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Abstract: Lidar has emerged as a promising technique for vertically profiling optical parameters
in water. The application of single-photon technology has enabled the development of compact
oceanic lidar systems, facilitating their deployment underwater. This is crucial for conducting
ocean observations that are free from interference at the air-sea interface. However, simultaneous
inversion of the volume scattering function at 180° at 532 nm (βm) and the lidar attenuation
coefficient at 532 nm (Km

lidar) from the elastic backscattered signals remains challenging, especially
in the case of near-field signals affected by the geometric overlap factor (GOF). To address this
challenge, this work proposes adding a Raman channel, obtaining Raman backscattered profiles
using single-photon detection. By normalizing the elastic backscattered signals with the Raman
signals, the sensitivity of the normalized signal to variations in the lidar attenuation coefficient is
significantly reduced. This allows for the application of a perturbation method to invert βm and
subsequently obtain the Km

lidar. Moreover, the influence of GOF and fluctuations in laser power
on the inversion can be reduced. To further improve the accuracy of the inversion algorithm
for stratified water bodies, an iterative algorithm is proposed. Additionally, since the optical
telescope of the lidar adopts a small aperture and narrow field of view design, Km

lidar tends to
the beam attenuation coefficient at 532 nm (cm). Using Monte Carlo simulation, a relationship
between cm and Km

lidar is established, allowing cm derivation from Km
lidar. Finally, the feasibility of

the algorithm is verified through inversion error analysis. The robustness of the lidar system and
the effectiveness of the algorithm are validated through a preliminary experiment conducted in a
water tank. These results demonstrate that the lidar can accurately profile optical parameters of
water, contributing to the study of particulate organic carbon (POC) in the ocean.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Detection of inherent optical properties (IOPs) in water bodies plays a crucial role in obtaining
valuable insights into essential parameters such as turbidity, chlorophyll concentration (Chl),
dissolved and suspended organic matter in the ocean. Moreover, these parameters serve as
indicators of water health and ecosystem dynamics, providing valuable information for various
applications such as ocean carbon cycling research, coastal zone management, aquatic ecology
studies, and predictive modeling of water quality and ecological responses [1]. Therefore, it is
crucial to observe their spatial and temporal distribution. For over the past two decades, passive
ocean color images have provided a sustained synoptic view of the horizontal distribution of IOPs
and color and biogeochemical parameters [2]. However, these measurements are limited to clear
sky, day-light, high sun elevation angles, and are exponentially weighted toward the ocean surface
[2]. The characteristics of lidar, such as its ability to penetrate three times deeper compared to
passive ocean color observations, continuous observation capability day and night, high accuracy
and sensitivity, and depth-resolved measurements, position it as a crucial complement to passive

#509596 https://doi.org/10.1364/OE.509596
Journal © 2024 Received 30 Oct 2023; revised 19 Jan 2024; accepted 29 Jan 2024; published 22 Feb 2024

https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.509596&amp;domain=pdf&amp;date_stamp=2024-02-22


Research Article Vol. 32, No. 5 / 26 Feb 2024 / Optics Express 8190

remote sensing technologies [3]. Studies have demonstrated that the estimation accuracy of net
primary productivity can be enhanced by up to 54% when utilizing depth-resolved lidar data [4].
In addition, oceanic lidar has been applied to various areas including the detection of underwater
topography [5], scattering layers [6], diel vertical migration observations of marine organisms
[7], fish [8], internal waves [9], bubbles [10], temperature and salinity [11].

Furthermore, by leveraging the capability of lidar to penetrate the air-water interface, lidar
has been successfully utilized across various platforms including ships [12], unmanned aerial
vehicles (UAVs) [13], aircraft [14], and even satellites [5]. However, the deployment of lidar
underwater remains limited, despite its crucial role in accurately measuring IOPs of water without
the interference caused by the air-sea interface, facilitating underwater scientific exploration,
enabling maintenance of underwater equipment, and monitoring water environments in deep-
water regions [15]. This limitation primarily stems from the fact that lidar systems generally
utilize high-pulse-energy lasers and large-aperture telescopes to enhance the signal-to-noise
ratio (SNR). However, this results in bulky laser systems with high power consumption, making
underwater deployment of lidar challenging. Fortunately, the emergence of single-photon
detection technology has driven the development of oceanic lidar towards miniaturization and
low power consumption. By improving the detection sensitivity to the single-photon level,
single-photon lidar can achieve long-range and high-precision parameter detection while being
compact and low power [16]. Consequently, it has been applied in atmospheric remote sensing
[17–19], distributed fiber optic sensing [20,21], shipborne lidar [22], and more recently, in
underwater lidar systems [15,23–27].

However, utilizing single-photon underwater lidar for the detection of IOPs of water remains a
challenging task. This is due to the fact that IOPs are typically calculated using two parameters
obtained through lidar inversion, namely the volume scattering function at 180° at 532 nm
(βm) and the lidar attenuation coefficient at 532 nm (Km

lidar) [28]. However, the inversion of βm
and Km

lidar is not a straightforward process. One major limitation is that it faces an ill-posed
mathematic problem, as it needs to infer two unknowns, namely, βm and Km

lidar, from a single
measurement. Numerous attempts have been made to resolve this inherent ill-posed problem
in the lidar equation. Initially, various algorithms have been proposed without changing the
mechanism of elastic backscatter lidar, including the slope method [29], Klett method [30],
Fernald method [31] and perturbation method [32], among others. Nevertheless, each method
is based on a set of assumptions that may not be perfect, leading to certain levels of inverse
error. Furthermore, the approach of incorporating a molecular channel or a Raman channel from
water into the lidar system has been proposed, making the equation solvable [33]. Currently,
by incorporating a molecular channel in the receiver, the high spectral-resolution lidar (HSRL)
technique has been developed [4,34]. Recently, by combining the HSRL technique and a
developed multiple scattering correction algorithm, the diffuse attenuation coefficient (Kd) can be
estimated accurately [33]. However, the complexity of the HSRL system and its high requirements
for frequency stability limit its implementation and operation to some extent.

