fPNprot + Nmem))

. (9)

The maximum photosynthetic and biosynthetic rates are proportional to the investment in the respective func-
tional pools, L and E. The specific rate of carbon fixation from photosynthesis, αI, is a function of light and
temperature. The light response is designed to capture the effects of both electron transport and carbon fixation on
photosynthesis, following Moreno et al. (2018), and the temperature dependence is modeled as a Q10 function

with an optimizable parameter, Qphoto10 , that is, αI(T) = (αI)T0 × (Qphoto10 )
(T− T0)/10. A fixed specific carbon cost of

synthesis, ΦS = 0.67, is prescribed following Shuter (1979). The efficiency of biosynthesis (kST) depends on
temperature with an optimizable reference value (kST0 ) at 25°C and a prescribed Q10 value of 2 (Shuter, 1979).
Nutrient uptake is assumed to be diffusion limited. The mass specific uptake rates of P and N are defined as the
diffusive flux across the cell surface divided by the mass of the nutrient within all functional machinery in the cell.
The diffusive flux scales with cell size and the ambient nutrient concentration ([DIP] or [DIN]). The diffusivity,
D, is assumed to depend on temperature with a Q10 value of 1.5 and a reference diffusivity of 1.3 × 10

− 9 m2/hr at
15°C. The intracellular nutrient content is determined by the total dry mass of the cell and the average mass
fraction of the nutrient within all functional machinery, weighted by the allocation to each pool. In Equations 8
and 9, PX and NX denote the mass fraction of phosphorus and nitrogen in the functional pool, X, where X rep-
resents E, L, or S. Phosphorus uptake is further limited by the concentration of dedicated P uptake proteins ( fP) in
the cell's periplasmic space. Under P limitation, all of the periplasmic mass is dedicated to uptake proteins. When
phosphorus is not limiting, small cells can reduce their N requirement by reducing their investment in phosphate
uptake proteins, down to a minimum concentration (Amin) of 5% of the cell dry mass, such that

2Aminr
αS

≤ fP ≤ 1, if r<
αS
2Amin

,

fP = 1, otherwise.
(10)

The model finds the cellular strategy (i.e., chooses values for E, L, r, and fP), that maximizes the growth rate in a
given environment. We assume that this strategy represents the dominant phenotype of the local phytoplankton
community, and is therefore representative of the entire community.

Since the mass‐specific nutrient uptake rates scale with 1/r2, smaller cells have higher nutrient affinities,
providing a competitive advantage for small cells in nutrient‐limited regions. Where nutrients are replete, larger
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cells are able to achieve faster maximum growth rates by increasing their
relative allocations to L and E (Equations 6 and 7). Thus there is a trade‐off
between nutrient affinity and maximum growth rate. The optimal solution
balances rates of nutrient uptake, biosynthesis, and photosynthetic carbon
fixation (μE = μL = μnutrient). The nutrient limitation will be either N limited
(μnutrient = μN < μP with fP minimized), P limited (μnutrient = μN < μP with
fP = 1), or co‐limited (μnutrient = μN = μP), depending on the environmental
conditions.

Once the allocation to each functional pool is determined, RC:P is calculated
by dividing the cellular C quota by the cellular P quota. The cellular P quota is
determined by the percentage of cellular dry mass that is allocated to each
functional pool containing phosphorus, that is, biosynthesis and size‐
independent structure. The model also allows for cellular inorganic phos-
phorus (e.g., polyphosphate) accumulation in large cells. Inorganic phos-

phorus storage within cells is poorly understood and difficult to quantify (Martin & Van Mooy, 2013), so it is
currently parameterized simply to scale as a logistic function of ambient phosphate, with coefficients that must be
determined empirically. Additionally, the phospholipid content can be modulated to account for sulfolipid
substitution at low phosphate concentrations (Van Mooy et al., 2009). The total cellular P quota is calculated as

QPcell =
4
3
πr3ρcellpdry(

EPE + γSPS

mP
+ QPphospholipid + QPstorage), (11)

where the product of the cell volume ( 43πr
3), cell density (ρcell), and dry mass fraction of the cell (pdry) yields the

total dry mass of the cell. PE and PS are the mass fraction of phosphorus in the biosynthetic and size‐independent
structural functional pools, respectively, and mP = 31.0 g/mol is the molar mass of phosphorus. In our model,
phospholipids and phosphorus storage are treated as non‐essential phosphorus pools, and are modeled as,

Table 1
Approximate Elemental Composition of the Macromolecules Represented in
the Cellular Growth Model, Expressed as the Mass of Each Element With
Respect to the Molecules Dry Weighta

Molecule Composition gC/gDW gN/gDW gP/gDW

Protein C4.43H7O1.44N1.16S0.019 0.53 0.16 –

Lipids C40H74O5 0.76 – –

Phospholipids C37.9H72.5O9.4N0.43P 0.65 0.008 0.043

Ribosomesb RNA + Protein 0.419 0.16 0.047

DNA C9.75H14.25O8N3.75P 0.36 0.16 0.095
aValues compiled by Geider and La Roche (2002). bAssumes ribosomes are
composed of equal amounts RNA and proteins.

Table 2
Optimized Parameter Descriptions and Units

Symbol Description Units

bP Martin curve exponent of POP flux attenuation profile –

kdP DOP remineralization rate constant s− 1

α Coefficient for NPP (Equation A6) s− 1

β Exponent for NPP (Equation A6) –

bC Exponent of POC flux attenuation profile –

d e‐folding length scale for PIC flux attenuation m

kdC DOC remineralization rate constant s− 1

Rrain Rain ratio (CaCO3 to POC production ratio) –

rconstC:P Globally Constant RC:P value molC/molP

c1 Coefficient of [DIP] in Equation 1 molP
molCμM

− 1

c2 Constant coefficient in Equation 1 molP/molC

c3 Coefficient of Temperature in Equation 2 molP
molC(°C)

− 1

c4 Constant coefficient in Equation 2 molP/molC

Qphoto10 Q10 Temperature dependence of photosynthesis –

fstor Scale factor for intracellular phosphorus storage molP
molCμM

− 1

kS,T0 Synthesis rate of biosynthetic apparatus at 25°C hr− 1

rstor0 Size threshold for P storage (inflection point of the logistic function in Equation 13) μm

αS Proportionality coefficient that scales surface‐associated structure with cell size μm
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QPphospholipid = QCcell
fplip

αS
2rPplip(

mC
mP
)

1 + e− βplip([DIP] − [DIP]
plip
0 )

, (12)

and

QPstorage = QCcell
fstor [DIP]

1 + e− βstor(r− rstor0 )
. (13)

The maximum phospholipid content of the cell is inversely proportional to r, so the maximum potential contri-
bution of phospholipids to the total cellular phosphorus quota increases for smaller cells, and this term becomes
negligible for sufficiently large cells. The modeled phospholipid content is scaled following a logistic function of
the ambient phosphate concentration with midpoint [DIP]plip0 = 1mmol m− 3 and scale factor βplip= 3m

3 mmol− 1.
In Equation 13, fstor is an optimizable parameter that scales phosphorus storage linearlywith the ambient phosphate
concentration. Intracellular phosphorus storage approaches this linear relationship when cells are large ( r> rstor0 )

and approaches zero as cell size decreases for r< rstor0 . The inflection point of the logistic function sigmoid,
denoted as rstor0 , is an optimizable parameter that signifies the size threshold below which the storage quota ap-
proaches zero. Additionally, the scale factor, βstor = 2 μm− 1, governs the size range over which the function
transitions from near zero to asymptotically approaching a linear function of phosphate. Equations 12 and 13 are
formulated to be consistent with Equation 21 of Moreno et al. (2018), in which RC:P = 1/ (RfunctionalP:C + RstorageP:C ) .

The cellular carbon quota is determined by the percentage of cellular dry mass that is allocated to each functional
pool containing carbon, as well as a carbon reserve pool. The C quota is calculated as,

QCcell =
4
3
πr3ρcellpdry

(ECE + LCL + γSCS +
αS
2r ( fPCprot + Cmem))

mC
(1 + fCreserve), (14)

where CE CL and CS are the mass fraction of carbon in the biosynthetic, photosynthetic, and size‐independent
structural pools, respectively; Cprot and Cmem are the mass fraction of carbon in nutrient uptake proteins and
cell membrane; mC = 12.0 g/mol is the molar mass of carbon, and the relative amount of cellular carbon stored in
the carbon reserve is controlled by,

fC reserve =
24
4
μL (1 +ΦS) = καIL. (15)

The size of this carbon reserve is proportional to the growth rate of the cell. Excess carbon is accumulated in this
reserve by photosynthesis throughout the day to sustain the carbon cost of cellular maintenance during the night.
The factor of 1/4 in Equation 15 comes from integrating the photosynthetic carbon fixation rate over a 24 hr
period, assuming a fixed diurnal cycle with 12 hr of light daily.

2.2. Inverse Modeling Method

The global biogeochemical model solves for the steady‐state phosphorus and carbon cycles. The phosphorus
cycle model resolves three pools: dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP),
and particulate organic phosphorus (POP). The carbon cycle model has four pools: dissolved inorganic carbon
(DIC), dissolved organic carbon (DOC), particulate organic carbon (POC), as well as particulate inorganic carbon
(PIC) in the form of calcium carbonate. Additionally, the carbon cycle model includes tracers for alkalinity and,
optionally, atmospheric pCO2. The model utilizes a data‐constrained 3D advection‐diffusion operator computed
with the Ocean Circulation Inverse Model (OCIM; DeVries & Holzer, 2019; DeVries & Primeau, 2011). The
circulation model has a horizontal resolution of 2° × 2° with 24 layers ranging in thickness from 36 m near the
surface to 633.5 m near the bottom. Using the pre‐computed transport matrix from OCIM allows us to efficiently
solve the governing biogeochemical equations while maintaining realistic ocean circulation patterns.

