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Abstract: The Monte Carlo (MC) simulation, due to its ability to accurately simulate the backscattered
signal of lidar, plays a crucial role in the design, optimization, and interpretation of the backscattered
signal in lidar systems. Despite the development of several MC models for lidars, a suitable MC
simulation model for underwater single-photon lidar, which is a vital ocean remote sensing technique
utilized in underwater scientific investigations, obstacle avoidance for underwater platforms, and
deep-sea environmental exploration, is still lacking. There are two main challenges in underwater
lidar simulation. Firstly, the simulation results are significantly affected by near-field abnormal
signals. Secondly, the simulation process is time-consuming due to the requirement of a high number
of random processes to obtain reliable results. To address these issues, an algorithm is proposed to
minimize the impacts of abnormal simulation signals. Additionally, a graphics processing unit (GPU)-
accelerated semi-analytic MC simulation with a compute unified device architecture is proposed.
The performance of the GPU-based program was validated using 109 photons and compared to a
central processing unit (CPU)-based program. The GPU-based program achieved up to 68 times
higher efficiency and a maximum relative deviation of less than 1.5%. Subsequently, the MC model
was employed to simulate the backscattered signal in inhomogeneous water using the Henyey–
Greenstein phase functions. By utilizing the look-up table method, simulations of backscattered
signals were achieved using different scattering phase functions. Finally, a comparison between the
simulation results and measurements derived from an underwater single-photon lidar demonstrated
the reliability and robustness of our GPU-based MC simulation model.

Keywords: Monte Carlo; graphics processing unit; single-photon underwater lidar

1. Introduction

Oceanic lidar technology is an important complement to passive ocean color remote
sensing [1,2] and has been applied in various fields, including underwater target detec-
tion [3], bathymetric measurement [4], phytoplankton [5], bubbles [6], and the inherent
optical parameters (IOPs) of water [7]. Due to the ability of lidar to penetrate the air–water
interface, it has the flexibility to be deployed on various platforms, such as ships [7], un-
manned aerial vehicles (UAVs) [8], aircraft and even satellites [4]. However, despite the
significant importance of the underwater deployment of lidar for underwater scientific
investigations, obstacle avoidance for underwater platforms, and deep-sea environmental
exploration, the development of underwater lidar is very limited [9]. To improve the signal-
to-noise ratio (SNR) in lidar technology, an effective approach is to utilize high-energy
pulses, typically in the range of tens of millijoules, along with large apertures, typically in
the range of tens of cm. However, this results in high power consumption and large system
volume, making it difficult to achieve the underwater deployment of lidar.

To achieve underwater deployment of lidar, the miniaturization of lidar is required.
Although some compact lidar systems have been proposed and used in UAV-based oceanic
lidar, such as RIEGL VQ-840-G [10], ASTRALiTe edge™ [11], and Fugro RAMMS [12],
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these systems are usually limited to detecting water depths below 10 m. Fortunately, the
emergence of single-photon detection technology has driven the development of oceanic
lidar towards miniaturization and low power consumption. By improving the detection
sensitivity to the single-photon level, single-photon lidar can achieve long-range and high-
precision parameter detection while being compact and low power [6]. As a result, this
system has been widely applied in atmospheric remote sensing [13–15], underwater target
imaging [9], ship-mounted lidar [16], and, more recently, underwater lidar systems [6,17].
However, despite the development of single-photon underwater lidar systems, there is a
lack of simulation techniques for accurately simulating their backscattered signals. These
simulation techniques are crucial for designing, optimizing instrument parameters, and
interpreting the backscattered signals in underwater single-photon lidar systems.

There are two main methods for simulating the backscattered signals of lidar. One is
the lidar equation [18], and the other is Monte Carlo (MC) simulation [19]. Due to the
presence of a significant amount of multiple scattering information in the backscattered
signals of ocean lidar, the simulation using the lidar equation has certain limitations.
Fortunately, MC simulation based on statistical theory can accurately simulate lidar signals.
It has been widely adopted in various applications such as oceanic [20], atmospheric [21],
and target detection [22] lidar, as well as lidar systems on different platforms, including
shipborne [20], airborne [23,24], and spaceborne lidar [25].