Compared with the addition of molecular channels in the lidar receiver, incorporating Raman
channels is relatively easier to implement and maintain. Hence, this study proposes the addition
of Raman channels in the underwater lidar receiver. Benefiting from the high sensitivity of
single-photon detection technology, the profile of the Raman backscattered signal from water
can be obtained. By normalizing the elastic backscattered signals with the Raman backscattered
signals, the sensitivity of the normalized signal to variations in the differential lidar attenuation
coefficient is significantly reduced. This allows for the application of the perturbation method
to invert βm and subsequently obtain the Km

lidar [32]. Moreover, the influence of geometric
overlap factor (GOF) and laser power fluctuations on the βm inversion process can be significantly
reduced.
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Furthermore, calculating the beam attenuation coefficient at 532 nm (cm) as an IOP from the
inverted Km

lidar poses a significant challenge. This is because in most existing lidar systems,
the utilization of large field of view (FOV) and large-aperture optical telescopes to enhance
received energy [33], as well as the high platform height (airborne and spaceborne) resulting in a
large footprint in the water [35], both contribute to a significant presence of multiple scattering
components in the lidar backscattered signals. This leads to the inverted Km

lidar tending towards
the Kd, which represents the apparent optical properties (AOPs), rather than cm [36]. In this work,
the utilization of a small-aperture and narrow FOV telescope, combined with the small footprint
of the underwater lidar, effectively suppresses multiple scattering in the backscattered signal,
leading to the Km

lidar providing an approximation of cm. Therefore, the cm profile is obtained
through the Km

lidar profile from the single-photon underwater lidar, and the relationship between
cm and Km

lidar is established using a widely adopted semi-analytical Monte Carlo (MC) method.
The article is organized as follows. Firstly, the methodology is introduced, which includes the

derivation of formulas. Next, a MC simulation is presented to establish the relationship between
cm and Km

lidar. Subsequently, an error analysis of the proposed algorithm is conducted using four
different Chl vertical distributions. Finally, an experiment is presented to validate the robustness
and feasibility of both the algorithm and the lidar system.

2. Methodology

The backscatter profile of the elastic lidar can be expressed as follows:

Pm(λm,σm, z) =
Bm · Qm(z)

z2 · βm(λm, z) ⊗ g(λm,σm) · exp
{︃
−2 ·

∫ z

0
[Km

lidar(y)]dy
}︃

, (1)

where Pm represents the elastic backscattered signal at a depth of z, given when the emitting laser
wavelength and the receiving wavelength (λm) are both 532 nm; Bm is a constant that includes
lidar parameters independent of depth, such as the output laser power, quantum efficiency of
the detector, and transmittance of the optical transceiver system; Qm(z) represents GOF of the
elastic channel; βm represents the volume scattering function at 180° at 532 nm; g(λm, σm)
represents the transmittance function of an elastic filter, which can be approximated as a Gaussian
function with a center wavelength of λm and a bandwidth of σm; Km

lidar represents the attenuation
coefficient of the elastic lidar at 532 nm.

Furthermore, the backscatter profile of the Raman channel from water can be expressed as
follows:

Pr(λr,σr, z) =
Br · Qr(z)

z2 · βt(λr, z) ⊗ g(λr,σr) · exp
{︃
−

∫ z

0
[Km

lidar(y) + Kr
lidar(y)]dy

}︃
, (2)

where Pr represents the backscattered Raman signal from water at a depth of z when the emitted
laser wavelength is 532 nm and the Raman wavelength (λr) is 650 nm; Br is a constant that
includes lidar parameters independent of depth, such as the output laser power, quantum efficiency
of the detector, and transmittance of the optical transceiver system; Qr(z) represents GOF of
the Raman channel. Since the Raman channel and the elastic channel share the same set of
transceiver optical systems, Qr(z)=Qm(z); βt represents the volume scattering function at 180° for
a wavelength of 650 nm, encompassing the volume scattering function at 180° of water Raman
at 650 nm (βr), as well as the contribution of chlorophyll fluorescence to the volume scattering
function at 180° at that wavelength (βf ), i.e., βt =βr + βf ; g(λr, σr) represents the transmittance
function of the Raman filter, which can be approximated as a Gaussian function with a center
wavelength of λr and a bandwidth of σr; Kr

lidar represents the lidar attenuation coefficient of the
Raman lidar at 650 nm.
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According to an empirical model [37], the βr can be calculated as follows:

βr(λr) = bR(λm, λr) · fR(λm, λr) · β̃R(π), (3)

where bR represents the Raman scattering coefficient of water molecules when the emitted laser
wavelength is 532 nm and the received Raman wavelength (λr) is 650 nm; fR represents the
Raman wavelength distribution function;β̃R(π) represents the Raman scattering phase function.

