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Clay mineralogy and elemental geochemistry of lacustrine sedimentary records have beenwidely used in paleo-
weathering and paleo-climate studies. However, different paleo-climatic interpretations may be produced via
analyses on siliciclastic sediments and other sedimentary components (e.g., authigenic minerals and organic
materials), especially for megalake systems. To test this hypothesis, we focus on late Cenozoic lacustrine fine-
grained deposits from the northwestern Qaidam basin and combine clay mineralogical and geochemical data
(including neodymium isotope) to interpret sediment provenance, reconstruct paleo-weathering history and
characterize sediment-climate feedback processes. Provenance analysis results show that the lacustrine silicic-
lastic sediments were derived from lithologically similar sources that provided dominant felsic parent-rocks.
The kaolinite/illite ratio, illite chemistry index, Chemical Index of Alteration (CIA) values are low and demon-
strate overwhelmingly mild-moderate chemical weathering intensity, seemingly matching well with the
middle–late Miocene regional arid climate. However, these weathering intensity index values are also highly
fluctuant and display increasing trends during ~13.4–12 Ma and ~8.8–8.4 Ma. The reconstructed paleo-
weathering history is discrepant with local intensified aridity conditions documented by previously published
sedimentary carbonate oxygen isotope, evaporite mineral, biomarker and sporopollen data. Given the occur-
rence of a middle–late Miocene megalake in the Qaidam basin, the intense exhumation at ~13–12 Ma and the
~9 to ~7 Ma intensified East Asian summer monsoon precipitation in northeastern Tibet regions, we suggest
that the lacustrine fine-grained siliciclastic compositions and corresponding weathering records were likely in-
fluenced by tectonic and climatic changes in far regions to the east. The observed clay mineralogical and geo-
chemical variations reflect weathering conditions involving sediment sources and transport pathways, not
merely the depositional areas. Our findings verify the possible differences in paleo-climate reconstruction results
from different lacustrine sediment indicators. This study emphasizes the importance of a sediment source-to-
sink perspective for paleo-climate study based on siliciclastic materials in megalake systems.

© 2023 Elsevier B.V. All rights reserved.
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1. Introduction

Clay minerals are commonly regarded as important products of
silicate chemical weathering on the Earth's surface (Mei et al., 2021).
As chemical weathering processes and intensities are closely linked to
climatic conditions, clay mineral-related proxies of weathered rocks,
soils, sediments and sedimentary rocks have beenwidely used to recon-
struct paleo-climatic and paleo-environmental history (e.g., Chamley,
1989; Thiry, 2000; Wang et al., 2020; Fu et al., 2022). For example,
clay mineral assemblages and ratios (e.g., kaolinite proportion and
kaolinite/(kaolinite + chlorite) ratio) have been proposed to indicate
regional temperature and precipitation changes and chemical
weathering intensity in areas where weathering products are formed
(Dinis et al., 2017, 2020; Tateo, 2020). The illite chemistry index is
also frequently employed to indicate weathering degrees (Ehrmann
et al., 2005; Li et al., 2018; Wang et al., 2020). Since clay minerals are
dominant components offine-grained siliciclastic fractions in sediments
(Warr, 2022), geochemical compositions of fine-grained siliciclastic
sedimentary rocks are also considered as robust indicators for
reconstructing local or regional paleo-weathering and paleo-climate
history (Singer, 1984; Li et al., 2018; Bao et al., 2019; Yang et al.,
2019). Furthermore, authigenic minerals (e.g., evaporite minerals), or-
ganic markers, magnetic susceptibility and some isotopic tracers
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(e.g., sedimentary carbonate carbon and oxygen isotopes) of sedimen-
tary records are also useful proxies for paleo-climate reconstruction
(Jian et al., 2014; Song et al., 2014; Nie et al., 2017; Liang et al., 2021).

Numerous case studies show that paleo-climate records obtained
from detrital clay mineralogical and geochemical compositions of fine-
grained siliciclastic sediments correspond well with those based on
other proxies in terrestrial and marine deposits (e.g., Zhang et al.,
2015, 2016; Yang et al., 2019; Wang et al., 2020). However, it is also re-
alized that fine-grained siliciclastic fractions in sediments may be con-
trolled by climate, weathering and many other processes (e.g., erosion,
transport and hydrodynamic sorting) before final deposition in sedi-
mentary basins. Therefore, the fine-grained siliciclastic fractions not
only document climate-weathering information of depositional areas,
but also reflect other factors in the sediment source-to-sink systems,
e.g., parent-rock lithology, topography, transport pathways, post-
depositional weathering and even diagenesis (Singer, 1984; Chamley,
1989; Velde, 1992; Fagel, 2007). In this case, such clay mineralogical
and geochemical records based on fine-grained siliciclastic sedimentary
rocks in complex sedimentary systems, e.g., megalake or marine envi-
ronments, may produce paleo-climate interpretations concerning a
larger and more complicated geographic space, which might be differ-
ent from those in-situ or biologically related sedimentary indicators in
depositional areas, especially for those regions with highly heteroge-
neous climate conditions.

To test this hypothesis, we focus on the late Cenozoic paleo-
weathering and paleo-climate sedimentary record from the northwest-
ern Qaidam basin, northern Tibetan Plateau. The Qaidam basin is an
ideal research area due to the continuous Cenozoicfluvial and lacustrine
sedimentary sequences and the critical location affected by both the
Westerlies and the Asian monsoons (Fig. 1A) (Fang et al., 2007; Song
et al., 2014). Numerous studies suggest that a relatively unified
megalake existed in the Qaidam basin during the Oligocene–Pliocene
(Guo et al., 2018; Liang et al., 2021; Wu et al., 2021; Yu et al., 2021). It
is well accepted that the northern Tibetan Plateau has experienced in-
tensified tectonic deformation and crustal shortening since the late
Cenozoic (Sun et al., 2005; Zhang et al., 2012; Yuan et al., 2013). Com-
paratively wet climate in the mid-Miocene Climatic Optimum
(MMCO) and subsequently intensified aridification in this region have
been revealed and supported by published sporopollen (Miao et al.,
2011, 2013), geochemistry (Bao et al., 2019), clay mineralogy (Wang
et al., 2013a) and magnetic mineralogy data (Guan et al., 2019; Nie
et al., 2019).

In this study, we present clay mineralogical, major-, trace- and rare
earth element geochemical and Nd isotopic data from the late Cenozoic
subsurface lacustrine deposits in the Xiaoliangshan area (Fig. 1), north-
western Qaidam basin. The aims are to (1) determine sediment prove-
nance and paleo-weathering history of the lacustrine siliciclastic
sequences, to (2) discuss the relationship between regional paleo-
climate and clay mineralogical and geochemical records and to (3) ex-
plore potential controls on fine-grained siliciclastic compositions in a
paleo-megalake system.