In oceanic lidar, various MC simulation models have been developed [26], including
simulations of the elastic [26] and inelastic [27] scattering of lidar, as well as polarization [28],
and the consistency between simulated and measured results has been experimentally
verified [20]. At the same time, MC simulation techniques have played an important role
in establishing the relationship between two parameters of lidar direct inversion, namely
volume scattering function at 180◦ (β, in sr−1m−1) and the lidar attenuation coefficient
(Klidar, in m−1), and the inherent optical properties (IOPs) of water, promoting the ap-
plication of lidar in the ocean. Furthermore, Klidar represents the rate at which the lidar
signal is attenuated while propagating through water. For example, MC simulation has
been used to establish the relationship between Klidar, the beam attenuation coefficient
(c, in m−1), and the diffuse attenuation coefficient (Kd, in m−1) [24,29,30], as well as the
relationship between Klidar of spaceborne lidar and IOPs of seawater [25]. Kd quantifies
how quickly light is absorbed or scattered as it travels through water, while c describes the
rate at which a laser beam undergoes attenuation as it passes through water. However, MC
simulation requires many random processes and is computationally intensive. Therefore,
to improve the computational efficiency, a white MC method, along with a semi-analytical
model, has been developed [31,32]. White MC is a variant of the MC method used in
computational simulations, where “white” signifies that the random samples are generated
independently and identically distributed. Furthermore, in the semi-analytical model, the
calculation of the expected received signal is based on the probability distribution of the
scattering phase function. This methodology optimizes photon utilization, resulting in
reduced time requirements for achieving an equivalent SNR compared to standard MC
simulations conducted under the same conditions. However, the computational efficiency
of these methods remains relatively low. Fortunately, since Alerstam et al. first applied
graphics processing unit (GPU) acceleration to MC simulation in 2009 [31], GPU technol-
ogy based on massively threaded parallel computing has greatly improved the efficiency
of MC simulation and been applied in various fields. Ren et al. used GPU-accelerated
MC simulation to parallelly compute photon propagation in complex tissue media [33].
Li et al. proposed an untruncated framework to replace the truncated framework, further
improving the computational speed of the MC simulation of polarized photon scattering
in anisotropic media [34]. In addition, Yang constructed a model of the wind-generated
bubble layer in the upper ocean and used GPU parallel MC simulation to simulate reflection
and transmission spectra [35,36].

In summary, when using standard MC simulations to obtain high SNR backscattered
signals for underwater lidar, the simulation time can be quite extensive. Typically, it ranges
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from several tens of minutes to even longer periods, depending on the computational
performance of the processor and the parameter settings. Therefore, there is an urgent need
to develop a MC simulation method based on GPU computing to improve the simulation
speed of underwater single-photon lidar. This paper is structured as follows: Firstly, the
MC simulation model and the framework for GPU parallel computing will be proposed.
Then, the accuracy of GPU-based MC will be validated by comparing it to the CPU-MC
results, and the simulation results will be presented for different scattering phase functions
and non-uniform water. Finally, the comparison between the GPU-based MC simulation
results and the measurement results from a self-developed single-photon underwater lidar
system will be carried out to validate the effectiveness of the model.