The governing equations for the phosphorus and carbon cycle models are shown in Appendix A. In both
biogeochemical cycles, particulate organic matter (POP and POC) is formed by the assimilation of inorganic
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tracers (DIP and DIC); particulate organic matter dissolves into DOP and DOC, and these dissolved organic
tracers remineralize to form DIP and DIC. Particulate organic matter (POM) is produced in the euphotic zone,
defined as the top two vertical layers of the model, spanning from the sea surface to a globally constant depth of
73.4 m. The biological uptake rate is modeled using satellite‐based estimates of net primary production (NPP) and
scaled by two optimizable parameters, α and β (Equation A6). We assume all production is fueled by DIP
assimilation, neglecting any biological uptake of dissolved organic matter (DOM). Although we do not explicitly
model other limiting nutrients (e.g., N, Fe, Si), their influence is implicit in the production term through the impact
of nutrient limitation on the spatial variability of the observed NPP field. The net production of organic carbon is
assumed to be proportional to organic phosphorus production with a spatially variable stoichiometric ratio, RC:P,
described in the stoichiometric models Section 2.1. For simplicity, all POM production is routed through the
particulate pool before dissolving into DOM and remineralizing. This simplified routing differs from other
biogeochemical models, in which net production feeds into both POM and DOM, and the remineralization of both
POM and DOM influences their inorganic pools. We chose this simplified routing of organic matter through the
particulate and dissolved pools because previous inverse modeling studies by Kwon, Holzer, et al. (2022) and
Wang et al. (2019) found that the POM and DOM partitioning of net community production are weakly con-
strained by the inverse model. This is largely due to the coarse resolution of our model. At the resolution of our
model, the net effect of either regeneration pathway is effectively equivalent. The inverse model balances the net
production of a tracer within a grid box with the flux divergence of that tracer out of the grid box. Because
biological transformations operate on shorter timescales than circulation, achieving this balance is insensitive to
the specific production or remineralization pathway organic matter follows within a grid box. Additionally,
biogenic production of PIC is proportional to POC production, using a globally uniform rain ratio (Rrain; opti-
mizable parameter). PIC remineralizes directly to DIC with a prescribed dissolution rate constant, and the sinking
flux of PIC attenuates following an exponential function with a globally uniform dissolution length scale (d;
optimizable parameter). Globally uniform parameters control the dissolution rate of POM (κp; fixed parameter)
and remineralization rate of DOM (kdP and kdC; optimizable parameters). The sinking flux of POM attenuates
according to a power law function with a globally constant exponent. To allow for preferential remineralization of
organic phosphorus, the model optimizes separate exponents for POP (bP) and for POC (bC). While vertical
migration is not explicitly represented, it is implicitly accounted for in the model, as migratory export influences
the shape of the POP and POC flux‐attenuation profiles.

The phosphorus cycle model can be solved for the steady‐state [DIP], [DOP], and [POP] fields by direct matrix
inversion. Given the [DIP] solution, the carbon cycle model is solved iteratively using Newton's method (Kel-
ley, 2003). The steady‐state solutions to the governing equations yield the biogeochemical tracer fields expressed
as implicit functions of the model's adjustable parameters. The log‐transformed adjustable parameters are opti-
mized using Matlab's unconstrained optimization function, fminunc, to minimize the negative of the log of the
posterior probability function (i.e., to minimize the misfit between the model solution and the climatological
average observed tracer fields). Because we assign flat priors to the parameters to be optimized, this objective
function is equivalent to the negative log likelihood function, assuming Gaussian errors. This objective function
measures the fraction of the observed variances in the climatological mean DIP, DIC, DOC, and alkalinity tracer
fields that the model is unable to capture.

For our comparison of RC:P parameterizations, we first optimize the phosphorus cycle model to the climatological
mean DIP observations, obtained from GLODAPv2 (Olsen et al., 2016) and regridded to our model grid. We
optimize four adjustable parameters in the phosphorus cycle model: kdP, bP, α, and β (Table 2). The objective
function to be minimized is the negative of the logarithm of the posterior probability function (abbreviated as the
log‐improbability function, Limp), defined as

Limp,P =
1
2

∑V ⋅ ( [DIP]mod − [DIP]obs)
2

∑V ⋅ ( [DIP]obs − 〈[DIP]obs〉)
2 , (16)

where V is the volume of the model grid cells, the angle brackets represent the volume‐weighted global average,
and the subscripts mod and obs indicate modeled and observed fields. The modeled field is the steady‐state
solution to the phosphorus cycle model. In constructing this objective function, we extract only the model grid
cells in which we have observations.
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We then perform separate optimizations of the carbon cycle model, each with one of the four parameterizations of
RC:P of biological uptake (described in Section 2.1). Table 2 provides a summary of all optimizable parameter
descriptions. Regardless of the choice of RC:P parameterization, the model optimizes four carbon cycle param-
eters: bC, kdC, d, and Rrain. In addition to these four parameters, the constant RC:Pmodel optimizes one parameter
for the globally constant RC:P value, and the models with temperature‐dependent and phosphate‐dependent RC:P

each optimize two additional parameters controlling the variability of RC:P. The cellular growth model optimizes
five additional parameters affecting RC:P, bringing the total to nine optimizable parameter values for this model.
The resulting models therefore differ in more than just the spatial pattern of RC:P. This allows for some
compensation between the pattern of RC:P and the magnitude of these carbon cycle parameters.

For this optimization the log‐improbability function is defined as:

Limp,C =
1
2

(
∑V ⋅ ( ( [DIC]mod + Cant) − [DIC]obs)

2

∑V ⋅ ( [DIC]obs − 〈[DIC]obs〉)
2 +

∑V ⋅ ( [ALK]mod − [ALK]obs)
2

∑V ⋅ ( [ALK]obs − 〈[ALK]obs〉)
2

+
1
4

∑V ⋅ ( [DOC]mod − [DOC]obs)
2

∑V ⋅ ( [DOC]obs − 〈[DOC]obs〉)
2).

(17)

As in the phosphorus model, V is the volume of the model grid cells and the angle brackets represent the volume‐
weighted global averages for the tracers. The subscripts mod and obs refer to the steady‐state solution to the
carbon cycle model and observed tracer fields, respectively. The DIC and alkalinity observations are from the
GLODAPv2 data set (Olsen et al., 2016) and the DOC observations are from a global compilation by Letscher and
Moore (2015), in which the refractory component has been removed. The observations in these data sets are bulk‐
averaged onto our model grid. We assign a weighting factor for DOC that is 25% of the other components because
there are larger observational uncertainties for DOM compared to the mapped DIC and alkalinity fields. Addi-
tionally, there are significantly fewer DOC observations than observations of DIC and ALK: after binning, we
have 63,211 independent DIC data points and 59,211 independent ALK data points, while the DOC compilation
has only 9,505 independent data points.

In order to use contemporary DIC observations to constrain the preindustrial steady‐state model, we need to
account for the change in ocean DIC concentration due to anthropogenic CO2 uptake. Therefore, we add an
anthropogenic DIC field, Cant, to the steady state solution, [DIC]mod in the objective function. This field is
estimated by time‐stepping the carbon cycle model from an initial preindustrial steady‐state solution, using a
prescribed atmospheric pCO2 time‐series (Meinshausen et al., 2017). We then define Cant as the difference be-
tween the contemporary model DIC field and the steady state model solution. We assume the biological carbon
pump does not change over the course of the observational record and that the impact of the biological model on
the physical transport of injected anthropogenic DIC is negligible. We also assume that any differences in
anthropogenic DIC uptake between biological models have negligible impact on air‐sea gas exchange. Therefore,
Cant is computed once prior to model optimization and remains fixed across all model optimizations.

2.3. Testing Sensitivity to Future Change

After optimizing the biogeochemical model with each of the four parameterizations of RC:P, we next explore how
changing environmental conditions affect stoichiometric ratios and ocean carbon storage by reevaluating each of
the optimized models for a hypothetical future climate. To isolate the direct effect of the temperature and/or
nutrient dependence of stoichiometry, we performed an idealized sensitivity study in which we reevaluated the
four RC:P functions given perturbed environmental inputs, and used the resulting spatial distribution of RC:P to
recompute a new carbon cycle equilibrium state. All model parameters were held fixed to the values optimized for
the preindustrial ocean state. We applied globally uniform perturbations to the temperature and nutrient fields
seen by the RC:P functions. Surface phosphate and nitrate concentrations were reduced by 31% and 21%
respectively, based on the relative change in the global mean surface nutrient concentrations between 1850 and
2100, predicted by a global climate model (CESM) under the RCP8.5 emissions scenario. Using a relative change
rather than modeled projections directly ensures that the direction of change from the historical observations is
consistent with the direction of change predicted by the climate model and ensures reasonable projected con-
centrations, despite biases in the climate model's preindustrial state. We additionally increase the surface ocean
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temperature uniformly by about 3°C. This is consistent with the projected
global mean sea surface temperature increase by 2100 projected under
RCP8.5 (CMIP5 models) and SSP5‐8.5 (CMIP6) (Kwiatkowski et al., 2020).
In this sensitivity experiment, only the RC:P function is affected by the future
conditions. We therefore can attribute all changes to the resulting carbon
cycle equilibrium state to the effect of stoichiometric plasticity.

In the preindustrial steady‐state optimization, we held the atmospheric pCO2
fixed at a value of 278 ppm. When considering future change, it no longer
makes sense to hold the atmospheric CO2 concentration fixed. Instead, we
added a prognostic equation for atmospheric pCO2 in the form of a simple
one‐box model (Fu &Wang, 2022). This allows us to use the conservation of
total carbon to determine how carbon is partitioned between the atmosphere
and oceanic reservoirs as a function of the perturbed RC:P fields.

To isolate the impact of the RC:P parameterization on the carbon cycle, we
make a number of simplifying assumptions: (a) We assume that the biological
production of organic phosphorus remains fixed at the optimized model
levels. The imposed nutrient decline affects only the RC:P parameterization,
leaving the rest of the biogeochemical model unaffected. Because produc-
tivity is modeled using the biological uptake of DIP, a decrease in surface
phosphate would otherwise reduce the total productivity of the system. For all
experiments, we prescribe the biological uptake of DIP to that of the model
optimized to modern climatology. (b) We ignore changes in air‐sea gas ex-
change due to sea surface warming and salinity changes under the future
scenario. The temperature and salinity inputs to the air‐sea gas exchange

equation are held fixed at the climatological values used in the model optimization. (c) In the cellular growth
model, the input light field is also held fixed at climatological values. (d) We do not consider the impacts of
changing large‐scale circulation patterns. We use the same steady‐state OCIM circulation pattern throughout all
experiments. (e) Finally, it is important to note that our models are not time‐evolving models. We only solve for
the equilibrium state carbon cycle given a perturbed map of RC:P without computing the transient approach to the
new equilibrium. Given the number of simplifying assumptions here, these model results should not be inter-
preted as accurate predictions of future ocean conditions. Instead, our perturbation experiments are intended to
highlight the disparity in the magnitude and direction of change between the models optimized with different
parameterizations of RC:P.