Firstly, by normalizing the elastic backscattered signal with the Raman backscattered signal,
the resulting Smr can be expressed as follows:

Smr(λm, λr, z) = Bm
Br

·
Qm(z)
Qr(z) ·

βm(λm,z)⊗g(λm,σm)
βt(λr ,z)⊗g(λr ,σr)

· exp
{︂
−
∫ z
0 [Km

lidar(y) − Kr
lidar(y)]dy

}︂
=

Bm
Br

·
βm(λm,z)⊗g(λm,σm)
βt(λr ,z)⊗g(λr ,σr)

· exp
[︂
−
∫ z
0 ∆Kmr

lidar(y)dy
]︂ , (4)

where ∆Kmr
lidar is the differential lidar attenuation coefficient, which is defined as the difference

between Km
lidar and Kr

lidar.
By normalizing, the variation of ∆Kmr

lidar with depth is significantly reduced, enabling
the utilization of the perturbation method for measuring the βm [32]. As a result, Smr can
be decomposed into two parts: the depth-dependent component and the depth-independent
component:

Smr(λm, λr, z) = Bm
Br

·
[βm(λm,z0)+β

′
m(λm,z)]⊗g(λm,σm)

[βt(λr ,z0)+β′
t(λr ,z)]⊗g(λr ,σr)

· exp
[︂
−∆Kmr0

lidar · z −
∫ z
0 ∆Kmr′

lidar(y)dy
]︂ , (5)

where βm (λm, z0), βt (λr, z0), and ∆Kmr0
lidar respectively represent the components of βm, βt and

∆Kmr
lidar that do not vary with depth; β′m(λm, z), β′t(λr, z) and ∆Kmr′

lidar represent the components
of βm, βt and ∆Kmr

lidar that do vary with depth; z0 is the depth of the first point of the measured
water signal.

When the depth-dependent term is ignored, the normalized signal Smr0 can be expressed as
follows:

Smr0(λm, λr, z) =
Bm

Br
·
βm(λm, z0) ⊗ g(λm,σm)

βt(λr, z0) ⊗ g(λr,σr)
exp

(︂
−∆Kmr0

lidar · z
)︂

=
Smr(λm, λr, z0)

exp
(︂
−∆Kmr0

lidar · z0

)︂ · exp
(︂
−∆Kmr0

lidarz
)︂ (6)

Then, after determining the ratio Bm /Br through experimental calibration, the value of βm⊗g
(λm, σm) / βt⊗g (λr, σr) can be expressed based on Eq. (6) as follows:

βm(λm, z0) ⊗ g(λm,σm)

βt(λr, z0) ⊗ g(λr,σr)
=

Smr(λm, λr, z0)

exp(−∆Kmr0
lidar · z0)

·
Br

Bm
. (7)

Subsequently, the lidar attenuation coefficients in the elastic channel and Raman channels
are calculated using the slope method [29], represented as 2Km

lidar and Km
lidar +Kr

lidar (defined as
Kmr

lidar), respectively [29]. The difference between these two coefficients, denoted as Km
lidar - Kr

lidar
, is used as the initial value for ∆Kmr0

lidar.
According to the perturbation method [32], assuming ∆Kmr′

lidar= 0, βm can be expressed as
follows based on Eq. (5) and Eq. (6):

βm(λm, z) ⊗ g(λm,σm) =
βt(λr ,z)⊗g(λr ,σr)
βt(λr ,z0)⊗g(λr ,σr)

· βm(λm, z0) ⊗ g(λm,σm) ·
Smr(λm,λr ,z)
Smr0(λm,λr ,z)

= βt(λr, z) ⊗ g(λr,σr) ·
Smr(λm,λr ,z0)

exp(−∆Kmr0
lidar ·z0)

·
Br
Bm

·
Smr(λm,λr ,z)
Smr0(λm,λr ,z)

. (8)
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Finally, by deconvolving g(λm, σm) from Eq. (8), the expression for βm can be obtained as
follows:

βm(λm, z) = F −1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F

[︃
βt(λr, z) ⊗ g(λr,σr) ·

Smr(λm,λr ,z0)

exp(−∆Kmr0
lidar ·z0)

·
Br
Bm

]︃
F [g(λm,σm)]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ·
Smr(λm, λr, z)
Smr0(λm, λr, z)

, (9)

where F and F −1 respectively represent the Fourier transform and the inverse Fourier transform.
Define the coefficient β∗m0(σm,σr, z) as

β∗m0(σm,σr, z) = F −1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
F

[︃
βt(λr ,z)⊗g(λr ,σr)·Smr(λm,λr ,z0)

exp(−∆Kmr0
lidar ·z0)

·
Br
Bm

]︃
F [g(λm,σm)]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (10)

Note that, according to our previous research [26], when the bandwidth of the Raman filter
is 6 nm, βt(λr, z) and βr(λr) are essentially equal, and βr(λr) is depth-independent, obtainable
through Eq. (3). By utilizing calibrated system constants Br and Bm, β∗m0 can be calculated using
Eq. (10).

Then, the inversion result can be expressed as follows:

βm(λm, z) = β∗m0(σm,σr, z) ·
Smr(λm, λr, z)
Smr0(λm, λr, z)

. (11)

Then, the Km
lidar can be further obtained based on Eq. (1) using βm after calibrating the GOF of

the elastic backscattered signal. The Km
lidar can be expressed as follows:

Km
lidar(z) =

d{ln[βm(λm, z) ⊗ g(λm,σm)] + ln[Qm(z)] − ln[Pm(λm,σm, z) · z2]}

dz
. (12)