2. Geological setting

2.1. Geology of the Qaidam basin and the surrounding mountains

The Qaidam basin is the largest Cenozoic sedimentary basin in
northern Tibet (Fig. 1), covering approximately an area of 120,000 km2.
The elevations of the Qaidam basin vary from 2.7 to 3 km. The basin is
surrounded by the Eastern Kunlun Mountains, Qilian Mountains and
Altyn Tagh Mountains to the south, northeast and northwest, respec-
tively (Fig. 1B). These mountains are in average >5 km above sea level.
The Eastern Kunlun Mountains are regarded as a ~1000 km-long, latitu-
dinally trending, granitoid-rich orogenic belt andmainly consist of igne-
ous rocks (especially granitoid rocks of arc origin) with subordinate
metamorphic rocks, sedimentary rocks and ophiolite-related rocks
2

(Yuan et al., 2003; Mao et al., 2014; C. Wu et al., 2019). The Eastern
Kunlun orogenic belt is believed to document subduction-closure of
the Proto-Tethys and Paleo-Tethys Oceans during the Paleozoic to early
Mesozoic (Jian et al., 2023). The Qilian Mountains, as a ~300 km-wide,
~1000 km-long,metamorphic rock-rich fold-thrust belt, aremainly com-
posed of different grades of metamorphic rocks (e.g., schist, gneiss and
marble), plutonic rocks, marine sedimentary rocks as well as ophiolite-
related rocks (Gehrels et al., 2003; Xiao et al., 2009; S. Song et al.,
2013). The Qilian Mountains developed in response to multiple
subduction- and collision-related processes during the closure of the
Proto-Tethys Ocean (Xiao et al., 2009; Jian et al., 2023). The Altyn Tagh
Mountains separate the Qaidam basin from the Tarim basin and are fea-
tured by an active left-lateral strike-slip fault (i.e., the Altyn Tagh Fault)
with ~375 km offset (Shen et al., 2001; Yin et al., 2002). The Altyn Tagh
Mountains are mainly composed of marine sedimentary and metamor-
phic rocks (such as gneiss, marble and amphibolite), withminor igneous
rocks, similar to the rock assemblages in the Qilian Mountains (Zhang
et al., 2001; Gehrels et al., 2003).

Formation of the Cenozoic Qaidam basin is regarded as a result of a
convergence system on the northern margin of the Tibetan Plateau
(Tapponnier et al., 2001). The tectonic regime of the basin has been
closely related to the Indo-Asian collision and the subsequent continu-
ous rise, thickening, shortening and lateral compression in the Tibetan
Plateau (Tapponnier et al., 2001; Yin et al., 2002, 2008; Zhuang et al.,
2011b; Jian et al., 2018). A series of thrust fold belts with NW-SE direc-
tion are developed along the basin margin and within the basin
(Fig. 1C).

The Qaidam basin preserves continuous and thick Cenozoic fluvial-
lacustrine sedimentary successions, up to 12 km in thickness (Fang
et al., 2007; Meng and Fang, 2008; Yin et al., 2008; Jian et al., 2014;
Bush et al., 2016; Bao et al., 2017). The Cenozoic sedimentary strata of
the Qaidam basin are generally divided into 7 stratigraphic units
(Fig. 2), including Lulehe Formation (E1+2), Xiaganchaigou Formation
(E3), Shangganchaigou Formation (N1), Xiayoushashan Formation
(N2

1), Shangyoushashan Formation (N2
2), Shizigou Formation (N2

3), and
Qigequan Formation (Q1+2), ages of which were constrained by
magnetostratigraphic investigations combined with paleontological
data (e.g., Sun et al., 2005; Zhang, 2006; Fang et al., 2007; Lu and
Xiong, 2009; Song et al., 2014; Chang et al., 2015; Ji et al., 2017;
T. Zhang et al., 2018). The Cenozoic strata show highly spatial and strat-
igraphic variations in lithology (Fig. 2). The southwestern and north-
western Qaidam basin are characterized by mixed carbonate-
siliciclastic deposits with evaporite layers (Fig. 2) (Jian et al., 2014;
Chang et al., 2015), while the northern and northeastern Qaidam
basin are dominated by siliciclastic deposits (Fig. 2) (Cheng et al.,
2021; Fu et al., 2022). Generally, the Cenozoic strata of the Qaidam
basin display a stacking pattern of coarse-grained deposits in the bot-
tom (E1+2), followed by dominant fine-grained deposits (E3, N1 and
N2
1) and then coarse-grained deposits in the upper part (N2

2, N2
3 and

Q1+2) for most regions (Guan and Jian, 2013; Zhuang et al., 2011b).

2.2. Depositional ages of the western Qaidam basin

Several magnetostratigraphy studies on Cenozoic sedimentary out-
crop and borehole sections from the western Qaidam basin have re-
cently been completed (Zhang, 2006; Zhang et al., 2013; Song et al.,
2014; Chang et al., 2015; T. Zhang et al., 2018). The N1, N2

1, N2
2, and N2

3

strata from the Xichagou section (see Fig. 1B for location) were dated
at 31–22 Ma, 22–14.9 Ma, 14.9–8.2 Ma, and <8.2 Ma, respectively, ac-
cording to investigations by Zhang (2006). The Huatugou section (see
Fig. 1B for location) spans a period from ~30 Ma to ~11 Ma and com-
prises the N1 strata (>31–~23 Ma), N2

1 strata (~23–12.44 Ma), and N2
2

strata (<12.44 Ma) (Chang et al., 2015). In this study, the
Xiaoliangshan area stratigraphy was correlated with the Honggouzi
(HGZ) section (see Fig. 1B for location) near the Xiaoliangshan area.
The depositional ages of N2

2 and N2
3 strata of the HGZ section were
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Fig. 1.Geological setting and localmaps of the study area. (A) Amap showingmajor tectonic elements in the Tibetan Plateau and the surrounding regions,modified from Jian et al. (2020a).
The red dashed line represents the current boundary of theAsian summermonsoon andWesterlies belts, after Nie et al. (2017). (B) The geologicalmap of the Qaidambasin and surround-
ing mountains, revised from Lu et al. (2018). (C) The geological map of the Xiaoliangshan area and the northwestern Qaidam basin, revised from W. Zhang et al. (2018). (D) Major
hydrocarbon exploration well locations in the Xiaoliangshan area. HGZ: Honggouzi section; HTG: Huatugou section; XCG: Xichagou section; N2

1: Xiayoushashan Formation; N2
2:

Shangyoushashan Formation; N2
3: Shizigou Formation; Q1–2: Qigequan Formation; Q3–4: Holocene.
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Fig. 2. Cenozoic stratigraphy and lithology of the Qaidam basin, compiled from Fang et al.
(2007), Meng and Fang (2008), Zhuang et al., 2011b, Jian et al. (2013), Ji et al. (2017)
and Cheng et al. (2021). Note that the depositional ages of the stratigraphic units are
from Ji et al. (2017).

Fig. 3. Stratigraphic correlation between the Xiaoliangshan area (this study) and the
Honggouzi section (Song et al., 2014; T. Zhang et al., 2018), western Qaidam basin. Since
the rock cores were not continuously collected, the lithology column of the Xiaoliangshan
here was based on cutting logging data from Wang et al. (2012).
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restricted as ~17 Ma to 9.8 Ma and 9.8 Ma to 5 Ma by a comprehensive
magnetostratigraphic investigation combinedwith paleontological data
(Song et al., 2014; T. Zhang et al., 2018; Fig. 3). The timing of the
Cyprideis enrichment in the Miocene strata of the Xiaoliangshan area
is consistent with that of the entire Qaidam basin (~12 Ma; Zhang
et al., 2006; Fig. 3), supporting the application of this agemodel to depo-
sitional age estimation of theMiocene strata in this study. Using this age
model, we were able to interpolate the absolute age to ~13.4 Ma for the
lowermost Well L101 sample and to 8.4 Ma for the uppermost sample.
The stratigraphic correlation between Wells L101 and L6 is shown in
Fig. S1 in Appendix B.