3. Results
In this section, we will describe our results pertaining to the model optimization, the preindustrial steady‐state
tracer distributions, and the future sensitivity experiment. First, we show that all optimized models were able
to reproduce the observed hydrographic tracer distributions well. We next discuss the spatial patterns of carbon‐
to‐phosphorus uptake ratios, RC:P, for each parameterization. We additionally examine the C:P ratios for the
exported organic matter and the implied organic carbon export flux. Finally, we present the results of the idealized
sensitivity experiment to demonstrate how different parameterizations of RC:P influence the partitioning of carbon
dioxide between the atmosphere and ocean under perturbations to surface temperature and nutrient concentrations
associated with climate change.

3.1. Model Performance

All models are able to reproduce the observed hydrography reasonably well. Compared to the model with a
globally uniform RC:P, the temperature‐dependent, phosphate‐dependent, and cellular growth models improve the
model fit to hydrography (i.e., reduced the objective function value) by 0.8%, 8.4%, and 10.3%, respectively. All
models are conditioned on the same modeled phosphorus cycle, which is optimized independently and captures
more than 92% of the variance seen in the GLODAPv2 climatological DIP observations (R2 = 0.9281). Figure 1
demonstrates the similar ability of each model to reproduce observed hydrographic tracer distributions of DIC,
Alkalinity, and DOC. All models have a similar performance at matching the observed DIC and alkalinity fields,

Figure 1. Coefficient of determination, R2, of the model fit to GLODAPv2
observations of each steady‐state tracer field used in the model optimization.
For the constant, temperature‐dependent, phosphate‐dependent, and cellular
growth model parameterizations of RC:P, the model fit to observed DIC
yielded R2 values of 0.9130, 0.9090, 0.9108, and 0.9162, respectively. The
same models fit to observed alkalinity yielded R2 values of 0.8675, 0.8665,
0.8658, and 0.8670. DOC is given less weight than DIC and Alkalinity in the
optimization. R2 values for the modeled DOC fit to observations were 0.305,
0.3893, 0.5374, and 0.5272 for the constant, temperature‐dependent,
phosphate‐dependent, and cellular growth model parameterizations of RC:P,
respectively.
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with less than 2% difference in R2 values for the model fit to observations of these fields. Partly because the DOC
field is weighted less strongly in our objective function, the modeled DOC has larger discrepancies with the
observations as well as larger differences between models. Parameterizations with strongly varying C:P ratios,
namely the phosphate‐dependent and cellular growth models, demonstrate superior performance in their
representation of DOC compared to their less variable counterparts. Although the DOC misfit has only a
modest impact on the objective function value, this improvement indicates that strongly varying C:P ratios are
essential to accurately capture DOC:DOP gradients.

The optimal parameter values controlling RC:P, listed in Table 3, are comparable to previous estimates described
below. For the biogeochemical model in which we optimize a globally constant RC:P parameter, we find the global
optimal RC:P value to be 104:1 molC:molP, which is close to the canonical Redfield value of 106:1 (Red-
field, 1958) and to the value estimated from previous inverse model estimates, 105:1 (Teng et al., 2014). The
parameterizations allowing for spatially variable RC:P also produce global mean values within 15% of the Redfield
value of 106:1. However, the optimized empirical parameterizations of RC:P indicate a weaker temperature
dependence and stronger phosphate dependence than reported in previous studies. For the temperature‐dependent
RC:P parameterization, the optimized slope and intercept parameters (Equation 2) are
c3 = (− 10.1 ± 0.3) × 10

− 5 molP(molC)− 1(°C)− 1 and c4 = (11.9 ± 0.1) × 10
− 3 molP(molC)− 1. The optimized

slope corresponds to a weaker temperature dependence of RC:P than found in previous studies. For example,
Yvon‐Durocher et al. (2015) estimated that C:P ratios increases 2.6 fold from 0 to 30°C. In contrast, our tem-
perature dependent RC:Pmodel predicts that C:P ratios increase by just 36% over a similar temperature range. For
the phosphate‐dependent RC:P parameterization, the optimal slope and intercept parameter values (Equation 1) are
c1 = 9.2 ± 0.1‰/μM and c2 = 4.81 ± 0.05‰. Our optimized intercept is consistent with previous estimates of

Table 3
Optimized Parameter Values

Symbol Value

bP 1.104 ± 0.2%

kdP 1.65 × 10− 8 ± 0.9%

α 5.41 ×10− 7±11%10%

β 0.23 ± 4%

Symbol Constant C:P T‐dependent P‐dependent Cellular growth

bC 0.942 ± 0.3% 0.912 ± 0.3% 0.926 ± 0.3% 0.957 ± 0.3%

d 5.01 × 103 ± 0.8% 5.20 × 103 ± 0.8% 5.12 × 103 ± 0.7% 4.97 × 103 ± 0.7%

kdC 2.58 × 10− 8 ± 1% 2.39 × 10− 8 ± 1% 2.96 × 10− 8 ± 0.9% 2.90 × 10− 8 ± 0.9%

Rrain 3.51 × 10− 2 ± 0.7% 3.61 × 10− 2 ± 0.6% 3.36 × 10− 2 ± 0.6% 3.33 × 10− 2 ± 0.6%

rconstC:P 104.0 ± 0.7% – – –

c1 – – 9.20 × 10− 3 ± 1% –

c2 – – 4.81 × 10− 3 ± 1% –

c3 – − 1.01 × 10− 4 ± 3% – –

c4 – 1.19 × 10− 2 ± 1% – –

Qphoto10 – – – 3.56 ± 2%

fstor – – – 7.40 × 10− 3 ± 3%

kS,T0 – – – 9.34 ×10− 2± 6%
5%

rstor0 – – – 2.15 ± 11%
10%

αS – – – 0.39 ± 43%
30%

Note. A brief description of the parameters and their units can be found in Table 2. The first section contains the four phosphorus cycle parameters. These parameters are
optimized using inorganic phosphorus observations, then held fixed for all carbon cycle configurations. The next section contains the four carbon cycle parameters which
are optimized for each model configuration, regardless of the parameterization of RC:P. The final section of the table shows the parameter values directly controlling the
spatial pattern of RC:P in each model. The uncertainty values correspond to ±1 standard deviation of the posterior probability distribution function. For this calculation,
we use Laplace's approximation to approximate the posterior pdf as a multivariate Gaussian distribution centered at the most probably parameter values.
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c2 = 6.0 ± 0.2‰ and 4.8 ± 0.5‰ derived from linear regressions of P:C in suspended POM and [PO3−4 ] using
unbinned and binned‐lognormal mean data sets (Galbraith & Martiny, 2015), as well as c2 = 5.3 ± 1.0‰ esti-
mated by a separate inverse model optimization (Kwon, Holzer, et al., 2022). However, our optimized slope is
larger than previous estimates of c1= 6.9± 0.4‰/μM and c1= 7.3± 0.6‰/μM (Galbraith &Martiny, 2015), and
c1 = 6.6 ± 1.8‰/μM (Kwon, Holzer, et al., 2022), indicating that our phosphate‐dependent model has a stronger
dependence on phosphate than other estimates. The stronger phosphate dependence of our model compared to that
of Kwon, Holzer, et al. (2022) may result from the relative inflexibility of other components of the model that alter
the RC:P of exported organic matter in our model. For example, our model does not allow for spatial variability in
the remineralization rates of organic carbon and phosphorus. Thus, the exact parameter values are sensitive to the
biogeochemical model configuration and should be re‐optimized for any alterations of the biogeochemical model.

The optimized parameter values in the cellular growth model deviate from previous cellular models. Our fstor,
Q10,photo, and αS parameters are larger than analogous values used in previous cellular models (C. A. Garcia
et al., 2020; Moreno et al., 2018; Shuter, 1979; Toseland et al., 2013), while our reference specific synthesis rate,
kS,T0, is smaller than the assumed value of 0.168 hr

− 1 at 25°C used in the models of Shuter (1979) and Moreno
et al. (2018). The deviations in parameter values will be discussed in Section 4.1.

3.2. Steady‐State Tracer Distributions

3.2.1. RC:P of Organic Matter Production and Export

The production‐weighted global mean RC:P of organic matter uptake varies by up to 25% between models, with
even larger regional discrepancies (Figure 2a). The global mean uptake RC:P ranges from 99.0 for the temperature‐
dependent model to 123.9 for the phosphate‐dependent model, with the constant model and cellular growth model
producing intermediate mean values of 104.0 and 121.7, respectively. Figure 2a highlights the markedly different
latitudinal gradients that emerge from each of the RC:P models. The phosphate‐dependent model produces the
largest range of RC:P values, with zonal averages reaching up to 175 in the Northern Hemisphere subtropics, and
down to about 50 in the Southern Ocean. The temperature‐dependent model produces the smallest range of
values, with zonally averaged RC:P peaking at about 110 near the equator and gradually declining with latitude to a

Figure 2. Comparison of zonal average C:P ratios between models optimized with each of the four RC:P parameterizations.
Panel (a) illustrates the uptake C:P ratio of net community production. Panels (b) and (c) illustrate the C:P ratio of organic
matter export computed using two methods, which differ in their sensitivity to lateral advection. The adjoint method (b) finds
the C:P ratio of total organic matter export at the base of the model euphotic zone (approximately 73 m). The integrated DOM
remineralization method (c) computes the ratio of water column integrated DOC and DOP remineralization beneath the
euphotic zone. The zonal averages plotted in panels (a)–(c), are weighted by POP production, TOP export at the base of the
euphotic zone, and deep water column total DOP remineralization, respectively. Because all models use the same phosphorus
cycle model solution, these weights are equivalent across all four models.
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minimum value of 84 near the poles. The two empirical models are in good agreement on RC:P uptake near the
equator and at high latitudes in the northern hemisphere. However, they diverge substantially in the subtropics and
Southern Ocean. The phosphate‐dependent model predicts much higher RC:P values in the subtropics and much
lower RC:P values in the Southern Ocean than the temperature‐dependent model. The cellular growth model
follows a similar latitudinal trend to the phosphate‐dependent model, with the highest values in the subtropics, and
lowest values in the Southern Ocean. The latitudinal trends in RC:P found by the phosphate‐dependent and cellular
growth models are broadly consistent with the trends seen in ship‐based POM measurements (Tanioka, Garcia,
et al., 2022; Tanioka, Larkin, et al., 2022). Similar to these RC:P models, the C:P ratios measured in suspended
POM are generally high in the subtropics, lower at high latitudes, and intermediate in equatorial regions. The
phosphate‐dependent and cellular growth models also capture the observed elevation of the subtropical peak in C:
P stoichiometry in the Northern Hemisphere relative to the Southern Hemisphere (Tanioka, Garcia, et al., 2022).
The cellular growth model better aligns with arctic POM observations, which indicate moderately elevated RC:P

(Tanioka, Larkin, et al., 2022), whereas both empirical models predict relatively low RC:P in this region.