2. Principle and Implement of the MC Methods

The MC method is used to simulate the random trajectories of photon propagation
in a specific medium. Both the step and direction are determined based on the scattering
and absorption properties of the medium. The step refers to the distance or interval
traveled during each random sampling iteration, while the direction denotes the path
taken by the photon. The MC method ignores the photon’s wave properties, and the
propagation of laser signal in the water is defined as the combination of many photon
trajectories. The attenuation of laser energy is determined based on three factors: the
absorption of the medium, the scattering probability, and the probability distribution of
the steps. Thus, the MC method is widely utilized to simulate the photon propagation
trajectories and monitor the energy changes. In this work, the MC algorithm is applied
to simulate the backscattered signal of an underwater lidar. The framework of lidar
transmission and reception are presented in Figure 1. The MC simulation could be divided
into two categories, namely a standard model and a semi-analytic model. The standard
MC model assumes that the motion of photon from emission to the receiver is completely
random, and it can, therefore, theoretically reconstruct the real situation. However, due
to the low backscattering probability and the limitations of small-aperture receiving, only
a small percentage of photons can meet the reception conditions. To obtain high SNR
backscattered signals, a large number of photons is required. As for semi-analytic MC
simulation, whenever each photon moves to a new position, as long as it falls within the
receiver’s field of view (FOV), the expected energy in the direction of the receiver due
to photon scattering is calculated based on the probability distribution of the scattering
phase function [32].
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Figure 2 shows the framework of the semi-analytic MC model. The entire program
can be broadly divided into three parts: the initialization of photon emission state, the
propagation of photons in water, and the reception of photon energy using the telescope.
Before each photon is emitted, its position and energy are initialized. Once emitted, the
photon moves to a new position in random steps and can be subject to absorption and
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scattering events during this process. Subsequently, the photon’s position is assessed, and
if it falls within the FOV and satisfies certain noise reduction threshold conditions, its
received energy is calculated and recorded. The photon then continues to move until it
is extinguished, and the simulation concludes when all emitted photons have ceased to
exist. For a more comprehensive understanding of the simulation process, it is advisable to
refer to a recent article [26]. The MC model is coded and tested using MATLAB software
(MATLAB 2021b). The main simulation input parameters are listed in Table 1. If not
otherwise specified, the input parameters of GPU program are the same as those shown
in Table 1.
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Table 1. Main parameter settings of MC simulation.

Parameter Value

Radius of laser beam 10 mm
Laser divergence angle 1 mrad
Diameter of telescope 20 mm

FOV of telescope 10 mrad
Distance between emission and reception axis 15 mm

Absorption coefficient 0.1 m−1

Scattering coefficient 0.1 m−1

Refractive index of water 1.33

In the semi-analytic MC model, every photon in the telescope FOV will return its expected
value of energy and record its position. The expected value Wb is calculated as follows:

Wb = K · Pf · exp[−c · d · z/(z + H)]/d2, (1)
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where K is related to the photon energy and the aperture of the receiver, Pf is the probability
of the cumulative distribution phase function between the light propagation direction and
the axis from the photon to the telescope, z is the photon position on the z axis, H is the
distance from the lidar to the water, and d is the position parameter and can be represented
as follows:

d =

√
x2 + y2 + (z + H)2, (2)

where x, y, and z represent the position of a photon in Cartesian coordinates.
The simulated signals are shown in Figure 3. During the simulation process, the

overall profile of the lidar backscattered signals and the vertical distribution of the single
scattering, as well as multiple scattering signal components, including second-, third-, and
higher-order scattering signals, were statistically analyzed. Based on the figure, it could be
observed that in the near-field backscattered signals, the proportion of multiple scattering
signals was relatively low compared to the total signal. However, as the depth increased,
the proportion of multiple scattering signals gradually increased. Moreover, abnormal
high values, characterized by random peak values, were obvious in the simulated signals,
particularly in the multiple scattering signals. In the underwater lidar setup, the small value
of H, representing the distance from the lidar to the water surface (approximately 5 cm in
this study), increased the likelihood of encountering a small denominator (d), as shown in
Equation (1). Additionally, the scattering phase function of water particles exhibited strong
forward scattering, leading to the potential for large values in the term Pf in Equation
(1). Both of these factors contributed to the occurrence of anomalous high values when
calculating the expected value Wb using Equation (1). To minimize this abnormal signal, we
set the cosine value of the angle between the photon propagation direction and the receiver
telescope to be less than 0.99 of the threshold value of energy expectation via a statistical
analysis of the photon state with the abnormal signals, as shown in the red rhombic box in
Figure 2. Subsequently, most abnormal signals were eliminated, as shown in Figure 3b.
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3. GPU Program
3.1. GPU-Accelerated MC Simulation

The Compute Unified Device Architecture (CUDA) was developed and proposed by
NVIDIA in 2006, and it is recognized as a powerful platform and programming model
for performing parallel computations. Parallel computation is the key kernel of the de-
vice, derived by the threads in GPU. During the GPU acceleration, the computing tasks
of the GPU are defined and dispatched under CPU’s command, including parallel and
sequential computation.