Subsequently, the relationship between Km
lidar and cm established through MC simulation can

be used to obtain cm from Km
lidar. However, in the perturbation method, assuming ∆Kmr0

lidar to be
depth-independent leads to increased errors in βm inversion in inhomogeneous water. Fortunately,
through subsequent theoretical error analysis, it has been revealed that even in regions with
significant vertical variations in Chl, the error in the inversion of Km

lidar using this algorithm
remains below 10%. Therefore, to improve the accuracy of βm inversion in inhomogeneous water,
an iterative approach is proposed. Firstly, the slope of the inverted Km

lidar is used to determine
the need for iteration. Theoretical analysis suggests that when the slope of Km

lidar is less than
10−3 m−2, the retrieved βm error is within 20% and iteration is not required. Otherwise, an
iterative algorithm is employed. Initially, by utilizing the depth-invariant initial value ∆Kmr0

lidar, the
profiles of Km

lidar are obtained through the above process. Subsequently, utilizing the relationship
between ∆Kmr

lidar and Km
lidar established via MC simulations, and based on the initially inverted

profile of Km
lidar, the depth-varying ∆Kmr0

lidar is obtained for substitution into Eq. (6). Finally,
based on Eqs. (7–12), more accurate profiles of βm and Km

lidar is obtained. Through subsequent
theoretical error analysis, it is found that after iteration, even in highly chlorophyll-stratified water,
the error in βm inversion is within 20% at depths up to 10 m. To provide a clearer representation
of the inversion process, a flowchart is illustrated in Fig. 1.
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213
214
215

Fig. 1. Flowchart of the inversion process.

3. Relationship between cm and Km
lidar

From Section 2, it is evident that after inverting Km
lidar, establishing the relationship between

Km
lidar and cm is essential for further inverting cm. This relationship is influenced not only by the

hardware parameters of the lidar system but also by the IOPs of the water. To determine this
relationship, this study utilizes a MC simulation, which is widely recognized as a crucial tool for
simulating complex processes and has been extensively employed in simulating the backscattered
signal of oceanic lidars [38]. In this study, a brief introduction to MC-based simulation of
backscattered signals is provided without delving into specific details. For a more comprehensive
understanding of the simulation process, it is recommended to refer to a recent article [39].

The MC method is used to simulate the random trajectories of photon propagation in a specific
medium. Both the step and direction are determined by the scattering and absorption properties
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of the medium. The step refers to the distance or interval traveled during each random sampling
iteration, while the direction denotes the path taken by the photon. The MC method ignores the
photon’s wave properties, and the propagation of laser signal in the water is represented as the
combination of many photon trajectories. The attenuation of laser energy is determined by three
factors: the absorption by the medium, the scattering probability, and the probability distribution
of the steps. To enhance the utilization efficiency of individual photons, a semi-analytic MC
model is applied [39]. This model allows for the calculation of the expected energy value and
position recording of each photon within the FOV of the telescope. The hardware parameters of
the lidar used in the simulation are based on the actual single-photon underwater lidar, as shown
in Table 1. The bio-optical models used in the simulation are presented in Table 2.

Table 1. Hardware parameters of the lidar system

Parameter Value

Pulsed laser Radius of laser beam 2 mm

Laser divergence angle 0.5 mrad

Coupler Diameter of telescope 22 mm

FOV of telescope 2.1 mrad

Scattering phase function Petzold phase function [40]

Other parameters Number of photons 108

Sampling interval 100 mm

Table 2. The bio-optical models used in the MC simulation

Empirical relationships Applicable range of Chl References⎧⎪⎪⎨⎪⎪⎩
ay(λ) = ay(440) exp[−0.014(λ − 440)]

ay(440) = 0.2[aw(440) + 0.06A(440) · Chl0.65]
0.02-20 mg/m3 [41]

bw(λ) = 0.0046(450/λ)4.32 - [42]

bR(λ) = 2.6 × 10−4(488/λ)5.5 - [37]

bp(λ) = 0.3Chl0.62(550/λ) 0.03-30 mg/m3 [43]

The total absorption coefficient (a) and the total scattering coefficient (b) are modeled as
follows [41]:

a(λ) = aw(λ) + 0.06A(λ) · Chl0.65 + ay(λ), (13)

b(λ) = bw(λ) + bp(λ) (14)

where aw is the absorption coefficient of pure seawater [44], A is the normalized spectral
absorption values of phytoplankton pigments, ay is the absorption coefficient of yellow substance,
bw is the scattering coefficient of pure water [42], and bp is the scattering coefficient of particulate.

In the simulations, a widely used Petzold phase function was adopted [40]. With a sampling
length of 20 m and a sampling interval of 0.1 m, a total of 200 sampling points can be obtained.
As shown in Fig. 2(a) and (c), the simulated elastic backscattering signal and the Raman
backscattering signal decays exponentially. To mitigate the effects of multiple scattering in the
lidar backscatter signal, a small-aperture telescope with a narrow FOV is employed.

As shown in Fig. 2(a) and (c), when the Chl is low, the percentage of multiple scattering
(PMS), which includes secondary scattering and higher-order scattering, is low. Consequently,
the lidar signal is predominantly governed by single scattering. However, as the Chl increases,
the PMS increases. Afterwards, Km

lidar and Kr
lidar at different Chl is obtained by selecting the

original signal with a PMS less than 100% and using the slope method [26]. The relationship
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Fig. 2. (a) Simulate elastic backscattered signals (lines) and the percentage of multiple
scattering (PMS) in the signals (scatters) for Chl ranging from 0.01 to 10 mg/m3 using the
Petzold phase function. (b) Relationships between Km

lidar and cm, where scatter represents
the results of MC simulations, and the solid line represents the fitted results. (c) and (d)
same as (a) and (b), but for Raman backscattered signals. (e) The range of ∆Kmr

lidar and
Km

lidar when Chl is ranging from 0.01 to 10 mg/m3. (f) The relationship between Km
lidar and