2.3. Miocene sedimentary environments in the Xiaoliangshan area

TheMiocene strata in theXiaoliangshanarea of theQaidambasin are
primarily composed of mixed carbonate-siliciclastic fine-grained rocks
(Figs. 4, 5). These sedimentary rocks are thought to be deposited in
lake environments (from a semi-deep fresh-water to semi-brackish-
water lake environment to a shallow brackish-water lake
environment) under a relatively arid climate (Fig. 4) (Jian et al., 2014;
W. Zhang et al., 2018). The paleo-lake in this region is considered to
be hydrologically closed with intermittently open conditions (Jian
et al., 2014). Deposits spanning this interval consist of three main litho-
facies: Facies 1 is interpreted as deposited in a semi-deep fresh-water to
semi-brackish-water lake environment by a combination of gray-black
mudstone and marlstone with well-developed horizontal millimeter-
scale-laminations and the occurrence of pyrite nodules; Facies 2 is char-
acterized by gray, yellowishmassivemudstone, marlstone and siltstone
with absent laminations, centimeter-sized anhydrite and gypsum crys-
tals, indicating a shallow brackish-water lake environment; Facies 3 is
mainly composed of yellowishmassive sandstonewith abundant anhy-
drite and gypsum crystals, also deposited in a shallow brackish-water
lake environment (Jian et al., 2014). Facies 1 is predominantly present
in the N2

2 strata. Facies 2 and Facies 3 mainly occur in the N2
3 strata

(Jian et al., 2014; Figs. 4, 5). More detailed facies descriptions and
representative photographs are shown by Jian et al. (2014). Abundant
hydrocarbon resources are trapped in these shallow (most <2000 m)
4

subsurface N2
2 and N2

3 sedimentary strata (W. Zhang et al., 2018) and
several exploration wells were drilled in the Xiaoliangshan area
(Fig. 1D) (Jian et al., 2014). The analyzed samples in this study were
collected from Wells L101 and L6 and were from the upper part of the
N2
2 strata and the lower N2

3 strata (Fig. 1; Fig. S1 in Appendix B).

3. Materials and methods

3.1. Sample analysis

A total of 48 samples were selected for clay mineralogical analysis.
Samples were crushed, placed into 100 mL centrifuge tube and
immersed in pure water for 30 min. After oscillation and stirring,
0.05 mg sodiumhexametaphosphate was added to prevent clay floccu-
lation. The clay fractions (<2 μm) were then separated by gravitational
sedimentation following the Stokes' law. Organic matter and carbonate
were removed by 10 % H2O2 and 1 mol/L CH3COOH, respectively. To
identify and quantify the clay mineral compositions, each sample
was suspended (dispersed by ultrasonic treatment), pipetted and
deposited onto a glass slide and allowed to air-dry at room temperature.
The claymineral compositions of these oriented samples were then de-
termined by a Rigaku Ultima IV X-ray diffractometer (XRD) in the fol-
lowing conditions: air-dried (N), ethylene glycol-solvated (EG) and
heated to 500 °C for 2 h (T). All samples were scanned from 4° to 35°
with a scanning speed of 4°/min under 40 kV, 30 mA, wavelength of
1.5406 and step width of 0.02° conditions.

We selected 29fine-grained sediment samples formajor-, trace- and
rare earth element geochemistry analysis and 10 fine-grained sediment
samples for Nd isotope analysis. All the samples were powdered and
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Fig. 4. Lithological column, sedimentary carbonate δ18O (δcarb18 O) values, sedimentary environment interpretation (Jian et al., 2014) andwhole-rockmineral compositions (W. Zhang et al.,
2018) of rock cores from theWell L101 in the Xiaoliangshan area. The high oscillations in δcarb18 O data are thought to be dependent on variable precipitation/evaporation ratios, specifically
the residence time of lake water and corresponding calcite proportions in carbonate fractions (Jian et al., 2014). Samples with the highest calcite contents (100 % or nearly 100 %,
in carbonates) indicate the most negative δcarb18 O values (arrow mark), implying hydrologically open lake conditions with minimal evaporation. Detrital minerals include
quartz, K-feldspar and plagioclase. Carbonate minerals include calcite, dolomite, aragonite, siderite and magnesite. Evaporite minerals include gypsum, anhydrite and halite.
Others include hematite and pyrite. Refer to Jian et al. (2014) and W. Zhang et al. (2018) for the details.
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treated with 10 % H2O2 and 5 mol/L CH3COOH under 60 °C water bath
conditions to remove organic matter and carbonate and then the
siliciclastic residues were separated and dried.

Major elements were measured by an X-ray fluorescence (XRF)
spectrometer following the procedures described by Mei et al.
(2021). The sample powders were dried at 105 °C, accurately
weighed and placed into Pt\\Au crucibles, and then fully mixed
with lithium metaborate flux. The mixed materials were melted at
1050 °C and were then cooled to formmelting disks for XRF analysis.
The loss on ignition (LOI) values were obtained by measuring the
mass reduction after heating the samples at 1000 °C. The accuracy
(relative deviation) for the determination of major element concen-
trations is <5 %.

Trace- and rare earth elements were measured by an Inductively
Coupled PlasmaMass Spectrometer (ICP-MS) following the procedures
described by Mei et al. (2021). The sample powders were accurately
5

weighed, placed in high-pressure-resistant Teflon beakers and
completely digested with HNO3 and HF mixtures. The BHVO-2, AGV-2
andW-2 standardmaterialswere used tomonitor the analytical quality.
All the relative deviations between measured and certified values are
generally <5 %.

The Nd isotopic analysis was performed following the procedures
described by Jian et al. (2020b). The pre-treated samples (~50 mg)
were weighed accurately and reacted with a mixture of concentrated
HF andHNO3 for 48h in a high-pressuremuff furnace at 190 °C. Element
Ndwas then separated following standard ion exchange techniques and
Nd isotopesweremeasured using aMulti-Collector Inductively Coupled
Plasma Mass Spectrometer (MC-ICP-MS). The GBS 04-3258-2015
(143Nd/144Nd = 0.512438 ± 10, 2σ, J. Li et al., 2017) standard solution
was applied to monitor the quality of Nd isotopic measurements
and gave an average value of measured 143Nd/144Nd = 0.512438 ±
10 (2σ, N = 7), well within the recommended value ranges.



 

Fig. 5. Representative photographs, microphotographs (under the cross-polarized light) and the scanning electron microscope (SEM) pictures for the samples from Well L101.
(A)macroscopic view of laminatedmudstone (1410m–1412m); (B) graymudstone (1403.8 m); (C) gray laminatedmudstone (1242.63m); (D) anhydrite (Anh) crystals in amudstone
sample (739.8m); (E) marlstone with authigenic pyrite (Py, reflected light, 1397.5 m); (F) lime marlstone (1292.94m); (G)mudstone (787.34 m); (H) and (I) SEM pictures of claymin-
erals at the depth of 769.03 m and 1296.84 m, respectively, from Wang et al. (2012).
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3.2. Calculation of clay mineral- and element-based weathering intensity
indices

The JADE 6.0 software was used to identify clay minerals from the
obtained XRD spectra (Fig. 6). Generally, illite can be recognized by
peaks at 10 Å (001), 5 Å (002) and 3.33 Å (003) on the N-treated
diffractogram,which showno changes after being treatedwith ethylene
glycol (Fig. 6). The (002) peak (7.1 Å) of chlorite almost coincides with
the (001) peak (7.2 Å) of kaolinite on the EG-treated diffractogram
(Fig. 6). Kaolinite and chlorite can be distinguished by the (002) peak
(3.58 Å) of kaolinite and (004) peak (3.54 Å) of chlorite (Fig. 6). Besides,
chlorite was also identified by its (001) peak (14.2 Å) and (003) peak
(4.74 Å) on EG-treated diffractogram (Fig. 6). Smectite (including
illite/smectite mixed-layers) can be recognized by a combination of
the N- and EG-treated diffractograms. The peak of smectite from 12 Å
to 15 Å on the N-treated diffractogram will move to 17 Å after being
treated with ethylene glycol (Fig. 6). After the identification of each
clay mineral, semi-quantitative estimations of the relative percentages
of clay minerals were based on the peak area (Biscaye, 1965) on XRD
patterns of the EG-treated samples. The relative abundances of clay
minerals were determined by the formula: 4�I (illite 10 Å) + I (smec-
tite 17 Å) + 2�I (kaolinite, chlorite 7.1 Å) = 100 % (Biscaye, 1965;
Song et al., 2018; Fu et al., 2022). The relative proportions of kaolinite
and chlorite (kaolinite/chlorite) were determined based on the ratio of
the 3.58/3.54 Å peak areas. The illite chemistry index (illite 5 Å/10 Å), de-
fined as the ratio of the 5 Å and 10 Å peak areas, was also calculated for
paleo-weathering intensity evaluation.