These latitudinal gradients in RC:P are driven by large‐scale environmental variations. While the empirical
functions are influenced by a single environmental factor, the cellular growth model reveals multiple mechanisms
contributing to the latitudinal gradient of RC:P stoichiometry. Figures 3a and 3b illustrate the latitudinal gradients
of the cellular carbon and phosphorus quotas individually. Figure 3b separates the contribution of non‐essential
phosphorus storage to the total phosphorus quota from the essential (non‐storage) contribution to the quota. The
cellular carbon quota and the non‐storage fraction of the phosphorus quota both scale with the optimal cellular
growth rate, with higher values at low latitudes, where warmer temperatures allow for faster synthesis rates

Figure 3. Zonal average growth strategy as a function of latitude produced by the cellular growth model optimized for the
preindustrial steady‐state. (a) and (b) illustrate the latitudinal gradients of the specific cellular carbon quota (a) and
phosphorus quota (b). In (b), the phosphorus quota is further broken down to separate the contribution of non‐essential
phosphorus storage (dotted line) from the functional, non‐storage component (dashed line) of the total cellular phosphorus
quota. The solid line represents the total phosphorus quota and is the sum of the storage and functional components. In this
model, RC:P is computed as the molar ratio of carbon and phosphorus quotas. The functional quotas are determined by the
optimal growth strategy as a function of the environment, but independent of any non‐essential luxury phosphorus storage.
(c–e) illustrate the optimal cellular growth strategy, including (c) the investment in each functional apparatus, where
E + L + S = 1. E represents the biosynthetic apparatus, L represents the photosynthetic apparatus, and S represents cell
structure, including both size‐independent (e.g., DNA) and surface‐associated (e.g., cell membrane and nutrient uptake
apparatus) structural components, (d) the cell radius and (e) the cellular growth rate. All zonal averages are weighted by
volume of the model grid cell.
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(Figures 3a, 3b, and 3e). In contrast, the luxury phosphorus storage pool—which is a function of phosphate
availability and cell size—is independent of growth rate. The phosphorus storage pool therefore decouples the C:
P stoichiometry from the cellular growth rate. These figures demonstrate qualitatively that the spatial structure of
RC:P from this model is driven in large part by the variability in the luxury phosphorus storage term in the model.
The strong phosphate dependence of the non‐essential phosphorus storage (driven by an elevated fstor value)
emerges from the inverse model optimization. This result suggests that cells must store significant amounts of
excess phosphorus in order for the growth model to produce RC:P patterns that are consistent with hydrographic
observations.

Alongside theRC:P patterns, the cellular growthmodel identifies biogeographies of cellular investment in different
functions across environmental gradients. Figure 3c illustrates the zonal average investment in each functional
apparatus across latitudes. In subtropical gyres, high RC:P values can be attributed to an increased investment in
surface‐associated structures, including nutrient uptake machinery, and an accompanying reduction in the
phosphorus rich biosynthetic apparatus. This restructuring is necessitated by the low nutrient concentrations in
these regions, which limit the diffusive uptake rates of phosphorus and nitrogen. To effectively balance nutrient
uptake, photosynthetic, and biosynthetic rates, cells adjust their resource allocation to prioritize nutrient uptake
machinery. Given that nutrient uptake occurs at the cell surface, this adaptation involves reducing cell size (as
depicted in Figure 3d). This reallocation reduces the cellular investment in biosynthetic and photosynthetic
machinery, leading to a lower intracellular phosphorus content and, consequently, a higher C:P ratio. Conversely,
at middle to high latitudes (greater than approximately 45°), abundant nutrients and larger cell sizes make the
surface‐associated structure pool, which scales with the surface area of the cell, insignificant relative to the total
cell volume, resulting in a consistent allocation to cell structure (S) equal to the size‐independent structural
allocation (γS). Therefore, the latitudinal trend in cell strategy in these regions arises from the trade‐off between
photosynthesis and biosynthesis. Colder temperatures and lower light levels at high latitudes drive a more rapid
decline in photosynthetic efficiency (αI) than biosynthetic efficiency (kST), resulting in larger investments in
photosynthesis (L) and less in biosynthesis (E) towards higher latitudes. Despite similar relative investments in the
E, L, and S functional pools at high latitudes in both hemispheres, the RC:P values in the Northern and Southern
Hemispheres have contrasting trends, with relatively high RC:P values in the Arctic and low RC:P values in the
Southern Ocean. This discrepancy in RC:P values between the northern and southern high latitudes can be
attributed to intracellular “non‐essential” phosphorus storage, as illustrated by elevated phosphorus storage quotas
in the Southern Hemisphere (Figure 3b). The Southern Ocean has higher observed nutrient concentrations than the
Arctic Ocean, which consequently allows for larger cell sizes by increasing the diffusive nutrient flux. Thus, low
RC:P values in the Southern Ocean are driven by high concentrations of intracellular phosphorus storage.

While our RC:P functions explicitly calculate the ratio of C:P taken up by phytoplankton in the surface ocean, it is
the stoichiometry of exported material that ultimately controls the steady‐state carbon reservoirs. The export RC:P

is modulated by independent remineralization rates of carbon and phosphorus. Because all optimized models
produced faster solubilization of POP relative to POC (bP > bC), the ratio of C:P in the particle export flux in-
creases with depth. This is consistent with observational evidence that sinking organic particles become
increasingly phosphorus depleted with depth (Tanioka et al., 2021). This mechanism allows for a more efficient
biological pump, by allowing the same phosphorus atoms to fuel several cycles of production before being
sequestered in the deep ocean.

Furthermore, export stoichiometric ratios include both the particulate and dissolved export fluxes, and thus are
strongly influenced by the advection of dissolved organic matter. To account for this advection, we use the adjoint
of the tracer transport equation to trace the remineralization flux of organic carbon and phosphorus back to where
the organic matter last crossed the base of the euphotic zone (see Primeau et al., 2013). An alternative approach is
to average the remineralization rate of organic carbon and phosphorus within a given water column. Because
organic matter can be transported laterally and because organic phosphorus and organic carbon are not remin-
eralized at the same rate, the two accounting methods yield different regional patterns even though they yield
equivalent global averages.

The zonally averaged RC:P of organic matter export using each method is shown in Figure 2b (adjoint), and
Figure 2c (water column remineralization). The adjoint method curve yields the average RC:P of the organic
material as it is exported through the base of the euphotic zone. The resulting RC:P is nearly equal to the RC:P of net
community production, with differences between the zonal average export RC:P and production RC:P remaining
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well below 5%. The small difference is due to the lateral transport of DOM before it is exported through the base
of the euphotic layer. The similarity suggests that the stoichiometry measured in surface POM samples is likely to
be a good measure of the export RC:P as diagnosed using the adjoint method. The water column remineralization
method, on the other hand, is strongly influenced by lateral advection and reveals that export fluxes at depth are
decoupled from the surface production within a given water column.

The two methods show the largest differences in the subtropics. This is consistent with previous studies sug-
gesting that roughly half of the DOC respired in the subtropical gyres originated elsewhere (Letscher &
Moore, 2017). Because a significant portion of the organic material remineralizing in the gyres is advected in from
higher latitudes, where production RC:P is generally low, the average export RC:P observed below the gyres is
much lower than the average RC:P of organic matter production in this region. The difference between the two
methods of determining the stoichiometry of exported organic matter suggests that accounting for DOM
advection is critical to interpreting field measurements of export, as field methods measuring RC:P in sinking
particulate matter might not reflect the stoichiometric ratios of total organic matter export.

3.2.2. Carbon Export

Our models show that the choice of RC:P parameterization has a notable effect on the magnitude of globally
integrated carbon export fluxes. While all models are formulated using the same steady‐state phosphorus cycle
and therefore have equivalent total organic phosphorus (TOP) export, the integrated total organic carbon (TOC)
export flux differs by up to 10% (1.3 Pg C yr− 1) between models. These differences occur despite nearly
equivalent fits to the hydrographic data. The models with spatially variable RC:P result in steady‐state estimates of
TOC export that differ by up to 6% from the integrated TOC export flux of 14.1 Pg C yr− 1 derived from assuming
a globally constant RC:P value. The temperature‐dependent, phosphate‐dependent, and cellular growth models
yield global TOC export fluxes of 13.3, 14.0, and 14.6 Pg C yr− 1, respectively. Thus, the baseline carbon export
flux at steady state is sensitive to the representation of RC:P.