The flowchart using GPU parallel acceleration computation is displayed in Figure 4,
where the parameter settings of threads and optical parameters of water are completed
in CPU and later transferred to GPU. In the GPU-based MC simulation, including the
photon status initialization, the random motion of photons and the photon reception via
the telescope are completed in each thread of GPU. Furthermore, the photon idle of MC
simulation is independently determined in each thread, and they are collected together to
make sure each thread has completed its MC simulation. Finally, the data recorded in the
GPU are transferred to the CPU and saved in a certain format.
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3.2. Verification of GPU Simulation

The results of the GPU-based MC simulation and the CPU-based simulation are
compared to 109 photons, as shown in Figure 5. The verification of parallel computation
program is tested on a laptop equipped with Intel i7-8750H (using single thread) CPU and
NVIDIA Geforce® GTX 1050Ti GPU. The GPU is equipped with 768 CUDA cores running
at a clock frequency of 1.12 GHz, while the CPU has 6 physical cores with a base clock
frequency of 2.2 GHz and the capability to reach a maximum turbo frequency of 4.1 GHz.
In terms of performance evaluation, the CPU achieved a single-core benchmark score of
1059 in Cinebench R23. The relative deviation is calculated as follows:

δ= 100× |GPU − CPU|/mean(GPU + CPU), (3)
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where GPU is result of the GPU-based model, and the CPU is result of the CPU-based model.
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In Figure 5a, it can be seen that the results of the GPU-based simulation are consistent
with those of the CPU-based simulation. Moreover, Figure 5b demonstrates that within a
depth range of 100 m, the relative deviation is within 1.5%. Due to the inherent randomness
of the simulation, even with a sufficient number of photons, errors are unavoidable. Addi-
tionally, as the depth increases, the simulated lidar backscattered signals become weaker,
leading to a poorer SNR and, consequently, an increase in deviation with depth.

3.3. Estimation of Speedup Rate

Both the number of photons and the number of threads have a significant effect on the
GPU speedup rate. Thus, the effect of these two parameters is independently evaluated:
under 108 photons, the GPU and CPU computations are executed 10 times in different
threads, and the runtime of the program is averaged to calculate its speedup rate, as shown
in Figure 6a. Similarly, under 500 threads, the GPU and CPU computations are executed
10 times with different photon numbers, as shown in Figure 6b. It should be noted that due
to variations in the time required for each thread to complete a single-photon calculation,
the coordination of output and initialization is necessary. After all threads have completed
the calculation for a single photon, the next photon calculation is initiated. As the number
of threads increases, the waiting time for other threads to complete their calculations also
increases, resulting in a deviation from the linear relationship between the number of
threads and the calculation speed, as shown in Figure 6a. A similar pattern can be observed
when considering the number of photons used in the calculation, as shown in Figure 6b.
The testing involved a specific type of simulation scenario: a homogeneous water medium
with the Henyey–Greenstein (HG) scattering phase function. The HG phase function has
been widely applied in several studies, which only requires an anisotropic constant and is
easily programmed and computed. As the number of photons and threads increased, the
speedup gradually improved. When utilizing 500 GPU threads to simulate 108 photons,
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the CPU simulation took 2192 s, while the GPU simulation was completed in just 32 s with
an average memory consumption of 224 MB, resulting in a speedup of 68.4.
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3.4. Simulation in Inhomogeneous Sea Water

To validate the GPU-based MC simulation, the model is developed to study prop-
agation of laser in inhomogeneous seawater. One of the hierarchical Gaussian mixture
models for inhomogeneous water, proposed by Kameda et al., as shown in Figure 7a, has
been selected for our MC simulation [37]. The corresponding absorption coefficient and
scattering coefficient can been calculated as follows [38]:

a(λ) = aw(λ) + 0.06A(λ)C0.65 + ay(λ), (4)

ay(λ) = ay(440) exp[−0.014(λ− 440)], (5)

ay(440) = 0.2
(

aw(440) + 0.06A(440)C0.65
)

, (6)

bp =
550
λ
× 0.416× C0.766, (7)

where a (in m−1) is the total absorption coefficient of water, aw (in m−1) is the absorption
coefficient of pure seawater, A is the normalized spectral absorption values of phytoplank-
ton pigments, C (in mg/m3) is the chlorophyll concentration, ay (in m−1) is the absorption
coefficient of yellow substance, λ is the wavelength of light, and bp (in m−1) is the scattering
coefficient of particles. The profiles of the chlorophyll concentration, the corresponding
absorption, and scattering coefficient are shown in Figure 7.