Chemical weathering intensity can also be quantified by several
proxies based on chemical elemental mobility (Nesbitt and Young,
6

1982; Fedo et al., 1995; Yang et al., 2019; Mei et al., 2021), such as the
Chemical Index of Alteration (CIA = [Al2O3 / (Al2O3 + CaO* + Na2O
+ K2O)] × 100, in molecular proportions; Nesbitt and Young, 1982).
CaO* therein represents CaO content in the silicate fraction. Although
we attempted to remove CaO in the carbonate fraction through acid
digestion, we found that the carbonate minerals in some samples
might not be completely removed (Table S2 in Appendix A; the
duration of complete carbonate removal is various depending on
several factors (Fu et al., 2020)). Hence, we accepted a widely-used
method proposed by McLennan (1993) that if the molar content of
CaO was no more than that of Na2O in the sample, we adopted the
molar content of CaO as CaO* value. Conversely, if the CaO molar
content was more than the Na2O molar content, we assumed that the
CaO* value was equal to the Na2O molar content (Bock et al., 1998;
Roddaz et al., 2006).

Grain size and mineral sorting may affect sediment chemical
compositions and thus bias the CIA indication of chemical
weathering intensity (Bouchez et al., 2011; Ren et al., 2019).
Hence, it is necessary to consider and eliminate the potential grain-
size effect on the CIA proxy. We note the remarkably positive corre-
lation between raw CIA values and Al/Si molar ratios (a reliable indi-
cator of sediment grain size; Lupker et al., 2013; Li et al., 2022)
(Fig. S2 in Appendix B), suggesting non-negligible grain-size depen-
dence. Here, we normalized the raw CIA data to a uniform grain size,
following the method proposed by Li et al. (2022). The corrected CIA
(CIAC) can be expressed as follows:

CIAC ¼ CIAr � Al=Sið ÞS � Al=Sið ÞN
� �� S ð1Þ



Fig. 6. Clay X-ray diffraction patterns of three representative samples fromWell L101. S:
Smectite; Ch: Chlorite; Ka: Kaolinite; I: Illite; Qtz: Quartz; N: air-dried; EG: ethylene-glycol
solvation; T: heated to 500 °C for 2 h.
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where CIAr is the raw CIA value and S is the slope of the fitted linear re-
gression line of the rawCIA values and Al/Si ratios. (Al/Si)S is the sample
Al/Si value and (Al/Si)N is the uniform value for normalization. As
shown in Fig. S2 in Appendix B, the correlation shows a linear correla-
tion (R2 = 0.50), and the slope of 48.33 in this composite line can be
used as S for the CIA correction in Eq. (1). We use 0.35 (mean value of
Al/Si ratios) as the (Al/Si)N value in this study. The corrected CIA values
have no apparent correlation with the Al/Si molar ratios, implying that
this correction can eliminate the grain-size effect (Fig. S2 in Appendix B).

4. Results

4.1. Clay mineral compositions

Representative XRD patterns of the N-, EG-, and T-treated clay min-
eral samples are illustrated in Fig. 6 and the data are given in Table S1 in
Appendix A. The results indicate that the N2

2 and N2
3 samples have

similar clay mineral assemblages, characterized by abundant illite
(70.0 %–91.2 % for N2

2 and 58.8 %–89.9 % for N2
3) and chlorite (5.0 %–

23.3 % for N2
2 and 6.9 %–25.2 % for N2

3), subordinate kaolinite (1.7 %–
11.8 % for N2

2 and 1.0 %–11.6 % for N2
3) and scarce smectite (0.0 %–2.6 %

for N2
2 and 0.0 %–13.4 % for N2

3) (Fig. 7). The clay mineral assemblages
of N2

2 samples have almost unchanged trends of average values over
time but show large fluctuations in individual values. The N2

3 samples
are also highly fluctuant in clay mineral assemblages. However, the
chlorite and kaolinite contents in the N2

3 samples are featured by
7

decreasing trends during ~9.2–8.8 Ma and then increasing trends
during ~8.8–8.4 Ma (Fig. 7). Illite contents show the contrary trends.
Moreover, the kaolinite/illite (Ka/I) values remain stable during
~13.4–12 Ma in N2

2 samples, while the N2
3 samples show a slightly

decreasing trend during ~9.2–8.8 Ma and then a slightly increasing
trend during ~8.8–8.4 Ma (Fig. 8A). The illite 5 Å/10 Å values range
from 0.13 to 0.42 (avg. = 0.30) for N2

2 samples and from 0.13 to 0.45
(avg. = 0.32) for N2

3 samples (Fig. 8B). Slightly different from the Ka/I
ratios, the illite 5 Å/10 Å values are obviously fluctuant in N2

2 samples
(Fig. 8B).

4.2. Major-, trace- and rare earth element compositions

The raw major element data are given in Table S2 in Appendix A.
Overall, all samples show high abundances of SiO2 (29.25–67.34 wt.%,
avg. = 53.58 wt.%) and Al2O3 (9.48–18.80 wt.%, avg. = 15.87 wt.%),
and relatively low abundances of CaO (0.76–12.90 wt.%, avg. = 3.18
wt.%), K2O (2.03–4.14 wt.%, avg. = 3.37 wt.%) and Na2O (0.94–2.21
wt.%, avg. = 1.72). The element compositions of all the samples are
normalized to the composition of the Upper Continental Crust (UCC,
Rudnick and Gao, 2003) and are shown in Fig. S3 in Appendix B. The
results indicate that most samples are moderately depleted in
elements Na and Ca and are slightly enriched or depleted in element K
(Fig. S3 in Appendix B). Both the raw CIA (58.6–68.4, avg. = 63.6) and
corrected CIA (60.6–66.3, avg. = 63.6) values show increasing trends
for the N2

2 samples during ~13.4 Ma–12 Ma (Fig. 8C, D). Nevertheless,
the N2

3 samples display slight, complicated variations in both raw CIA
and corrected CIA values. The raw CIA values decrease from ~9.2 Ma
to ~9 Ma and then increase during ~9 Ma–8.4 Ma. The corrected CIA
values show a decreasing trend from ~9.2Ma to ~8.8Ma and an increas-
ing trend during ~8.8 Ma–8.4 Ma (Fig. 8C, D).

The trace- and rare earth element data are given in Tables S3–S4 in
Appendix A and representative elemental ratios are illustrated in
Fig. 7. All samples have relatively approximate trace elemental ratios,
such as Th/Sc (0.77–1.01) and La/Th (2.08–2.78) (Fig. 7). The UCC-
normalized trace element patterns of all the analyzed samples are plot-
ted in Fig. S3 in Appendix B. The rare earth element (REE) concentra-
tions are further normalized to chondritic compositions (Taylor and
McLennan, 1985) and the REEs of the Post-Archean Australian Shale
(PAAS; McLennan, 1989) and UCC (Rudnick and Gao, 2003) are also
plotted for comparison purposes (Fig. 9B). All samples show similar
REE patterns to PAAS and UCC, with relatively high abundances of the
light rare earth elements (LREE; LaN/YbN = 6.38–9.54, avg. = 8.72)
and flat patterns for heavy rare earth elements (HREE; GdN/YbN =
1.26–1.77, avg. = 1.47). In addition, all samples show significantly
negative Eu anomalies, normalized to chondritic compositions
(Eu/Eu* = 0.63–0.83, avg. = 0.68; Fig. 9B).