The largest component of organic carbon export is the sinking particle flux, which consistently accounts for
approximately 75% of the globally integrated TOC export flux, regardless of the RC:P parameterization. However,
the distinction between POC and DOC is ambiguous due to the simplified cycling between particulate and
dissolved organic matter in our model framework. The global‐constant, temperature‐dependent, phosphate‐
dependent and cellular growth models of RC:P result in global POC export fluxes at the base of the euphotic
zone of 10.5, 10.0, 10.7, and 11.0 Pg C yr− 1, respectively. These particulate flux values are similar to the inverse
model estimate of 10.6 ± 0.1 Pg C yr− 1 from Wang et al. (2023), but larger than other previous estimates using
inverse models (9.1± 0.2 Pg C yr− 1 (DeVries &Weber, 2017), 7.3± 0.5 Pg C yr− 1 (Nowicki et al., 2022)) as well
as a satellite based food web model (5.9 ± 1.2 Pg C yr− 1 (Siegel et al., 2014)). While our models project higher
export, the inverse modeling method ensures that our estimates remain consistent with hydrographic observa-
tions. Discrepancies with other studies may arise from varying export definitions, including differing export
horizons and transport pathways that impact the residence time of exported carbon. Direct comparisons are
complicated by the ambiguity in distinguishing export pathways in our model, along with potential compensatory
mechanisms in the biogeochemical model. For example, our larger export fluxes may be compensated by
shallower remineralization depths than found in other models. Therefore, inter‐model comparison is highly
dependent on the export horizon chosen. A detailed analysis of how our model differs from other studies is beyond
the scope of this paper however, as our primary focus centers on contrasting models with variable stoichiometry
and the baseline case relying on a globally constant RC:P.

The different globally integrated export fluxes between models stem from variations in the spatial pattern of
organic carbon production as well as differing carbon remineralization depths across models. The optimized
models that produce the largest export fluxes at the base of the euphotic zone concurrently find larger optimal
parameter values for the exponent of the POC flux attenuation profile, bC (see Table 3), enabling shallower
respiration depths and thus shorter sub‐surface residence times of the regenerated inorganic carbon. This
compensation allows for all models to reproduce observed vertical DIC gradients reasonably well, despite the
wide range of global export fluxes across models.

While all models produce similar overall trends of TOC export, the exact pattern of export varies depending on the
parameterization of RC:P used in the model optimization (Figure 4). Figure 4a compares the zonally integrated
TOC export across all models. Irrespective of the RC:P parameterization, all models consistently depict elevated
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export fluxes along the subtropical front of the Southern Ocean and in subpolar regions of the Northern Hemi-
sphere, with relatively lower export fluxes in the subtropics. However, the adoption of different RC:P parame-
terizations introduces significant local and regional variations in the spatial distribution of carbon export. In
comparison to the constant RC:P model, the three variable parameterizations yield increased TOC export in
subtropical oceans and reduced export in the Southern Ocean (Figures 4b–4e). These deviations are relatively
small for the temperature‐dependent model, which finds export fluxes within 20% of the baseline model values
across nearly the entire ocean. In contrast, the phosphate‐dependent and cellular growth parameterizations result
in over 50% higher export on average within subtropical gyres, with notable localized increases exceeding 80%,
such as in the core of the North Atlantic subtropical gyre. There is also substantial discrepancy between models in
the Arctic, where the cellular growth model finds significantly increased export over all other RC:P

Figure 4. (a) Zonally integrated Total Organic Carbon export at the base of the euphotic zone for all models. (b) Spatial
distribution of TOC export computed from the model using a global constant RC:P. (c–e) Maps showing the TOC export
anomaly from the constant RC:P case for each of the variable RC:P parameterizations.
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parameterizations. Thus, regional disparities among models can well surpass the up to 10% differences observed
in globally integrated TOC export fluxes.

Many of the largest disagreements between models correspond to regions with the highest TOC export fluxes. In
all models, the largest local TOC export fluxes occur in the mid‐latitude North Atlantic (approximately 40–50°N),
where there is high productivity as well as substantial downward transport, associated with the sinking branch of
the meridional overturning circulation, in the model. Export in this region is further amplified when using the
phosphate‐dependent and cellular growth models compared to the baseline case with globally constant RC:P. The
phosphate‐dependent model displays the greatest degree of deviation from the constant model, with TOC export
fluxes up to 80% larger than the baseline model in the North Atlantic (Figure 4d). Zonally integrated TOC export
fluxes peak along the subtropical front of the Southern Ocean (between 40 and 45°S) in all models. This region
also marks a transition where the anomaly of each variable RC:Pmodel from the baseline case switches sign, with
the variable RC:Pmodels estimating increased export toward the equator and decreased export to the south relative
to the model with a globally constant RC:P (Figures 4c–4e). The constant stoichiometry model finds 3.7 Pg C yr

− 1

of TOC export integrated over the ocean region south of 45°S, constituting roughly 26% of the globally integrated
TOC export flux. Models with variable stoichiometry reduce this regional export flux by 16%, 47%, and 33%
using the temperature‐dependent, phosphate‐dependent, and cellular growth RC:P parameterizations, respectively.
This region contributes a substantial fraction of the global carbon export. However, implementing parameteri-
zations of RC:Pwith more spatial variability reduces the degree to which the Southern Ocean dominates the global
carbon export flux. Therefore, narrowing down the range of possible C:P ratios in this region could greatly
improve our confidence in global carbon export. Accurately modeling the stoichiometry of exported organic
matter in the Southern Ocean will thus be essential to reducing uncertainty in global carbon export fluxes.

3.3. Sensitivity to Future Change

We next looked at the sensitivity of each model to future change by performing idealized sensitivity experiments
in which we imposed a hypothetical future environmental conditions on the RC:P functions in each model. In these
experiments, the global distribution of phytoplankton uptake RC:P is calculated using each optimized RC:P

parameterization given uniformly warmer temperatures and decreased nutrient concentrations in the surface
ocean. The RC:P functions are perturbed by imposing a 3°C temperature increase, a 31% phosphate decrease, and a
21% nitrate decrease globally, while all other model inputs are held fixed. The carbon cycle model responds to the
perturbed RC:P by adjusting the distribution of carbon reservoirs to a new steady‐state solution. From the new
model solution, we can calculate the change in export fluxes and stoichiometry.

The imposed surface temperature increase and phosphate decrease change the export RC:P pattern predicted by
both empirical models as well as the cellular growth model, while the model with globally uniform RC:P remains
unchanged. Figure 5a illustrates the change in zonal average export RC:P for each RC:P function when computed
using the hypothetical future conditions relative to the preindustrial steady‐state. For all models with an envi-
ronmental dependence of RC:P, the zonal average export RC:P increases everywhere, however the magnitude and
spatial pattern of the change varies between models. The temperature‐dependent model shows the weakest
response to the imposed conditions. Given a uniform temperature increase of 3°C in the model euphotic zone, the
temperature‐dependent model produces 3% higher export RC:P values on average globally, relative to the pre-
industrial case. This change in export RC:P varies slightly with latitude, with regional increases ranging from less
than 2.2 molC/molP at high latitudes to greater than 4.0 molC/molP near the equator. The response of the
phosphate‐dependent model to the perturbed surface phosphate field is more pronounced. Given a globally
uniform 31% relative decline in euphotic zone phosphate concentration, the phosphate‐dependent RC:P model
predicts 18.5% higher export RC:P values on average than produced given preindustrial conditions. For this model,
the zonal average change in export RC:P ranges from 9.3 to 18.7 molC/molP, with the smallest changes in the
subtropical gyres, and the largest magnitude changes occurring along the subtropical front of the Southern Ocean
and in the high latitude Northern Hemisphere (Figure 5a).

Unlike the empirical models, which respond to only a single environmental driver, the cellular growth model
export RC:P is influenced by changes in both the perturbed temperature and nutrient fields. In the cellular growth
model, the warmer temperatures and lower nutrient concentrations lead to a 16% increase in export RC:P on
average globally. This model predicts a similar pattern of change in export RC:P as the phosphate‐dependent
model, with the smallest increases in the subtropics and largest increases in the Arctic, where export RC:P
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values increase by up to 30 molC/molP relative to preindustrial values. Additionally, the cellular growth model
RC:P responds nonlinearly to temperature change. Given the uniform temperature increase alone, the cellular
growth model predicts export RC:P increases at low latitudes and decreases at high latitudes (Figure S1). At high
latitudes, the phosphate‐dependence of RC:P is even stronger in the cellular growth model than using the linear
phosphate‐dependent model. The net effects of reduced surface nutrients and warmer temperatures in the arctic
lead to larger increases in RC:P than seen with the phosphate‐dependent model. This occurs even though the
increased temperature acts to lower RC:P at high latitudes in the cellular growth model. These findings highlight

Figure 5. Predicted future change relative to the preindustrial state of (a) the zonal average export RC:P (weighted by total
organic phosphorus export) and (b) zonally integrated total organic carbon (TOC) export at the base of the euphotic zone
(73 m), calculated using the adjoint method. (c–e) Maps showing the projected change in TOC export from preindustrial
steady state given a perturbed phytoplankton uptake RC:P pattern predicted by each variable RC:P parameterization. In this
figure, the “future” scenario refers to the sensitivity experiment in which the model RC:P pattern is perturbed by a uniform
increase in euphotic zone temperatures by approximately 3°C and reduction in euphotic zone DIP and DIN concentrations by
31% and 21%, respectively.
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the complex interactions between temperature, nutrients, and phytoplankton stoichiometry, underscoring the
importance of considering multiple environmental drivers when assessing changes in export RC:P.

The perturbed RC:P patterns alter the steady‐state total organic carbon (TOC) export flux in all models with
environmentally dependent RC:P functions. All of the variable stoichiometry parameterizations lead to higher
future carbon export than the model using a globally constant RC:P value, which predicts no change from the
preindustrial steady state value of 14.1 Pg C yr− 1. When imposing warmer temperatures and reduced nutrient
concentrations, the global TOC export increased by 0.4 Pg C yr− 1 (3%) to 13.8 Pg C yr− 1 for the temperature‐
dependent RC:P model, by 2.2 Pg C yr

− 1 (16%) to 16.2 Pg C yr− 1 for the phosphate‐dependent RC:P model,
and by 2.0 Pg C yr− 1 (13%) to 16.6 Pg C yr− 1 for the cellular growth RC:Pmodel. While future conditions push all
models toward a regime with higher organic carbon export fluxes, the magnitude of the change is dependent on
the model representation of RC:P.