The HG phase function, which only requires an anisotropic constant and is easily
programmed and computed, has been adopted to simulate the backscattered signal in
inhomogeneous sea water [34]. During the simulation process, the anisotropy factor value
was set to 0.9185, and the backscattering ratio (the ratio of backscattering coefficient to
scattering coefficient) was set to 0.0183, which is consistent with the backscattering ratio of



Remote Sens. 2023, 15, 5245 9 of 15

the Petzold phase function [39]. Figure 7c presents the MC simulation result in stratified
water layers using 109 photons. The vertical distribution of the absorption and the scattering
coefficients are shown in Figure 7a,b, respectively. Since the c is the sum of the absorption
and scattering coefficients, the vertical distribution of c can be obtained from Figure 7a,b.
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3.5. Simulation with Different Scattering Phase Functions

The HG phase function has been widely applied in several studies, as it only requires
an anisotropic constant and is easily programmed and computed [40]. However, the
HG phase function shows a relatively poor performance with small and large angles.
Therefore, in the subsequent simulations, both the Fourier–Forand phase function and
the Petzold phase function will be utilized. The Fourier–Forand phase function, based on
Fourier series expansion, accurately represents scattering phenomena at both small and
large angles [39,41]. On the other hand, the Petzold phase function is derived from actual
measurement data, providing a highly accurate description of the scattering distribution
in water [40]. We conducted the GPU parallel computation MC simulation using selected
phase functions based on the LUT methods from previous researches [42]. Four phase
functions, namely Founier–Forand, Petzold, small particle phase function, and large particle
phase function, have been chosen to test the GPU acceleration performance of the MC
simulation. Figure 8 presents the corresponding MC simulation results with four phase
functions. The simulation result is good at presenting the characteristics of the probability
distribution of those scattering phase functions at the forward angles. Among them, the MC
simulation of the small particle phase function, which has the minimum forward scattering,
shows a much smaller signal attenuation in the water body of the first 10 m than the other
three scattering phase functions. With the other scattering phase functions, the stronger the
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forward scattering of the scattering phase function, the greater the signal attenuation of the
MC simulation results.
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4. Validation

To verify the simulation ability of MC model, a field experiment was conducted using
the single-photon underwater lidar in a swimming pool with dimensions of 50 × 25 × 2 m3

(length × width × depth). The single-photon underwater lidar is composed of a green
pulse laser, an optical receiver, a single-photon avalanche diode (SPAD), a time-to-digital
converter (TDC), and a function generator (FG). The 532 nm laser emits a pulse with a
pulse duration of 501 ps and a repetition rate of 1 MHz. The laser system employs a master
oscillator power amplifier (MOPA) structure, which incorporates a single-mode pulsed
seed laser operating at 1064 nm. The seed laser undergoes two stages of amplification,
first through a single-mode ytterbium-doped fiber amplifier (SM-YDFA) and then through
a high-power ytterbium-doped fiber amplifier (HP-YDFA). The amplified laser output then
passes through a lithium borate crystal (LBO), which converts the 1064 nm fundamental
frequency light to 532 nm green light using second harmonic generation. Finally, up to
1.0 W of average power is achieved. The telescope diameter is ~20 mm, and the FOV
is ~10 mrad.