4.3. Nd isotopes

Neodymium isotopic results of the analyzed samples are expressed
by 143Nd/144Nd ratios and εNd values (εNd = ((143Nd/144Nd)measured /
(143Nd/144Nd)CHUR − 1) × 104, CHUR = 0.512638 (Jacobsen and
Wasserburg, 1980)). The siliciclastic fractions have fairly small range
of 143Nd/144Nd ratio values from 0.512111 to 0.521145 (avg. =
0.512127) and εNd(0) values from −10.29 to −9.62 (avg. = −9.96)
(Table 1; Fig. 7).

5. Discussion

5.1. Sediment clay mineral formation on the Earth's surface and evaluating
other processes in addition to weathering

Although clay minerals can be formed through direct precipitation
from water body and deep-burial diagenetic transformation (Chamley,
1989; Thiry, 2000; Fagel, 2007), previous studies suggest that clay
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Fig. 7. Vertical variations in relative abundances of clay minerals (chlorite, illite, kaolinite and smectite), Th/Sc ratio, La/Th ratio and εNd(0) values of the analyzed siliciclastic sediment
samples from Well L101 and Well L6. Red solid circles represent samples fromWell L6. Note that the orange triangle and pink star stand for the mean εNd(0) values of modern fluvial
sediments from theQilianMountains andEasternKunlun-Qaidam terrane (Fig. S5 inAppendixB), respectively (Wuet al., 2010). The gray solid lines represent three-point running average
processing results.
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minerals in lake, river sediments and sedimentary rocks are most detri-
tal (Yang et al., 2019; Deconinck et al., 2019; Wang et al., 2020). Specif-
ically, kaolinite is generally considered to be formed by decomposition
of feldspar, mica and pyroxene under strong leaching and warm-wet
climatic conditions (e.g., in warm and humid climatic belt). Chlorite
Fig. 8. Temporal variations in paleo-climate proxy values of the analyzed samples from this stud
L101 andWell L6 (this study); (B) illite chemistry index (illite 5 Å/10Å) in theQaidambasin from
study); (D) correctedCIA in theQaidambasin fromWell L101 (this study); (E) sedimentary carb
2014); (F) evaporite mineral percentage (including gypsum, anhydrite and halite) of the Xiaolia
(C27+ C29+ C31)/(C15 + C17 + C19) of the n-alkanes) from the borehole KC-1 (see Fig. 1B for l
KC-1 (Miao et al., 2013). The gray solid lines represent three-point running average processing
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mainly originates from low-grade metamorphic rocks and ferromagne-
sian rocks suffering slight chemical weathering, while illite is formed by
weathering and depotassication of aluminosilicate minerals (such as
feldspar and mica) in dry and cold environments (Liu et al., 2007;
Wang et al., 2013b; Deconinck et al., 2019). Smectite can be produced
y and fromprevious studies. (A) Kaolinite/illite ratio (Ka/I) in the Qaidam basin fromWell
Well L101 andWell L6 (this study); (C) rawCIA in theQaidambasin fromWell L101 (this

onate δ18O (δcarb18 O) values of theXiaoliangshanarea fromWell L101 andWell L6 (Jian et al.,
ngshan area fromWell L101 (W. Zhang et al., 2018); (G) terrigenous/aquatic ratio (TAR=
ocation) (Liang et al., 2021); (H) xerophytic and (I) conifers percentage from the borehole
results.



Fig. 9. (A) Th/Sc vs. Zr/Sc binary plots (interpretations afterMcLennan et al., 1993). (B) REE concentrations normalized by chondrite compositions and comparedwith UCC and PAAS com-
positions. The gray band represents compiled data from Jian et al. (2013). (C) La/Th vs. Hf binary plots for the analyzed samples (modified from Floyd and Leveridge, 1987); (D) Eu/Eu* vs.
GdN/YbN binary plots for the analyzed samples (modified from McLennan, 1989). The trace element geochemical results show that the sediments have a predominant felsic source
composition.
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under alternate wet and dry conditions, through moderate chemical
weathering in poor drainage basin environments (Chamley, 1989; Liu
et al., 2007).

Before examining the paleo-climatic and paleo-environmental sig-
nificance of clay minerals, it is quite important to confirm that they
Table 1
Nd isotopic data and source modeling results of the analyzed sediment samples.

Sample name 143Nd/144Nd 2

L101–43 0.512112 0
L101–38 0.512137 0
L101–28 0.512133 0
L101–27 0.512132 0
L101–26 0.512124 0
L101–20 0.512145 0
L101–16 0.512122 0
L101–15 0.512111 0
L101–08 0.512122 0
L101–01 0.512136 0
Qilian (QL)a 0.511998
Eastern Kunlun-Qaidam (EKQ)a 0.512231

a Nd isotopic data of the QL and EKQ are from Wu et al. (2010).
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are dominantly detrital in origin without significant influence of burial
diagenesis (Deconinck et al., 2019). Diagenetic transformation pro-
cesses of clay minerals generally occur at a temperature of 100–140 °C
(Chamley, 1989; Song et al., 2018). Previous studies suggest that the av-
erage geothermal gradient of end-Oligocene–end-Miocene strata in the
σ εNd(0) (‱) Modeling results

.000004 −10.27 0.47QL + 0.53EKQ

.000004 −9.77 0.35QL + 0.65EKQ

.000006 −9.86 0.37 QL + 0.63EKQ

.000004 −9.87 0.37 QL + 0.63EKQ

.000004 −10.02 0.41 QL + 0.59EKQ

.000004 −9.62 0.31 QL + 0.69EKQ

.000004 −10.07 0.42 QL + 0.58EKQ

.000006 −10.29 0.47 QL + 0.53EKQ

.000004 −10.07 0.42 QL + 0.58EKQ

.000004 −9.80 0.36 QL + 0.64EKQ
−12.49
−8.30
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western Qaidam basin is 32.6–31.0 °C/km (Qiu, 2002), which means
that the maximum temperature corresponding to our sampling depth
(<1700 m) might not be enough to prompt diagenetic transformation.
Besides, the N2

2 and N2
3 strata of Well L101 have low vitrinite

reflectance (Ro) values, ranging from 0.53 % to 0.7 % and <0.53 %,
respectively (Wang et al., 2012). The low values of pyrolysis
temperature (Tmax) (406–419 °C for N2

2 strata and 365–409 °C for N2
3

strata) measured from Well L101 indicate that the organic matter is
immature (Wang et al., 2012). These data confirm a weak influence of
thermal diagenesis linked to burial (Dellisanti et al., 2010). In addition,
the clay mineral assemblages do not systematically change with depth
throughout the core (Fig. 7). Therefore, we suggest that the burial
diagenesis had little influence on the clay mineral assemblages.
Furthermore, authigenic clay minerals can also interfere with paleo-
climatic and paleo-environmental signals based on detrital clay min-
erals (Chamley, 1989; Song et al., 2018;Wang et al., 2020). The scanning
electron microscope (SEM) observation results (Fig. 5H, I) indicate that
most clay particles usually show irregular shapes and rounded outlines,
implying a detrital origin rather than an authigenic origin.

5.2. Provenance of the analyzed lacustrine siliciclastic sediments

The potential parent-rock lithological differences in detritus sources
and the sediment generation, erosion and transport processes may sig-
nificantly influence weathering products and thus sediment composi-
tions (Singer, 1984; Fagel, 2007). Therefore, sediment provenance
should be interpreted before discussing the paleo-climatic and paleo-
environmental implications of detrital clayminerals andfine-grained si-
liciclastic sediment geochemical compositions. Some trace elements
(e.g., Th and Sc) and REEs have been regarded as useful tracers for inter-
preting parent-rock composition of sediments (Taylor and McLennan,
1985; McLennan, 1989). In addition, Nd isotopic compositions of fine-
grained sediments have been successfully used in provenance studies
(e.g., Kuhlmann et al., 2004; Jian et al., 2020b; Chaudhuri et al., 2021).
Our results show that the analyzed sediments have first-cycle (or
unobvious recycling) sedimentation characteristics based on the Zr/Sc
vs. Th/Sc plot (Fig. 9A). Our data indicate that the Th/Sc and La/Th
ratios and the εNd(0) values of the analyzed samples maintain fairly
small ranges and are almost unchanged in the ~13.4 Ma–12 Ma and
~9.2Ma–8.4Ma intervals (Fig. 7). Thismeans that the geochemical com-
positions of their parent-rocks probably remained invariable in these
two periods. All the sample data are plotted into similar fields in the
La-Th-Sc ternary diagram (Fig. S4 in Appendix B) and are close to the
La apex and far away from the Sc apex, reflecting a predominant felsic
source composition (McLennan, 1989, 1993). The dominant felsic
parent-rocks are also supported by low La/Th ratios (varying from
2.08 to 2.78, averaging 2.38) and the REE patterns of these samples
which resemble PAAS compositions (GdN/YbN = 1.0–2.0 and Eu/Eu* <
0.85; Fig. 9B–D).