∆Kmr
lidar for Chl ranging from 0.01 to 10 mg/m3.

between Km
lidar and cm for Chl ranging from 0.01 to 10 mg/m3 is depicted in Fig. 2(b), while

the relationship between Kmr
lidar and the sum of the beam attenuation coefficient at 532 nm and

650 nm (cmr) is presented in Fig. 2(d). Subsequently, a second-order polynomial is used to fit the
relationship between Km

lidar and cm for the elastic channel, as well as the relationship between
Kmr

lidar and cmr for the Raman channel. The fitting results are shown in Fig. 2(b) and 2(d), with a
high degree of correlation indicated by the R-Square (R2) value of 0.99 for both channels. The
conclusion is consistent with the finding that Km

lidar tends to closely align with the cm when the
lidar backscattered signal is predominantly governed by quasi-single scattering, whereas the lidar
attenuation coefficient is given by the Kd when the backscattered signal is primarily influenced by
multi-scattering [36]. Ultimately, the difference between Km

lidar and Kr
lidar, referred to as ∆Kmr

lidar,
is presented in Fig. 2(e) for Chl ranging from 0.01 to 10 mg/m3. Additionally, the range of Km

lidar
for Chl ranging from 0.01 to 10 mg/m3 is also depicted in Fig. 2(e). From Fig. 2(e), it can be
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observed that the values of ∆Kmr
lidar range between -0.37 and -0.298, while the values of Km

lidar
range between 0.132 and 0.873. This demonstrates that using the Raman signal to normalize
the elastic signal effectively reduces the range of ∆Kmr

lidar, meeting the applicable conditions of
the perturbation method and leading to more stable inversion results. To enable the iteration
mentioned in Section 2, the relationship between ∆Kmr

lidar and Km
lidar is established and the results

are presented in Fig. 2(f). It can be seen that the fitting results between ∆Kmr
lidar and Km

lidar exhibit
relative stability, with an R-Square value of 0.99.

4. Inversion error analysis

In this section, the errors caused by the inversion algorithm will be analyzed. It should be noted
that this analysis exclusively focuses on the errors originating from the inversion algorithm,
while excluding errors that arise from the SNR of the lidar backscattered signal. Four typical
vertical distribution models of Chl will be used for analysis, representing subtropical center area,
mid-latitude case 1 water, lakes, and water surrounding Europe [45–48]. The vertical distribution
characteristics of these four Chl profiles are presented in Table 3 and their respective vertical
profile curves are shown in Fig. 3.

To calculate the errors, the elastic backscattered signal and Raman backscattered signal received
by the lidar are reconstructed. Firstly, utilizing the four vertical distribution models of Chl from
Table 3, the values of cm and cmr are calculated based on the bio-optical model from Table 2 and
using Eq. (13) and Eq. (14). Afterwards, referring to the relationship between cm and Km

lidar, cmr
and Kmr

lidar from Fig. 2, the vertical profile of Km
lidar and Kmr

lidar can be obtained. In addition, βm is
calculated as follows:

βm(λm, Chl) = bw(λm) · β̃w(180◦) + bp(λm, Chl) · β̃p(180◦), (15)

where the models of bw and bp are shown in Table 2, and the values of β̃w(180◦) and β̃p(180◦)
are respectively 0.114 [49] and 0.00318 [40].

Table 3. Vertical distribution model of Chl

Vertical distribution model References

Chl(z) = 0.005z + 0.01 [45]

Chl(z) = 0.01z + 0.1 [46]

Chl(z) = 9.5exp
[︂

−(z−2)2

2·(2/2.355)2

]︂
+ 0.5 [47]

Chl(z) = 1.5exp
[︂

−(z−3)2

2·(2/2.355)2

]︂
+ 9.5exp

[︂
−(z−6)2

2·(2/2.355)2

]︂
+ 0.5 [48]

The coefficient βt of the Raman channel can be obtained using Eq. (3) and the following
expression:

βf (λf , z) = aph(λm, z)ΦC
λm

λf
hC(λf )

1
4π

, (16)

where aph(λm, z) is the chlorophyll fluorescence absorption coefficient at an excitation wavelength
of 532 nm; ΦC is the quantum yield of chlorophyll fluorescence, which is affected by factors
such as light, nutrients and temperature; λf is the fluorescence wavelength of 685 nm; hC is the
normalized emission wavelength function of chlorophyll fluorescence, which can be expressed
from empirical model [49].

Given the reconstruction of Km
lidar and βm, as well as Kmr

lidar and βt, along with the assumptions
of Bm and Br, and the knowledge of Qm(z) and Qr(z), Pm and Pr can be reconstructed based on
Eq. (1) and Eq. (2).

After obtaining the reconstructed signal, the initial inversion is performed using the method
mentioned in Section 2 to obtain βm and Km

lidar. Referring to the relationship between Km
lidar and
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301 Table 2 and using Eq. (13) and Eq. (14). Afterwards, referring to the relationship between cm 
302 and 𝐾𝑚

𝑙𝑖𝑑𝑎𝑟, cmr
 and 𝐾𝑚𝑟

𝑙𝑖𝑑𝑎𝑟 from Fig. 2, the vertical profile of 𝐾𝑚
𝑙𝑖𝑑𝑎𝑟 and 𝐾𝑚𝑟

𝑙𝑖𝑑𝑎𝑟 can be obtained. 
303 In addition, βm is calculated as follows:

304      ,Chl (180 ) ,Chl (180 )m m w m w p m pb b            ,                     (15)

305 where the models of bw and bp are shown in Table 2, and the values of (180 )w   and (180 )p 

306 are respectively 0.114 [49] and 0.00318 [40].