Furthermore, the choice of RC:P parameterization impacts the spatial pattern of the modeled change in TOC export
in an altered climate. Figures 5b–5e illustrate the change in TOC export in the future sensitivity experiment
relative to the preindustrial steady state. The phosphate‐dependent model shows the largest magnitude changes in
TOC export. In the Southern Ocean, the phosphate‐dependent model predicts the greatest increase in TOC export
along the subantarctic front (Figure 5d; near 45°S), where the greatest magnitude of zonally integrated TOC
export occurs. In contrast, the cell model predicts that the amount of carbon export would increase more uniformly
across the Southern Ocean than the phosphate‐dependent model. The largest increases in zonally integrated
carbon export occur at mid‐latitudes (Figure 5b), where there is already high TOC export in the preindustrial
steady state run (Figure 4a). The magnitude of this increase is smaller in the temperature‐dependent model than
the other two variable RC:P parameterizations. Thus, the choice of RC:P function significantly impacts model
predictions of both the magnitude and spatial distribution of future carbon export.

In addition, the perturbed RC:P patterns drove a net decline in atmospheric pCO2 in the future sensitivity ex-
periments for all environmentally dependent RC:Pmodels. In the future sensitivity experiments, we coupled a one‐
box atmosphere to the system, holding the total amount of carbon in the ocean‐atmosphere system fixed to the
total amount of carbon diagnosed from the solution of the preindustrial model. This allowed us to compute the
change in atmospheric pCO2 caused by the altered RC:P patterns. Forcing the temperature‐dependent, phosphate‐
dependent and cellular growth RC:P functions with warmer temperatures and lower surface nutrient concentra-
tions reduced atmospheric pCO2 by 5, 24, and 21 ppm respectively, relative to the preindustrial steady state model
solution. Thus, stoichiometric plasticity increases the biological uptake of atmospheric CO2 under future con-
ditions, and the strength of this effect depends on the assumed environmental drivers of RC:P.

4. Discussion
4.1. Constraining the Cellular Growth Model Parameters

Our inverse modeling approach provides a valuable framework to evaluate the consistency of detailed mecha-
nistic cellular‐level models with geochemical constraints provided by hydrographic data, bridging the gap be-
tween understanding microbial functioning and global biogeochemistry. By utilizing climatological hydrographic
tracer observations, our optimization captures long‐term average export fluxes of phosphorus and carbon. Ac-
curate representation of these fluxes is crucial for understanding carbon storage in the deep ocean and nutrient
dynamics within the euphotic zone. Furthermore, the balance between carbon export and ventilation rates plays a
critical role in setting atmospheric CO2 concentrations, with shifts in this balance potentially explaining glacial‐
interglacial fluctuations in atmospheric pCO2 (Sigman & Boyle, 2000). While previous studies have used
inversion techniques to tune parameter values based on suspended particulate organic matter (POM) observations
(e.g., C. A. Garcia et al., 2020), our novel approach uses only the model fit to global hydrographic data to
constrain parameters within the cellular scale growth model. This allows us to avoid potential biases due to
limited coverage of in situ stoichiometric observations, and accounts for the possibility of decoupled organic
carbon and phosphorus degradation pathways. This method also demonstrates a novel way of constraining
globally representative parameter values controlling cellular physiology. A major challenge of applying mech-
anistic biological models at the global scale is how to represent globally relevant characteristics of a highly
diverse community. Using the hydrography to optimize the parameter values in the cell model allows us to obtain
physiological parameter values representative of the community as a whole. Model parameters describing
physiological rates are often set using rates measured in culture experiments. Lab‐based estimates of
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physiological rates typically come from a single species, rather than a community average. The bulk community
response to environmental change is controlled by complex ecosystem interactions, which are difficult to recreate
in laboratory settings. This includes both acclimation and shifts in community composition. Since the community
response may be fundamentally different than the response of an individual species, using experimentally derived
values could lead to inaccuracies in the model output (Franks, 2009; Hagstrom & Levin, 2017). Therefore, using
global hydrographic data provides a valuable alternative to better understand and constrain parameter values in
the cellular growth model.

However, unexpected optimal values suggest that we need to reevaluate the cellular mechanisms represented in
the model. The optimization of our mechanistic model of phytoplankton growth yielded unexpectedly large
parameter values, particularly for parameters affecting the temperature dependence of phytoplankton growth and
the amount of luxury nutrient storage in cells. In our optimized cellular growth model, we found that the
parameter controlling the temperature dependence of photosynthesis, Qphoto10 , had an unrealistically large value of
3.56. This is significantly higher than previous estimates of the Q10 of photosynthesis, which have ranged from
1.0 to 2.19 (Raven & Geider, 1988). This finding holds intriguing implications for understanding how temper-
ature regulates cellular functioning and elemental composition on a global scale. Our highQphoto10 value leads to an
inverse relationship between temperature and RC:P at high latitudes, where growth rates are low. This contradicts a
recent observational study by Tanioka, Garcia, et al. (2022), which found a strong positive correlation between
temperature and RC:P of suspended POM at high latitudes, as well as the translation‐compensation hypothesis,
which predicts that RC:P increases with temperature due to enhanced efficiency of biosynthetic enzymes and
therefore reduced requirement for phosphorus‐rich ribosomes (Moreno & Martiny, 2018). Consequently, our
model may be missing a key mechanism of cellular growth. Tanioka, Garcia, et al. (2022) found that the rela-
tionship between temperature and RC:P predicted by translation compensation is only observed in cold waters,
suggesting that an alternate mechanism may dominate in warm waters. Including a corresponding mechanism to
the cellular growth model could enable a more realistic Qphoto10 value.

The similarity between the RC:P patterns simulated by the phosphate‐dependent and cellular growth models arises
from the strong influence of phosphate concentration on the phosphorus storage pool in the cell model. The
parameter optimization yields a very strong dependence of the total cellular phosphorus quota on phosphate
availability. This is achieved by increasing the value of the scaling parameter, fstor, on the luxury phosphorus
storage equation, which sets the extent to which the intracellular phosphorus storage pool contributes to the total
phosphorus quota of the cell. The optimal value allows intracellular inorganic phosphorus storage to account for
up to 90% of the total phosphorus quota of the cell. Since the magnitude of the storage pool is a function of
phosphate concentration in the water, this means that the total phosphorus quota of the cell has a much stronger
nutrient dependence than the carbon quota of the cell. Thus, phosphate availability exerts a strong control on RC:P

in the optimized cellular growth model. Evidence of very large allocations to intracellular phosphorus storage has
been found in laboratory and field studies. Over 80% of the P quota in diatoms (Liefer et al., 2019) and up to 25%
of the P quota in Trichodesmium in the phosphate depleted oligotrophic Sargasso Sea (Orchard et al., 2010) has
been attributed to intracellular inorganic phosphorus storage. In contrast, a previous study by C. A. Garcia
et al. (2020), which optimized a similar cellular growth model to in situ observations of RC:P in suspended POM,
found optimal parameter values indicating that luxury phosphorus storage had only a minor effect on C:P ratios.
This disparity highlights that the role of luxury storage is still highly uncertain. Because luxury phosphorus
storage may be a major driver of global patterns of RC:P, future work should focus on developing a more
mechanistic understanding of phosphorus storage and improving the model representation of this pool.

The heavy reliance on phosphorus storage suggests that the mechanistic trade‐offs between functional macro-
molecules needed for growth may not be enough to capture the stoichiometry of exported organic material. The
strong influence of luxury storage may result from missing export processes in our biogeochemical model. It is
possible that the bulk export signal is influenced by detritus which has been reprocessed through the food web,
leading to bulk POM stoichiometry that differs from that of phytoplankton. The predicted cell model parameters
could also result from errors in our biogeochemical model. For example, the parameters could be pushed to
unrealistic values in order to compensate for errors in the model POP productivity field. In our model, organic
carbon production is the product of the modeled POP production and uptake RC:P. Errors in the spatial pattern of
POP production could be introduced by errors in the satellite‐derived spatial pattern of NPP or by errors in the
model DIP field at the surface. The modeled DIP concentrations may be biased at the surface because the surface
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layer is highly dynamic and constitutes a relatively small volume of the global ocean. Another missing process in
our biogeochemical model that could affect the parameters controlling uptake RC:P is spatially variable remi-
neralization rates of organic carbon and phosphorus. Sediment trap observations suggest that remineralization
rates are temperature dependent (Marsay et al., 2015). However, our model assumes that remineralization rates
are constant globally. This could introduce biases in the optimal RC:P pattern as the uptake RC:P pattern must
compensate for the lack of variability in remineralization rates in order to reproduce the hydrographic DIC ob-
servations. Additionally, unrealistic parameter values could stem from incorrect assumptions regarding non‐
optimized parameters in the cell model, as we only optimized a subset of parameters that we expected to have
the strongest influence on RC:P.

Despite these limitations, the cellular growth model offers a promising avenue for further investigation. The
results of the optimization provide insights into areas that warrant future observational efforts. For instance, the
cellular growth model suggests that cells must store significant amounts of excess phosphorus to produce RC:P

patterns that are consistent with hydrographic observations. However, the understanding of inorganic phosphorus
(e.g., polyphosphate) storage in the open ocean remains limited. Therefore, future observations are crucial to
assess whether variations in polyphosphate storage represent a major driver of global patterns of phytoplankton
stoichiometry. Additionally, the cell model could be improved by incorporating other data sources. Notably, the
cell model produces more than just RC:P; the optimal cell strategy is also characterized by cell size and growth
rate. By imposing constraints on these traits from in situ data or satellite remote sensing, we may obtain a more
robust optimal parameter set.

4.2. Optimized Model Performance

Of the four RC:P parameterizations we implemented, the cellular growth model best reproduces hydrographic
observations. However, the similar fit of the phosphate‐dependent model suggests that phosphate is a dominant
control on phytoplankton RC:P stoichiometry at the global scale. The cellular growth model can help us under-
stand the mechanisms driving the RC:P patterns. In particular, the strong phosphate dependence of RC:P can be
attributed primarily to intracellular inorganic phosphorus storage in our cellular growth model.