Most studies suggest that the Eastern Kunlun, Qilian and Altyn Tagh
Mountains were the main potential detrital sources for the Cenozoic
Qaidam basin (e.g., Cheng et al., 2016; Wang et al., 2017; Zhu et al.,
2017; Lu et al., 2018; Song et al., 2019; Hong et al., 2020). We note
that the Qilian and Eastern Kunlun Mountains have experienced differ-
ent tectono-magmatic evolution (Jian et al., 2020a; Zhang et al., 2021)
and thus the bedrock therein displays different formation age popula-
tions and Nd isotopic compositions (Wu et al., 2010). Previous studies
have shown that the Altyn Tagh Mountains are featured by a left-
lateral strike-slip fault (i.e., the Altyn Tagh Fault) and have similar rock
assemblages to both the Qilian and Eastern Kunlun Mountains
(Gehrels et al., 2003). Therefore, we employed Nd isotope tracers to
model contributions from the potential sediment sources. We chose
the data of modern fluvial sediments from the Qilian Mountains (εNd
(0) = −12.49, QLεNd(0), average value of 8 samples, see Fig. S5 in
Appendix B for sample locations; Wu et al. (2010)) and Eastern
Kunlun-Qaidam (εNd(0) = −8.30, EKQεNd(0), average value of 5
10
samples, see Fig. S5 in Appendix B for sample locations; Wu et al.
(2010)) as two end members for a simple mixing model calculation.
The modeling results are exhibited in Table 1. Results show that the
analyzed sediments are mixed by 31 %–47 % Qilian-end-member and
53 %–69 % Eastern Kunlun-Qaidam-end-member materials (Table 1).
Variations in contributions by these two end-members are in a small
range (16 %), revealing that the Xiaoliangshan sediments were poten-
tially derived from relatively stable sources or fed by well-mixed detri-
tus from contribution-fixed sources. The results of Nd isotopic analysis
and corresponding interpretations are consistent with the trace- and
rare earth element records (Fig. 7). Note that the modeling results do
not mean that the siliciclastic sediments were only from the Qilian
and Eastern Kunlun Mountains. These sediments could also be derived
from Qilian- or Eastern Kunlun-compositionally equivalent rocks.

5.3. Paleo-weathering intensity recorded by clay minerals and siliciclastic
geochemical compositions of the lacustrine deposits

The composition and crystallization characteristics of clay minerals
are reliable proxies for paleo-weathering reconstruction. It is well
known that increasing Ka/I ratios and illite chemistry index (illite 5 Å/
10 Å) values commonly indicate intensification of chemical weathering.
The illite chemistry index drops when elements Mg and Fe take the
place of Al in the crystal lattice. Al-rich illite, which is a product of in-
tense hydrolysis, displays high values of the illite chemistry index,
whereas the Fe-Mg-rich illite, which is regarded as a signal of intense
physical erosion, has low illite chemistry index values (Y. Gao et al.,
2021). The illite chemistry index data indicate that the types of illite in
all the samples are mainly Fe-Mg-rich illite (Fig. 7). Overall, the low
values of Ka/I (0.02–0.19) and illite 5 Å/10 Å (0.13–0.45) proxies dem-
onstrate overwhelmingly mild chemical weathering intensity. The N2

2

samples have stable Ka/I value, whereas these ratios are more variable
and display a slightly increasing trend during ~8.8–8.4 Ma after a
slight decline during ~9.2–8.8 Ma for N2

3 samples (Fig. 8A). However,
the illite 5 Å/10 Å values are highly fluctuant in these analyzed N2

2 and
N2
3 samples (Fig. 8B). The illite 5 Å/10 Å values of the N2

3 samples also
display a decreasing tendency followed by an increase, similar to the
Ka/I ratios (Fig. 8B). These variations in Ka/I and illite 5 Å/10 Å values
indicate that the N2

3 sediments experienced a gradual weakening of
chemical weathering intensity during ~9.2–8.8 Ma, followed by
relatively strong chemical weathering intensity during ~8.8–8.4 Ma.

Major elemental data plotted in the A-CN-K diagram exhibit an ideal
weathering trend (Fig. S6 in Appendix B), which indicates little occur-
rence of diagenetic K-metasomatism (Fedo et al., 1995) and relatively
stable (or well-mixed) sediment parent-rock types. This is also consis-
tent with the above interpretations about the clay mineral formation
and provenance. Overall, the corrected CIA (60.6–66.3, avg. = 63.6)
values of the analyzed samples indicate mild-moderate chemical
weathering conditions (Fig. 8D), consistentwith the results of claymin-
eralogical proxies (Figs. 8A, B, 10B, C). Similar mild-moderate chemical
weathering conditions (CIA values) were observed in late Miocene sed-
iments from the northern Qaidam basin (Jian et al., 2013; Ren et al.,
2019, 2020; Fu et al., 2022). For the ~13.4–12Ma and ~8.8–8.4Ma sam-
ples, the increasing corrected CIA values show strengthening chemical
weathering (Fig. 8D).

5.4. Environmental significance of clay minerals and geochemical
weathering indices compared with other proxies

5.4.1. Controls on clay minerals and geochemical compositions of the
lacustrine siliciclastic deposits

We compared our chemical weathering records with paleo-climate
records from other indicators (Fig. 8). Sedimentary carbonate δ18O
(δcarb18 O) data from Wells L101 and L6 were previously used to
evaluate paleo-lake hydrology (Jian et al., 2014). High δcarb18 O values
represent intensive evaporation environments (Jian et al., 2014). The
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Fig. 10.Relationships between claymineralogical indices, correctedCIA and sedimentary carbonate δ18O (δcarb18 O). Note that all the siliciclastic sediment proxies (kaolinite/illite, illite 5 Å/10
Å and corrected CIA values) have no correlation with the sedimentary carbonate δ18O (δcarb18 O) values.
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positive ~2.5 ‰ shift in the most negative δcarb18 O values after ~9.2 Ma
was explained by strengthened aridity (Fig. 8E) (Jian et al., 2014). This
is reinforced by the increasing evaporite mineral contents (Fig. 8F)
(W. Zhang et al., 2018). High terrigenous/aquatic ratio (TAR = (C27 +
C29 + C31) / (C15 + C17 + C19) of the n-alkanes) values indicate rela-
tively low lake level (Fig. 8G) (Liang et al., 2021), coincided with dry cli-
matic conditions as inferred from increasing xerophytic percentages
and decreasing percentages of humid conifers (Fig. 8H, I) (Miao et al.,
2013). The increasing aridification in Central Asia (including the west-
ern Qaidam basin) since the late Miocene is also well supported by ev-
idence from aeolian sediments (An et al., 2001; Song et al., 2007),
isotopic data (Zhuang et al., 2011a), sedimentological and geochemical
records (Song et al., 2014; Yang et al., 2019). The overall mild-moderate
chemical weathering condition and weakening of chemical weathering
intensity during ~9.2–8.8 Ma reconstructed in this study and other
weathering intensity reconstruction results of the Qaidam basin
(e.g., Jian et al., 2013; Ren et al., 2019; Yin et al., 2019; Fu et al., 2022)
seem to be consistent with the long-term regional aridification in Cen-
tral Asia (also including the northern Tibetan Plateau) and with the
global cooling during the late Cenozoic (Guo et al., 2002; Chang et al.,
2008; Miao et al., 2013; Bao et al., 2019). However, our new data
show two periods of abnormally enhanced chemical weathering during
~13.4–12 Ma and ~8.8–8.4 Ma (Fig. 8A–D), which is surprisingly
decoupled with the intensified regional aridity in the western Qaidam
basin. This can be explained as follows.