307
308 Fig. 3. Inversion errors under different vertical distributions of Chl. The sub-figures (a)-(d) show 
309 different Chl vertical distribution: (a) linearly increasing with the slope of 0.005 mg/m3m-1 [45], 
310 (b) linearly increasing with the slope of 0.01 mg/m3m-1 [46], (c) unimodal with a single Gaussian 
311 distribution [47], and (d) bimodal with two Gaussian distribution [48]. Each sub-figure 
312 comprises three panels. The first panel displays the corresponding Chl vertical distribution, the 
313 second panel shows the distribution of βm and Errorβ; while the third panel displays the 
314 distribution of Km

lidar and ErrorK. In the second and third panels, the blue solid line represents 
315 the true value, the sparser dotted line represents the result of the perturbation method (PM), and 
316 the denser dotted line represents the result of the perturbation method + iteration method (PMI).

317
318 The coefficient βt of the Raman channel can be obtained using Eq. (3) and the following 
319 expression:

Fig. 3. Inversion errors under different vertical distributions of Chl. The sub-figures
(a)-(d) show different Chl vertical distribution: (a) linearly increasing with the slope of
0.005 mg/m3m−1 [45], (b) linearly increasing with the slope of 0.01 mg/m3m−1 [46], (c)
unimodal with a single Gaussian distribution [47], and (d) bimodal with two Gaussian
distribution [48]. Each sub-figure comprises three panels. The first panel displays the
corresponding Chl vertical distribution, the second panel shows the distribution of βm and
Errorβ ; while the third panel displays the distribution of Km

lidar and ErrorK . In the second and
third panels, the blue solid line represents the true value, the sparser dotted line represents
the result of the perturbation method (PM), and the denser dotted line represents the result
of the perturbation method + iteration method (PMI).

∆Kmr
lidar shown in Fig. 2(f), a new vertical distribution profile of ∆Kmr

lidar can be obtained. This
new ∆Kmr

lidar is then substituted into Eq. (6) to obtain the inversion results after iteration. Finally,
the respective deviations from the true values, denoted as Errorβ (error for βm) and ErrorK (error
for Km

lidar), can be calculated as follows:

Errorβ =
|︁|︁|︁|︁ βm(z) − βgt

m (z)
β

gt
m (z)

|︁|︁|︁|︁ × 100%, (17)
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ErrorK =

|︁|︁|︁|︁|︁Km
lidar(z) − Kmgt

lidar(z)

Kmgt
lidar(z)

|︁|︁|︁|︁|︁ × 100%. (18)

where, βgt
mand Kmgt

lidar are the true value of βm and Km
lidar respectively.

Based on the aforementioned analysis, the Errorβand ErrorK for the four different Chl
distributions are shown in Fig. 3. As shown in Fig. 3(a), when Chl demonstrates a linear increase
with a small slope, specifically when the slope of the inverted Km

lidar is less than 10−3 m−2, and
the Errorβ without iteration remains below 10%, it indicates that there is no longer a need to
use the iterative method. In contrast, when Chl demonstrates a linear increase with a large
slope, as depicted in Fig. 3(b), the Errorβ without iteration is relatively significant, while the
application of the iterative method decreases the Errorβ . In the other two scenarios depicted in
Fig. 3(c) and Fig. 3(d), where Chl exhibits a layered distribution ranging from 0.01 to 10 mg/
m3, the Errorβ can also be significantly reduced after iteration. These findings suggest that the
iterative method is more effective in stratified waters. Conversely, in homogeneous waters, the
perturbation method is sufficient for accurate inversion. Furthermore, the ErrorK remains below
10%, which further supports the use of iterative methods.

5. Field experiment

5.1. Lidar system

As shown in Fig. 4, the single-photon underwater lidar system includes four subsystems: a
532 nm pulsed laser, a transceiver, an optical receiver, and a data acquisition system. The system
employs a compact fiber-based laser that utilizes a master oscillator power amplifier (MOPA)
architecture, incorporating a single-mode pulsed seed laser operating at 1064 nm. The seed
laser is amplified through a single-mode ytterbium-doped fiber amplifier (SM-YDFA) and a
high-power ytterbium-doped fiber amplifier (HP-YDFA). It then passes through a lithium borate
crystal (LBO) for second harmonic generation, achieving an average power output of up to 1.0 W
at a wavelength of 532 nm, with a beam divergence of 0.5 mrad. The output pulse width of the
laser is 501 ps, and it operates at a repetition frequency of 1 MHz.

To achieve a miniaturized and robust structure, a fiber-connected configuration is specifically
designed for the underwater lidar system. The backscattered signal from water is coupled into
a 105 µm multimode fiber (MMF) with a numerical aperture (NA) of 0.22. This coupling is
achieved through an achromatic collimator with a 50.8 mm focal length, resulting in a narrow
FOV of ∼ 2.1 mrad. This narrow FOV not only provides significant suppression of noise but also
suppresses multi-scattering components in the backscattered signal. The distance between the
transmitted laser and the received collimator is ∼20 mm.