All models are able to provide a good fit to the hydrography, with only small improvements in the R2 fit values
depending on the choice of RC:P parameterization. This is because the impact of RC:P on deep ocean inorganic
carbon pools is relatively small compared to other factors such as the impact of the physical circulation on the
carbon solubility pump. While all models produce good fits to the hydrographic observations overall, the vast
quantity of observations used in calculating the objective function means that the small differences in the model‐
data misfit are statistically significant. Comparing the different models is not straightforward due to the differing
numbers of adjustable parameters and due to differences in the flexibility of the different model architectures in
shaping patterns of RC:P. Although the cell model was able to slightly improve the fit to observations compared to
the phosphate‐dependent parameterization, it had a larger number of adjustable parameters. Because of the many
caveats and simplifications in our model, we chose not to pursue a formal statistical analysis between these
models. Instead, the purpose of this analysis is to demonstrate how the cellular growth model provides a more
mechanistic understanding of the emergent RC:P patterns than empirical models.

It is important to note that the ability of each model to fit the observations is dependent on the model repre-
sentation of other processes that interact with the modeled RC:P to affect the model fit to the hydrography. For
example, export RC:P is controlled by the interacting effects of variable RC:P of phytoplankton uptake and
remineralization. Our simple parameterization of remineralization may not accurately represent the temperature
dependence of phosphorus or carbon remineralization. This could impact the pattern of export RC:P, which affects
the model fit to deep ocean DIC. However, the close similarity between uptake RC:P and export RC:P values at the
base of the euphotic zone seen in Figure 2 implies that within the euphotic zone of our model, remineralization
plays a relatively minor role in modulating export stoichiometry. Therefore, the potential impact of spatially
variable remineralization rates for organic phosphorus and carbon may be limited in our model.

4.3. Implications for Future Biological Carbon Pump

Most climate models predict that organic carbon export will decline in the future. The projected response of the
global POC export flux to climate change varies widely across 19 CMIP6 earth system models, with estimates
ranging from − 41% to +1.8% change by 2100 from preindustrial, under the high emissions Shared
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Socioeconomic Pathway SSP5‐8.5 scenario (Henson et al., 2022). This decline in biological carbon export is
generally attributed to surface warming leading to increased stratification and reduced nutrient supply to the
surface ocean, thus increasing nutrient limitation and reducing the amount of net primary production that can be
supported in the euphotic zone. Previous studies have suggested that changes to phytoplankton physiology could
buffer the expected decline in ocean NPP (Tanioka &Matsumoto, 2017). The magnitude of this buffering effect is
highly uncertain, with some claims that it could entirely offset the decline in NPP due to a decline in nutrient
supply to the surface ocean (Kwon, Sreeush, et al., 2022). In our model, the magnitude of this buffering effect is
sensitive to the choice of RC:P parameterization. The three models suggest changes in phytoplankton stoichi-
ometry could offset a 3%–16% change in global carbon export (between 0.4 and 2.2 Pg C yr− 1) and draw down the
global average atmospheric pCO2 by between 5 and 24 ppm given a uniformly warmer and more nutrient limited
surface ocean.

These increases in the biological uptake of atmospheric CO2 are small in comparison to other anticipated per-
turbations to the biological carbon pump that were not considered in our future sensitivity experiments. For
example, another sensitivity run of this model showed that an equivalent reduction in the phosphate concentration
supplying POP production would cause an increase of roughly 55 ppm pCO2, equivalent to a 31% reduction in
TOC export, regardless of RC:P parameterization. This response is larger than the effect of changing RC:P on at-
mospheric pCO2. Thus, RC:P plasticity cannot fully compensate for productivity declines due to reduced nutrient
availability using any of the RC:P parameterizations presented here. Moreover, these responses are dwarfed by the
projected changes in atmospheric pCO2 due to anthropogenic emissions. Current emissions scenarios project
pCO2 values between 393 and 1,135 ppm by 2100 (i.e., up to >800 ppm higher than the preindustrial steady state
atmospheric CO2 concentration of 278 ppm) (Meinshausen et al., 2020). These results suggest that, in the absence
of extreme carbon dioxide removal strategies, the potential future increase in phytoplankton RC:Pmay only have a
minor influence on atmospheric pCO2 in comparison to the rise due to anthropogenic emissions. Although, under
negative emissions scenarios that adopt marine carbon dioxide removal strategies based on enhancing biological
production (e.g., nutrient fertilization, artificial upwelling and downwelling, and seaweed cultivation (reviewed in
National Academies of Sciences, Engineering, and Medicine (2022))), the effect of stoichiometric plasticity may
become more significant. However, due to the idealized nature of our future sensitivity test—which does not take
into account spatial patterns of environmental change—more sophisticated experiments within a coupled prog-
nostic model frameworkwould be needed to better assess the potential buffering effect of stoichiometric plasticity.

While stoichiometry is only one of many factors influencing the strength of the biological carbon pump, we find
that the relative changes in ocean carbon export due to only a change in phytoplankton RC:P are of the same order
of magnitude as projected changes in global carbon export by 2100. Therefore accounting for stoichiometric
plasticity could significantly influence future projections of the biological carbon pump, and thus warrants further
investigation. Future work should extend beyond the simple uniform change experiments performed here to look
at the effects of RC:P functions within prognostic climate models. Embedding variable stoichiometry in more
mechanistic earth system models would allow us to better synthesize the combined effects of stoichiometry,
changing nutrient supplies, surface warming, and other ecosystem changes on biological carbon fluxes.

5. Conclusions
Our understanding of carbon export fluxes depends on an accurate representation of phytoplankton stoichiometry
in global models. Despite nearly equivalent fits to the hydrographic data, models implementing different pa-
rameterizations for RC:P produced estimates of global total organic carbon export for the preindustrial steady state
that differed by up to 10% (1.3 Pg C yr− 1), with even more substantial regional differences. The parameterization
used tomodelRC:P also had a significant impact on themagnitude of the potential buffering effect of phytoplankton
physiology on projected declines in export production. However, regardless of the parameterization chosen, the
buffering effect was small compared to projected changes due to human activity. This indicates that the C:P
compensation feedback loop is unlikely to completely compensate for declining primary production in the future.

To accurately assess carbon fluxes in the ocean, we need a more mechanistic understanding of what drives
variability in phytoplankton stoichiometric ratios. While empirical models have been a powerful way to incor-
porate variable stoichiometry into global models at relatively low cost, these simple models lack causality needed
to predict future change. Despite its limitations, the mechanistic model described here offers a way forward by
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providing biological constraints on how phytoplankton physiology changes globally. Future work is needed to
refine the processes represented in the cellular growth model.

Appendix A: Biogeochemical Model Equations
The three tracers in the phosphorus cycle model are dissolved inorganic phosphorus (DIP), dissolved organic
phosphorus (DOP), and particulate organic phosphorus (POP). The governing equations for the phosphorus cycle
are listed below.

[
d
dt
+ T] [DIP] = − γ[DIP] + κdP [DOP] + κg ( [DIP] − 〈[DIP]obs〉) (A1)

[
d
dt
+ T] [DOP] = κp [POP] − κdP [DOP] (A2)

[
d
dt
+ S POP] [POP] = γ[DIP] − κp [POP] (A3)

In these equations T is the transport operator for tracers in the dissolved phase and SPOP is the transport operator
for tracers in the particulate phase. T is obtained from the data‐constrained Ocean Circulation Inverse Model
(OCIM2; DeVries & Holzer, 2019) is defined such that, for a tracer c,

Tc ≡ ∇ ⋅ (uc − κ∇c), (A4)

where u is the residual mean circulation and κ is the eddy‐diffusion tensor. The S POP is defined such that

SPOP[POP] ≡ ∇ ⋅ (wPOP[POP]), (A5)

where wPOC is the sinking velocity for POP. To obtain a vertical particle flux that attenuates following a power
law function with depth, we parameterize the downward sinking speed of POM to increase linearly with depth
using the expression, w POC(z) = (κp/bP) z, where z is the vertical coordinate equal to zero at the sea surface and
decreasing with depth, κp is a fixed particle dissolution rate constant, and bP is the globally constant exponent of
the power law function, J(z) = J(z0) (z/ z0)− bP , with J(z) and J(z0) representing the sinking fluxes at depths z and
z0 = − 73.4 m, respectively.

The net production of POP (J(z0)) is equivalent to the biological phosphate uptake in the model's euphotic zone,
z > z0= − 73.4 m.We assume that no photosynthesis occurs below z= z0. The production of POP is parameterized
to be proportional to the modeled DIP concentration with a spatially varying uptake rate constant, γ(r), where r is
the position coordinate. The rate constant is in turn parameterized in terms of a satellite‐based estimate of net
primary productivity (NPP) and surface DIP observations, following Teng et al. (2014) and Wang et al. (2023),
and similar to Kwon, Holzer, et al. (2022),

γ(r) =

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α
[
NPP(r)
NPP0 ]

β

[DIP]obs(r)
[DIP]0

, if z< z0,

0, otherwise.

(A6)

NPP is estimated using the Carbon‐based Productivity Model (Westberry et al., 2008) and has units of
mmol C m− 2 s− 1. [DIP]obs is the climatological mean DIP observations (H. E. Garcia et al., 2014), binned to our
model grid, with units of mmol m− 3. The scaling factor α and exponent β are globally uniform parameters that are
estimated as part of the inversion. α is in units of s− 1 and β is dimensionless. This scaling characterizes the effect
of the whole community on organic matter export production. α represents the net role of grazing pressure, trophic
interactions and the microbial loop, converting nutrient uptake into productivity of the net community.
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NPP0 and [DIP]0 are included to non‐dimensionalize NPP and DIP and have values of 1 mmol C m
− 2 s− 1 and

1 mmol m− 3, respectively. For simplicity, the depth‐integrated NPP is split evenly between the two vertical layers
in the model euphotic zone. We do not take into account vertical structure of primary productivity due to the
coarse resolution of our global model.

In the phosphorus cycle Equations A1–A3, kdP is an optimizable parameter defining the remineralization rate of
DOP; κp is a fixed particle dissolution rate constant (this parameter also appears in the sinking velocity
expression); and κg is a slow geologic restoring rate. The geologic restoring term ensures a reasonable integrated
total DIP in the model by slowly restoring model [DIP] to the volume‐weighted global average of the gridded
GLODAPv2 observations (〈[DIP]obs〉).

Both the T and S POP are formulated in terms of sparse matrices. At steady‐state the time‐derivatives in Equa-
tions A1–A3 vanish. The resulting system of linear equations can be expressed in matrix form and solved effi-
ciently by direct matrix inversion.