It is widely accepted that clay minerals and geochemical composi-
tions of lacustrine siliciclastic sediments may be controlled by the
factors and processes within sediment source-to-sink systems
(e.g., parent-rock lithology, topography, climate, weathering and hydro-
dynamics) (Nesbitt and Young, 1982; Bhatia and Crook, 1986; Fedo
et al., 1995; Garzanti et al., 2011; Jian et al., 2013; Liu et al., 2016). As dis-
cussed above, parent-rocks of the analyzed sediments are mainly felsic
rocks and chemical compositions of the parent-rocks remain nearly in-
variable during the late Miocene. We note that there existed a unified
megalake in the Qaidam basin during the middle–late Miocene and
the depocenter of this megalake was mainly located in the western
part of the basin during much of the Cenozoic time (Wang et al.,
2006; Yin et al., 2008; Zhuang et al., 2011b; Mao et al., 2014; Guo
et al., 2018). Furthermore, rather than siliciclastic rock-dominated re-
cords, carbonate- and evaporite-rich mixed sedimentary rocks are
widely distributed in the Miocene strata in this region, implying
11
underdeveloped fluvial-delta systems and relatively low clastic sedi-
ment flux in the western Qaidam basin (Fig. 11) (Jian et al., 2014;
Song et al., 2014; Chang et al., 2015). By contrast, the late Cenozoic
northern and eastern Qaidam basin are broadly dominated by fluvial-
delta and marginal lake siliciclastic deposits (Fig. 2) and indicate high
clastic sediment flux from adjacent sources (Fig. 11) (Zhuang et al.,
2011b; Ji et al., 2017; Fu et al., 2022). Paleo-current orientation mea-
surement results indicate general west-southwest- and north-,
northeast-directed paleo-flow for most areas in the Qaidam basin (ex-
cept some measuring sections close to the Altyn Tagh Mountains) dur-
ing the megalake period (Zhuang et al., 2011b; Xia et al., 2021). All the
evidence implies that the western Qaidam basin sediments, especially
for those fine-grained siliciclastic deposits in relatively deep lake envi-
ronments, were not only fed by the proximal Altyn Tagh Mountains,
but could also be derived from source areas to the north, south and
east during the late Cenozoic. In addition, because the eastern Qaidam
basin was prone to the influence of the East Asian monsoon whereas
the western Qaidam basin was under the control of the Westerlies (M.
Wu et al., 2019), the climate in the eastern Qaidam basin is thought to
be wetter than that in the western Qaidam basin and the chemical
weathering intensity documented in eastern Qaidam basin is found to
be relatively stronger than that in the western Qaidam basin (Jian
et al., 2013; Ren et al., 2019; M. Wu et al., 2019). We also note that the
Cenozoic tectonic activity (e.g., crustal thickening, uplift and exhuma-
tion) in the Qilian Mountains (and also in other areas of the northeast-
ern Tibet) reached its peak at 13–12 Ma (Li et al., 2020). Therefore,
enhanced erosion in the eastern sources is expected to result in higher
more-weathered material supply into the Qaidam basin than that in
the western source regions. This east-derived fine-grained detritus
could be transported through lake current and deposited in thewestern
Qaidam basin. As a result, the analyzed fine-grained sediments
show comparatively stronger chemical weathering alteration during
~13.4Ma to 12Ma (Fig. 8D). Although several studies on Cenozoic sand-
stones advocate dominant contributions of the Altyn Tagh Mountains
and the west part (i.e., the Qimantagh area) of the Eastern Kunlun
Mountains to the western Qaidam basin (Rieser et al., 2005; Cheng
et al., 2016; Zhu et al., 2017),we realize that different sources and trans-
port pathways for sandy and muddy sediments in a sedimentary depo-
center are quite common (Nelson and Lister, 2010; Shen et al., 2021).

Coincidentally, a growing number of studies suggest intensified East
Asian summermonsoon (EASM) precipitation in the northeastern Tibet



Fig. 11. (A) Paleo-geographic environment of theQaidambasin during theMiocene,modified from Song et al. (2022). (B) Representative outcrop and borehole stratigraphic profiles in the
Qaidam basin, showing lithological records and sedimentary facies evolution of the Miocenemegalake. It's worth noting that the sedimentary carbonate-rich rocks, instead of siliciclastic
rock-dominated records, arewidely distributed in thewesternQaidambasinduring theMiocene, implyingunderdevelopedfluvial-delta systems and relatively low clastic sedimentflux in
thewestern Qaidambasin. In contrast, the northern and eastern Qaidam basinwere broadly dominated byfluvial-delta andmarginal lake deposits and accumulated abundant clastic sed-
iments from adjacent sources. Lithological columns aremodified fromGuan and Jian (2013) for GCG and LLH, fromWang et al. (2012) for XLS, fromunpublished reports by theQinghai Oil
Company for Han-2, from Liang et al. (2021) for KC-1 and DHG, and from Fu et al. (2022) for HTTL. N2

3: Shizigou Formation; N2
2: Shangyoushashan Formation; N2

1: Xiayoushashan
Formation; GCG: Ganchaigou; XLS: Xiaoliangshan; DHG: Dahonggou; HTTL: Huaitoutala.
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regions during the late Miocene (e.g., during 8.5–7 Ma in the
northeastern Qaidam basin (Nie et al., 2017, 2019), before ~8.57 Ma in
the Jianzha basin (Fu et al., 2018) and during ~7.4–6.1 Ma in the
Tianshui basin (Hui et al., 2021)). The CIA values of fine-grained sedi-
mentary rocks from the northeastern Qaidam basin also reveal the cor-
responding relation between increased chemical weathering strength
and intensified EASM precipitation during 9 Ma to 6 Ma (Fu et al.,
2022). The clay minerals in themodern river sediments from the Qilian
Mountains and in the late Cenozoic sediments from the northeastern
Qaidam basin are dominated by illite and chlorite (Miao et al., 2016;
Liang, 2019), consistent with the clay mineralogical results in this
study. Differences in geological background and climatic conditions of
those river catchments might contribute to the fluctuant clay mineral
assemblages and illite chemistry index (Opitz et al., 2016; Liang,
2019). Significant detritus contributions from the eastern sediment
sources in the northeastern Tibet to the western Qaidam basin during
the late Cenozoic, if reasonable, could lead to variations in paleo-
weathering records in the far west depocenters. In this case, the two pe-
riods of abnormally enhanced chemical weathering documented in the
Xiaoliangshan siliciclastic strata might reflect the influences of tectonic
and climatic changes in the eastern Qaidam basin and even in the
mountains around the northeast margin of the Tibetan Plateau during
~13.4–12 Ma and ~8.8–8.4 Ma. We realize that shorter timescale
weathering records in this region are also crucial to better understand
the interactions among tectonics, climate and basin sedimentation pro-
cess (B. Song et al., 2013; Ren et al., 2020). However, limited to the low
sampling resolution and the discontinuous rock core collection pro-
cesses, short timescale chemical weathering variation history cannot
be determined in this study. The strong fluctuations in clay mineral as-
semblages among adjacent samples might also be related to short time-
scale climate variations (such as theMilankovitch climate cycles) in the
northeastern Tibetan Plateau, which have been well recognized in sev-
eral recent studies (Nie et al., 2017; Wang et al., 2019; P. Gao et al.,
2021; Yao et al., 2022).