The backscattered photons are first separated into the elastic channel and the Raman channel
by DM2. The elastic signal passes through DM2, while the Raman signal is reflected by DM2.
Subsequently, the elastic backscattered signal is filtered using a 0.1 nm bandwidth filter (Filter1)
to remove background noise, while the Raman backscattered signal is extracted using a 6 nm
bandwidth filter (Filter2) at 650 nm. The bandwidth selection of the Raman filter is optimized
to minimize the impact of laser-induced fluorescence on inversion while ensuring a sufficient
SNR. For more details, please refer to a recent article [26]. The optical transmission efficiency of
the elastic channel from the collimator to the detector is ∼ 76%. On the other hand, the Raman
channel achieves an isolation of 55 dB for the elastic backscattered signal, with a transmission
efficiency of around 55%. For both channels, given the total MMF length does not exceed
1 m, the transmission efficiency of backscattered signals at 650 nm and 532 nm within the fiber
surpasses 90%, corresponding to a loss of less than 0.5 dB. The elastic backscattered signal
and Raman backscattered signal are then detected separately using single-photon avalanche
diodes (SPADs). This single-photon detector has a detection efficiency, defined as the ratio
of successfully detected photon events to the total photon count, of 62% at 650 nm and 50%
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363 coupled into a 105 μm multimode fiber (MMF) with a numerical aperture (NA) of 0.22. This 
364 coupling is achieved through an achromatic collimator with a 50.8 mm focal length, resulting 
365 in a narrow FOV of ~ 2.1 mrad. This narrow FOV not only provides significant suppression of 
366 noise but also suppresses multi-scattering components in the backscattered signal. The distance 
367 between the transmitted laser and the received collimator is ~20 mm.
368

369
370 Fig. 4. (a) Optical layout of the single-photon underwater lidar. SM-YDFA: Single-Mode 
371 Ytterbium-Doped Fiber Amplifier; HP-YDFA: High-Power Ytterbium-Doped Fiber Amplifier; 
372 L: lens; LBO:  lithium borate; DM: dichroic mirror; MMF: Multimode fiber; SPAD: single-
373 photon avalanche diode; TDC: time-to-digital converter; FG: function generator; PC: personal 
374 computer. (b) Internal photo of the single-photon underwater lidar. (c) Photo of single-photon 
375 lidar in operation underwater.

376

377 Table 4. Key parameters of the elastic-Raman lidar system

Parameter Value

Pulsed laser Wavelength
Pulse duration
Average power
Pulse repetition rate 
Pulsed energy

532 nm
501 ps
1 W
1 MHz
1 μJ

Collimator Focal length
Mode-field diameter of the MMF

50.8 mm
105 µm

SPAD Detection efficiency at 532 nm
Detection efficiency at 650 nm
Dark count rate

50 %
62 %
50 cps

378
379 The backscattered photons are first separated into the elastic channel and the Raman channel 
380 by DM2. The elastic signal passes through DM2, while the Raman signal is reflected by DM2. 
381 Subsequently, the elastic backscattered signal is filtered using a 0.1 nm bandwidth filter (Filter1) 

Fig. 4. (a) Optical layout of the single-photon underwater lidar. SM-YDFA: Single-
Mode Ytterbium-Doped Fiber Amplifier; HP-YDFA: High-Power Ytterbium-Doped Fiber
Amplifier; L: lens; LBO: lithium borate; DM: dichroic mirror; MMF: Multimode fiber; SPAD:
single-photon avalanche diode; TDC: time-to-digital converter; FG: function generator; PC:
personal computer. (b) Internal photo of the single-photon underwater lidar. (c) Photo of
single-photon lidar in operation underwater.

at 532 nm, with a dark count rate of 50 counts per second (cps). Moreover, a self-developed
two-channel time-to-digital converter (TDC) with a resolution of 500 ps is employed to accurately
acquire the timing information of the backscattered photons. The electronic module utilizes
a self-constructed function generator (FG) implemented on a field programmable gate array
(FPGA) to generate precise control signals for the laser and TDC. The lidar features dimensions
of 20 cm in diameter and 40 cm in length. With an average power consumption of approximately
80 W, the lidar has a weight of 15 kg. A summary of the system parameters is presented in
Table 4.

Table 4. Key parameters of the elastic-Raman lidar system

Parameter Value

Pulsed laser Wavelength 532 nm

Pulse duration 501 ps

Average power 1 W

Pulse repetition rate 1 MHz

Pulsed energy 1 µJ

Collimator Focal length 50.8 mm

Mode-field diameter of the MMF 105 µm

SPAD Detection efficiency at 532 nm 50%

Detection efficiency at 650 nm 62%

Dark count rate 50 cps
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5.2. Water tank experiment

To verify the stability of the single-photon underwater lidar system and the effectiveness of the
inversion algorithm, a water tank experiment was carried out in a swimming pool at the Xiang’an
campus of Xiamen University (24°37′N, 118°18′E). The size of the pool is 50×25×2 m3.

In the water tank experiment, the entire single-photon lidar system was placed underwater at a
depth of 1 m below the water surface. Due to the relatively wide bandwidth of the Raman filter
(6 nm), the experiment was conducted in a dark environment. The raw data of Pm and Pr are
shown in Fig. 5(a) with an accumulation time of 20 s. From the raw data, it can be observed
that, by utilizing single-photon detection technology, the detection depth of even the Raman
backscattered signals reaches ∼ 20 m. Additionally, as described below, both profiles within
the first 7 m do not follow an exponential decay trend due to the effect of the GOF. However,
after 7 m, when the GOF is fully overlapped, the backscattered signals of the lidar exhibit an
exponential decay trend. Due to the uniform mixing of water in the tank and the measurements
being conducted under non-flowing conditions, the GOF can be calculated based on the elastic
backscattered profile, as indicated by the black squares in Fig. 5(a). Specifically, the slope method
was initially employed to calculate the value of Km

lidar using the measured elastic backscattered
signals beyond a distance of 7 m. By utilizing the calculated Km

lidar, the signal within the range of
0-7 m can be estimated assuming a GOF of 1. Ultimately, the GOF was determined by dividing
the measured elastic backscattered signals by the estimated elastic backscattered signals derived
from the calculated Km

lidar. By fitting the calculated GOF using a logistic function, the results are
depicted by the red line in Fig. 5(a), demonstrating a high level of fit with an R2 value of 0.99. The
measured elastic backscattered signal can be corrected using the fitted GOF, as shown by the blue
solid line in Fig. 5(a). Moreover, with the introduction of the GOF, a significant improvement in
the dynamic measurement range of the lidar is realized. The GOF-corrected elastic backscattered
signals demonstrate that the single-photon lidar achieves a dynamic measurement range exceeding
50 dB.