The carbon cycle model includes five tracers, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC),
particulate organic carbon (POC), as well as particulate inorganic carbon (PIC) in the form of calcium carbonate,
and alkalinity (ALK), plus an optional atmospheric pCO2 variable.

[
d
dt
+ T] [DIC] = − RrainΓRC:P + κdC [DOC] + κPIC [PIC]

+FCO2 + FvDIC[DIC]s

(A7)

[
d
dt
+ T] [ALK] = − 2RrainΓRC:P + RN:CΓRC:P − RN:CκdC [DOC] + 2κPIC [PIC]

+κg ( [ALK] − 〈[ALK]obs〉) − FvALK[ALK]s

(A8)

[
d
dt
+ T] [DOC] = − κdC [DOC] + κp [POC] (A9)

[
d
dt
+ SPOC] [POC] = ΓRC:P − κp [POC] (A10)

[
d
dt
+ SPIC] [PIC] = RrainΓRC:P − κPIC [PIC] (A11)

d
dt
[pCO2,atm] = − (FCO2V/Natm) 10

3 + κg ( [CTotal] − [CTotal]opt)/Natm (A12)

Γ denotes the biological production of organic phosphorous (Γ = γ[DIP]), which is converted to the production of
organic carbon using the C to P stoichiometric ratio RC:P. The production of PIC is proportional to the POC
production, using an optimizable parameter, Rrain, for the ratio of CaCO3 to POC production (the rain ratio).

Alkalinity is produced by the dissolution of PIC, and consumed by PIC production, with 2 mol of alkalinity
produced for every mole of PIC dissolved (2κPIC [PIC]) , and 2 mol of alkalinity consumed for every mole of PIC
produced (− 2RrainΓRC:P + RN:CΓRC:P). The RN:C term in Equation A8 is a fixed nitrogen to carbon ratio for
organic matter. This is used because POC production increases alkalinity by changing the chemical form of
nitrogen. For the same reason, DOC remineralization decreases alkalinity.

The transport operators for particulate organic and inorganic carbon, S POC and S PIC are defined such that

SPOC[POC] = ∇ ⋅ (wPOC[POC]), (A13)

and

SPIC[PIC] = ∇ ⋅ (wPIC[PIC]), (A14)
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where wPOC = w(z)POCẑ is the sinking speed of the particles with w(z) = − (κp /bC)z. The power‐law exponent bC
plays the same role as bP except for organic carbon instead of organic phosphorus. The sinking speed for PIC is
assumed constant, wPIC = − d ⋅ κ PICẑ, so that the PIC flux decays exponentially with a length scale d.

Globally uniform parameters control the remineralization rate of DOM. These are kdP for DOP and kdC for DOC.
Both kdP and kdC are optimizable parameters. Globally uniform parameters also control the dissolution rates of
POM (κp) and PIC (κPIC). Both κp and κPIC are prescribed parameters set to produce e‐folding dissolution
timescales of 30 days.

Assuming a steady‐state, the carbon‐cycle equations reduce to a system of non‐linear algebraic equations that can
be solved iteratively using Newton's method. The value of [DIP] is held fixed at the value obtained by solving the
steady‐state phosphorus‐cycle model. For the case of the preindustrial steady‐state, the last equation for the at-
mospheric pCO2 can be eliminated by holding the atmospheric CO2 fixed at a value of 278 ppm. For the case of a
future steady‐state, we hold the total amount of carbon in the ocean‐atmosphere system fixed and use Equa-
tion A12 to solve for pCO2.

The carbon cycle equilibrium solver has an additional optional constraint equation, which is not implemented
when optimizing the model, but is used to solve the future equilibrium scenario. This equation solves for at-
mospheric pCO2 assuming a fixed amount of carbon in the combined ocean‐atmosphere system.

A slow restoring term with a timescale of 1/κg= 10
6 years is used to set the total amount of phosphorus, alkalinity,

and carbon. The restoring term in the optional pCO2 equation is defined as the difference between the prescribed
total carbon in the system and the sum of carbon in the DIC, DOC, POC, and PIC pools converted to a partial
pressure of CO2 in the atmosphere multiplied by a very small restoring rate. This is analogous to the restoring term
in the DIP equation in the phosphorus cycle equilibrium model, and uses the same geologic timescale (kg). The
restoring term in the optional pCO2 equation is written as,

κg ( [CTotal] − [CTotal]opt) 106/Natm

where [CTotal] is the total amount of carbon in the system in units of moles C. Natm is the molar volume of the
atmosphere, which we hold fixed at a value of 1.773 × 1020 mol. The conversion factor of 106 converts moles C to
μmol C to yield the CO2 concentration in ppm. The prescribed total carbon in the system is defined as the total
moles of carbon in the system calculated from the optimized preindustrial steady state model solution
( [CTotal]opt) . [CTotal] is calculated as:

[CTotal] = ([DIC] + [POC] + [DOC] + [PIC])′ ⋅V10− 3 + [pCO2,atm]Natm10− 6

where V is a vector of model grid cell volumes in units of m3. The dot product computes the global integral. The
concentrations of DIC, DOC, POC, and PIC are in units of mmol/m3. The factor of 10− 3 converts mmol to
moles C.

The carbon cycle is also influenced by sea‐surface fluxes, including both air‐sea gas exchange (FCO2 ) and the
concentrating and diluting effects of evaporation and precipitation on DIC and alkalinity (FvDIC[DIC]s and
FvALK[ALK]s where [DIC]s and [ALK]s are mean surface concentrations). The gas transfer term is expressed as,

FCO2 =
kw
Δz1

( [CO2]sat − [CO2]surf), (A15)

where Δz1= 36 m is the thickness of the surface layer in the model. [CO2]surf is the aqueous CO2 concentration at
the sea surface in μmol/kg, computed from the modeled surface DIC and ALK using CO2SYS (Lewis et al., 1998;
Van Heuven et al., 2011). The saturated aqueous CO2 concentration, [CO2]sat, is computed by multiplying the
atmospheric pCO2 (in μatm) with the solubility of CO2 in seawater k0 (in mol kg

− 1 atm− 1). kw is the air‐sea CO2
transfer velocity, formulated following the second phase of the Ocean Carbon Model Intercomparison Project
(OCMIP2) protocol (Najjar et al., 2007) and is based on the parameterization of Wanninkhof (1992).
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Appendix B: Fixed Parameters
Descriptions and values of all fixed parameters used in the mechanistic cellular growth model are listed in
Table B1.

Data Availability Statement
The global database for temperature, phosphate, and nitrate input in the biogeochemical model are from theWorld
Ocean Atlas 2013 and available at https://www.nodc.noaa.gov/cgi‐bin/OC5/woa13/woa13.pl (H. E. Garcia
et al., 2014; Locarnini et al., 2013). The net primary productivity data (for Equation A6) are calculated from the
Carbon‐based Productivity Model, described in Westberry et al. (2008) and available at http://sites.science.
oregonstate.edu/ocean.productivity. Surface PAR data is available from the NASA ocean color level 3 browser:
https://oceancolor.gsfc.nasa.gov/l3/ (NASA, 2018). SeaWiFS 9 km mission composite is interpolated to our
model grid using Matlab's interp2 function. Euphotic zone light levels input in the cellular growth model are
computed by vertically averaging PAR over the grid box, assuming an e‐folding depth of 25 m. The global

Table B1
Descriptions, Values, and Units of Fixed Model Parameters in the Mechanistic Cellular Growth Model

Symbol Value Units Description

γDNA 0.016 DNA fraction of cell

γLipid 0.173 Structural Lipid (non‐membrane or periplasm) fraction of cell

DN0 1.296 × 10− 6 m2/hr Diffusivity of Nitrate at 25°C

DP0 1.296 × 10− 6 m2/hr Diffusivity of Phosphate at 25°C

QDiffusivity10 1.5 Q10 temperature dependence of diffusivity

QBio10 2.0 Q10 temperature dependence of biosynthesis

Amin 0.05 Minimal fraction of cell dry mass that is nutrient uptake proteins

ΦS 0.67 gC/gC Specific carbon cost of synthesizing functional organic material

pDry 0.47 Dry mass fraction of the cell

ρcell 1 × 10− 12 g/μm3 Cell density

αERib 0.60 Mass fraction of the biosynthetic apparatus devoted to ribosomes

αMPLip 0.12 Mass fraction of cell membrane devoted to phospholipids

αMProt 0.25 Mass fraction of cell membrane devoted to proteins

αLProt 0.7 Mass fraction of light harvesting apparatus devoted to proteins

βstor 2 μm− 1 Logistic growth rate in Equation 13

fplip 0.185 Scale factor for maximum phospholipid quota in Equation 12

[DIP]plip0 1 mmol m− 3 DIP threshold for phospholipid substitution (inflection point of logistic function in
Equation 12)

βplip 3 m3mmol− 1 Logistic growth rate in Equation 12

PDNA 0.095 gP/g Phosphorus mass fraction in DNA

PRib 0.047 gP/g Phosphorus mass fraction in ribosomes

PPlipid 0.042 gP/g Phosphorus mass fraction in phospholipids

NProt 0.16 gN/g Nitrogen mass fraction in proteins

NDNA 0.16 gN/g Nitrogen mass fraction in DNA

NRib 0.16 gN/g Nitrogen mass fraction in Ribosomes

CProt 0.53 gC/g Carbon mass fraction in proteins

CDNA 0.36 gC/g Carbon mass fraction in DNA

CPlipid 0.65 gC/g Carbon mass fraction in phospholipids

CLipid 0.76 gC/g Carbon mass fraction in other lipids

CRib 0.419 gC/g Carbon mass fraction in ribosomes
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database for phosphate, alkalinity and dissolved inorganic carbon used in the optimization objective function are
from Olsen et al. (2016) and available at https://www.ncei.noaa.gov/access/ocean‐carbon‐acidification‐data‐
system/oceans/GLODAPv2/. The dissolved organic carbon data used in the optimization objective function are
from Letscher and Moore (2015). Code Availability Statement: The model code, output, and preprocessed input
data sets supporting this paper are available at https://doi.org/10.6084/m9.figshare.24203388 (Sullivan
et al., 2024).
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