On the whole, this speculation seems plausible and is consistent
with most provenance, sedimentological and climatic evidence. We
suggest that clay mineralogical and geochemical compositions of lacus-
trine fine-grained siliciclastic deposits were strongly controlled by the
whole sediment source-to-sink processes, rather than the local climatic
or environmental conditions of the depositional regions. Given the oc-
currence of the Miocene megalake in the Qaidam basin (Guo et al.,
2018; Liang et al., 2021), sediment transport pathways and water dy-
namics (e.g., the lake currents) within the lacustrine environments
might play a crucial role in redistribution of the fine-grained sediments
and further in controlling the clay mineralogical and geochemical com-
positions. Some present-day megalake cases also highlight the signifi-
cant roles of lake currents in sediment transport processes (Ulmann
et al., 2003; Nutz et al., 2015; T. Wu et al., 2019).

5.4.2. Differences in sediment-related paleo-climate and paleo-environment
indicators

Some case studies demonstrate that paleo-climate records obtained
from clay mineralogical and geochemical compositions of fine-grained
siliciclastic sediments are consistent with those obtained by other
methods in terrestrial and marine deposits (e.g., Zhang et al., 2015,
2016; Yang et al., 2019; Wang et al., 2020). In this study, however, the
paleo-weathering interpretations based on clay mineral and geochem-
ical compositions of the analyzed ~13.4–12 Ma and 8.8–8.4 Ma lacus-
trine siliciclastic deposits are uncorrelated with previous climate
interpretations (Figs. 8, 10D–F). These paleo-climate studies were
based on sedimentary carbonate δ18O (δcarb18 O), evaporite-related
lithofacies and biomarker (terrigenous/aquatic ratio, named as TAR =
(C27+ C29+ C31) / (C15+ C17+ C19) of the n-alkanes) data which dis-
play a trend of intensified regional aridity in the western Qaidam basin
during themiddle–late Miocene (Fig. 8E–G) (Jian et al., 2014;W. Zhang
et al., 2018; Liang et al., 2021). Indeed, sedimentary carbonate oxygen
13
isotopes and evaporite mineral contents are usually applied to reflect
lake hydrological conditions (Jian et al., 2014; Guo et al., 2018;
Mccormack et al., 2019). Autochthonous biomarkers serve as paleo-
climate and paleo-environment proxies according to their suitability
for different paleo-climate parameters and aquatic environments
(e.g., water temperature) (Regnery et al., 2013). Therefore, the sedi-
mentary carbonate oxygen isotopes, evaporiteminerals and autochtho-
nous biomarkers are native to the lake, and thus can represent the local
climatic conditions within the confines of the lake (Jian et al., 2014;
Ouyang et al., 2015; L. Li et al., 2017; Pu et al., 2017).

Our records in these periods are also discrepantwith sporopollen re-
cords from the borehole KC-1 near the study area (see Fig. 1B for loca-
tion) which reveal continuous aridification in the western Qaidam
basin (Fig. 8H, I) (Miao et al., 2013). Although most sporopollens are
thought to be deposited near plants (Hui et al., 2011; Wu et al., 2014),
a considerable portion of sporopollens may also be transported to
much broader regions (e.g., 120 km–180 km or further) by winds and
rivers (Wu et al., 2013). Thus, sporopollen records are more suitable
for regional paleo-environment reconstruction, with larger spatial
scales than watershed or lake ranges (Meyers, 2003; Regnery et al.,
2013). By contrast, as discussed above, siliciclastic sediments in lakes
(especially in megalakes) are controlled by parent-rock compositions
from source regions and can also be impacted by the whole sediment
source-to-sink processes (e.g., weathering, transport and deposition).
These kinds of records tend to reflect environmental change involving
watershed and lake systems.

In summary, there are at least three types of paleo-climatic proxies
from the middle–late Miocene Qaidam paleo-megalake sediments
which may produce distinct paleo-climatic interpretations (Fig. 12).
These include (1) authigenic sedimentary mineral and aquatic
organism-related biomarker proxies, reflecting hydrological and cli-
matic conditions in localized areaswhere lacustrine sediments accumu-
lated (e.g., lake); (2) siliciclastic sediment proxies, highlighted in this
study, indicating climatic conditions in lake and potential drainage
areas (involving northeastern Tibetan Plateau)where the detritalmate-
rials were produced, weathered, transported and deposited; (3) alloch-
thonous, water-unrelated component (e.g., wind-carried particles)
proxies, reflecting climatic conditions in much broader regions, such
as the whole Central Asia.

5.5. Implications

Lacustrine and marine sedimentary successions are important ar-
chives for paleo-climate research (Zachos et al., 2008; Grotzinger
et al., 2015; Ouyang et al., 2015). Numerous sediment-related proxies,
such as grain size, isotopic tracers (e.g., sedimentary carbonate δ18O
and δ13C values), elemental compositions (e.g., major-, trace- and rare
earth elements), carbonate contents, clay minerals, sporopollens, bio-
marker compositions (e.g., n-alkanes) and magnetic susceptibility
have been widely applied in paleo-climate and paleo-environment re-
constructions (e.g., Chen et al., 2004; Zhang and Mischke, 2009;
Grotzinger et al., 2015; Ouyang et al., 2015; Nie et al., 2017; Liang
et al., 2021). The results in this study indicate distinct paleo-climate sig-
nificances between siliciclastic sediment-related proxies and other sed-
iment components-related proxies for the Qaidam paleo-lake. This
means that depositional processes of different components in sedimen-
tary records should be concerned before paleo-climate interpretations,
especially for those complex megalake or marine sedimentary systems.
Our findings underline the importance of a sediment source-to-sink
perspective for paleo-climate study based on siliciclastic archives in
megalake.

6. Conclusions

In this study, we targeted the late Cenozoic lacustrine strata from the
northwestern Qaidam basin, to better understand paleo-megalake



Fig. 12. Schematic diagrams showing controls on the diverse paleo-climatic proxies based on different sediment components (including siliciclastic components, e.g., clay minerals; bio-
logical components, e.g., sporopollens of land plants and biomarkers from aquatic plants; and authigenic mineral components, e.g., sedimentary carbonate and evaporite minerals) in a
megalake sedimentary system. These illustrations can explain why clay mineralogical and geochemical records are different from other sediment component records and explain how
the reconstructedpaleo-weathering intensity is decoupledwith local climate change in the northwesternQaidambasin. The two distinct climatic conditions resulted indifferent behaviors
of the climate proxies. The lake deposits indicate relatively high carbonate δ18O (δcarb18 O) values and evaporite mineral contents due to the local lake aridity. Sporopollen (e.g., increasing
xerophytic) from source areas a, b, c and d record the increasing regional aridity. However, proxies based on siliciclastic fractions (e.g., clayminerals) vary differently, documenting climate
changes involving source drainage areas (a, b and c), transport pathways and depositional regions. This schematic diagram highlights the significance of a sediment source-to-sink system
perspective when targeting siliciclastic materials from megalake systems in paleo-climate studies.
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sedimentary records of weathering and climate in a relatively arid, tec-
tonically active region. Results indicate that the chemicalweathering in-
tensity history documented in the megalake fine-grained siliciclastic
sediments was decoupled with local climate evolution in the
northwestern Qaidam basin. The highly fluctuant clay mineralogical
and element geochemical records and the corresponding variation
trends are different from other sedimentary component-based
(e.g., authigenic minerals and organic materials) proxy data, implying
dissimilar paleo-climate interpretations. We suggest that the variations
in the paleo-megalake fine-grained siliciclastic sediment compositions
were attributed to weathering, tectonic and climatic conditions in
their source regions, transport pathways and depositional areas, rather
than the local climate.
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