 

Fig. 5. Field experiment results: (a) Measured elastic backscattered signal (blue circles) and
Raman backscattered signal (black circles), along with the corrected elastic backscattered
signal accounting for GOF (blue solid line). The measured GOF is represented by squares,
and the fitted GOF is depicted by the red line. (b) The retrieved values of βm (blue circles)
and cm (red squares), along with the measured cm (black solid line).

The inversion results of βm and cm, obtained through the inversion algorithm described in
Section 2, are shown as blue circles and red squares in Fig. 5(b), respectively. During the
inversion process, the value of ∆Kmr0

lidar is derived by utilizing the Km
lidar and Kmr

lidar, which are
determined using the slope method with the backscattered signal after 7 m. The value of Bm/Br
is obtained through calibration, which involves attenuating a broadband continuous light source
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with a known spectral distribution to the single-photon level and coupling it into the optical
collimator of the lidar system. The ratio of the elastic and Raman channel detection signals is
then measured to calibrate Bm/Br. From the figure, it can be seen that the βm values and cm
values calculated through Raman normalization are relatively stable with respect to distance, but
the fluctuation increases with distance due to the decrease in SNR. This relative stability of the
detection results aligns with the fact that the water in the tank is uniformly mixed. The cm at
532 nm was measured simultaneously using an in-situ absorption and attenuation meter ac-9
(WET Labs, Inc) to be 0.062 m−1. The lidar inverted cm is 0.052 m−1. The agreement between
the two results, with a relative deviation of 16%, validates the fact that in situations with a narrow
FOV and small aperture, the measured Km

lidar tends towards cm [36].

6. Conclusion

In this study, we proposed and demonstrated an algorithm for simultaneously and accurately
inverting the profiles of βm and cm. To the best of our knowledge, this is the first utilization of
underwater single-photon lidar for the simultaneous inversion of βm and cm profiles.

In terms of hardware design, we improved the detection sensitivity of the underwater lidar
to the single-photon level by employing single-photon detectors. This enhancement enabled
the detection of elastic and even water Raman backscattered profiles using a low-pulse energy
laser and a small aperture telescope. Furthermore, the telescope was designed with a narrow
FOV and a small aperture to minimize the contribution of multiple scattering components in the
lidar backscattered signals, thus making the inverted Km

lidar tend towards cm. Additionally, it is
worth mentioning that the deployment of the lidar system underwater eliminates interference
from the air-sea interface on laser transmittance, effectively removing the modulation of laser
backscattered signal intensity caused by changes in interface smoothness. This capability is
critical for accurately retrieving βm based on intensity information from the lidar backscattered
signals.

Regarding the algorithm for simultaneous inversion of βm and cm, we normalized the elastic
backscattered signal using the water Raman backscattered signal. This approach significantly
reduces the errors in βm inversion caused by system instabilities, such as laser power fluctuations
and unsynchronized detection efficiencies of the two detectors. Furthermore, the normalization
reduces the variation of the differential lidar attenuation coefficient ∆Kmr

lidar with depth, allowing
the use of a perturbation method for βm inversion. Subsequently, by inverting Km

lidar using the
calculated βm and establishing the relationship between cm and Km

lidar through MC, the vertical
distribution of cm can be inferred. To overcome the issue of large errors in βm inversion when
using the perturbation method in stratified water, we improved the method by introducing an
additional iteration. Error analysis indicates that within a range of 20 m, even in stratified
water, the errors in βm and Km

lidar inversion using this method are less than 10%. Finally, the
robustness of the lidar system and the effectiveness of the algorithm were validated through a
pool experiment.

In future work, particularly the effectiveness of this algorithm in stratified water, will be further
experimentally verified, as this aspect is currently lacking in our study. Additionally, in-situ
profile measurements and comparisons with ocean color measurements will be conducted to
further validate and improve the relevant algorithms. Meanwhile, to minimize the influence
of chlorophyll fluorescence on Raman backscattered signals, the use of shorter wavelength
lasers, such as blue lasers, as transmitters will be considered. Once the impact of chlorophyll
fluorescence on Raman backscattered signals is reduced, the bandwidth of the Raman filter can
be increased, thereby improving the SNR of Raman backscattered signals. Furthermore, the
considerably weaker water Raman signals compared to elastic scattering signals, along with the
broader bandwidth of the Raman filter relative to the elastic channel, have somewhat impacted
the system’s depth detection and daytime performance. Consequently, we plan to integrate the
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lidar system into an autonomous underwater vehicle (AUV) platform to enable the detection of
biogeochemical parameters in water from the surface to deeper layers without being affected
by solar radiation noise. In conclusion, this study demonstrates the significant potential of
utilizing underwater single-photon lidar for accurately inverting βm and cm profiles, especially in
situations where near-field signals are influenced by GOF. This innovative approach allows for
the acquisition of precise and high-resolution observation data, crucial for accurately estimating
primary productivity in the ocean and studying the cycling of marine biogeochemical parameters.
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