To achieve a miniaturized and robust structure for the single-photon underwater lidar,
a fiber-connected configuration was adopted. The backscattered signal from the water is
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coupled in a multimode fiber (MMF) via a collimator. This narrow receiving FOV in our
lidar system offered significant backscattering noise suppression. The distance between
the transmitted laser and the received collimator is ~15 mm. A 1-inch filter is placed in
front of the collimator to filter out background radiation noise, with a central wavelength
of 532 nm and a bandwidth of 0.08 nm. The backscattered elastic signal is then detected
via a corresponding SPAD. The output of the SPAD is then connected to a time-to-digital
converter (TDC). After the histogram statistic, the TDC sends the collected photon signals
via the serial port to a personal computer (PC) for display. The photo of the single-photon
underwater lidar is shown in Figure 9b. The lidar chamber is made of titanium alloy with
high-pressure resistance characteristics, meaning that the lidar can operate underwater at
depths of up to 1 km. The optical window of the lidar is made of a sapphire lens, which
can maintain >96% transmission under high pressure. The cylindrical lidar has a diameter
of 20 cm and a length of 40 cm. The average power consumption of the lidar is ~80 W, and
it weighs 15 kg. It should be noted that the direction of the lidar is parallel to the axial
direction of the lidar chamber. The direction of the lidar can be adjusted by modifying the
arrangement of the lidar chamber. The key parameters of the single-photon underwater
lidar are present in Table 2.
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Figure 9. (a) Optical layout of the single-photon underwater lidar. SM-YDFA: single-mode ytterbium-
doped fiber amplifier; HP-YDFA: high-power ytterbium-doped fiber amplifier; L: lens; LBO: lithium
borate; MMF: multimode fiber; SPAD: single-photon avalanche diode; TDC: time-to-digital converter;
FG: function generator; PC: personal computer. (b) Photo of the underwater lidar.

To extend the detection distance, a 300× 300 mm2 reflective mirror with high reflection
(≥98%) at 532 nm was placed on the wall of the pool to reflect the laser. The simulation
signals are obtained via the MC simulation model derived using the GPU parallel computa-
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tions with a photon number of 109. The raw profile with 2 s temporal resolution and 0.5 ns
sample ratio is plotted in Figure 10a. Using an absorption and attenuation meter AC-9
(WET Labs, Inc., Philomath, OR, USA), the absorption coefficient (a, in m−1) and the beam
attenuation coefficient (c, in m−1) at 532 nm were simultaneously measured. The Petzold
was adopted as the scattering phase function in the simulation. The simulation signals were
compared to the measurement signals after being normalized, as illustrated in Figure 10a.
It is found that the simulation signals are consistent with the measurement signals, and
the measurement signals show a peak value in 55 m, which is due to the reflection of the
total reflector placed on the wall of the swimming pool. Figure 10b shows the regression
diagram of the simulated signals and experimental signals. The simulation signals show
an excellent consistency with experimental signals with a high R-square of 0.98, as shown
in Figure 10b. The results demonstrated that the GPU-accelerated MC simulation program
can efficiently simulate the experimental signals in clean water.

Table 2. Key parameters of single-photon underwater lidar.

Parameter Value

Pulse duration of the laser 501 ps
Pulse energy of the laser 1 µJ

Pulse repetition rate of the laser 1 MHz
Diameter of the telescope 20 mm

Detection efficiency at 532 nm 52%
Dark count 100 cps

Size of the lidar Φ20 cm × 40 cm
Power consumption of the lidar ≈80 W
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5. Conclusions

In this study, a semi-analytic MC simulation algorithm based on GPU parallel com-
putation was proposed to simulate lidar signals. The implementation of the semi-analytic
simulation program on a laptop demonstrated a speedup ratio of up to 68. The LUT
method was utilized in the simulation model with different scattering phase functions.
An algorithm was introduced to effectively minimize abnormal simulation signals. A
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comparison between the simulated and experimental signals showed a relatively high level
of agreement.

Despite achieving a nearly 68-fold speed improvement, there remains potential for
the further optimization and acceleration of GPU computation and programming. Firstly,
modifying the program architecture by adopting a non-stop scheme instead of the conven-
tional cut-off approach could better utilize CUDA threads [43]. Additionally, optimizing
the codes to minimize command divisions would significantly reduce computation time.
Moreover, optimizing the data storage structure can reduce data transfer time and volume
during simulation. In this study, only the HG scattering phase function was used for
simulation in inhomogeneous water. In future studies, other scattering phase functions,
including the double HG phase function, Petzold phase function, large particle phase
function, and small particle phase function will also be adopted. In addition, the MC
simulation simulated not only the elastic unpolarized scattering signals of water bodies
but also the inelastic or polarized scattering signals. In future research, this model will be
applied not only in pristine water but also in coastal and oceanic environments to further
validate its performance. Efforts will be made to further enhance the computation speed of
the GPU-based semi-analytic MC simulation and use this model to simulate polarization
and fluorescence signals.
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