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Construction of a High Spatiotemporal Resolution
Dataset of Satellite-Derived pCO2 and Air–Sea
CO2 Flux in the South China Sea (2003–2019)
Zigeng Song , Shujie Yu, Yan Bai, Xianghui Guo, Xianqiang He , Weidong Zhai, and Minhan Dai

Abstract— The South China Sea (SCS) is one of the largest
marginal seas in the world. It includes a river-dominated,
highly productive ocean margin on the northern shelf and an
oligotrophic ocean-dominated basin along with other subregions
with various features. It was a challenge to estimate the air–sea
CO2 flux in this area. We developed a retrieval algorithm for
sea surface partial pressure of CO2 ( pCO2) by a combination
of our previously established mechanistic semianalytical method
(MeSAA) and machine learning (ML) method, named MeSAA-
ML-SCS, built upon a large dataset of sea surface pCO2
collected from in situ measurements during 44 cruises /legs to
the SCS in the last two decades. We set several semianalyti-
cal parameters, including pCO2_therm represented the combined
effect of thermodynamics and the atmospheric CO2 forcing on
seawater pCO 2; upwelling index (UISST ) and mixing layer depth
(MLD) to characterize the mixing processes; and chlorophyll-a
concentration (Chl-a) with remote sensing reflectance at 443 and
555 nm [Rrs(443) and Rrs(555)], which were proxies of biological
effects and other characteristics for distinguishing shelf, basin,
and subregions. We set the difference between seawater pCO2
and atmospheric pCO2(1pCOSea–Air

2 ) as the output, and the
seawater pCO2 was finally obtained by summing atmospheric
pCO2 and 1pCOSea–Air

2 . We compared several ML models, and the
XGBoost model was confirmed as the best. Independent cruise-
based datasets that are not involved in the model training were
used to validate the satellite products, with low root-mean-square
error (RMSE = 11.69 µatm) and mean absolute percentage
deviation (APD = 1.59%). The increasing trend of time-series
satellite-derived pCO2 (2.44 ± 0.24 µatm/year) was validated
by the in situ data at the Southeastern Asia Time-series Study
(SEATS) station, showing good consistency. Results indicate that
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the SCS as a whole is a source of atmospheric CO2, releasing
an average of 12.34 ± 3.11 Tg C/year from a total area of
2.87 × 106 km2, while the northern shelf acts as a sink (2.02 ±

0.64 Tg C/year). With the forcing of increasing atmospheric CO2,
the area-integrated CO2 efflux over the entire SCS is decreasing
with a rate of 0.41 Tg C/year during 2003–2019. This shared
long time series, high-accuracy dataset (1 km) can be helpful to
further improve our understanding of the air–sea CO2 exchange
dynamics in the SCS.

Index Terms— Air–sea CO2 flux, machine learning (ML),
satellite retrieval, seawater p CO2, semianalytical algorithm,
South China Sea (SCS).

I. INTRODUCTION

THE South China Sea (SCS) is the largest marginal sea of
the North Pacific Ocean with intense turbulent mixing,

upwelling, and stratification (in the central basin) [1], [2]. It is
characterized by dynamic exchanges in the upper layer with
the western Pacific and deep overflow through the Kuroshio
[3], [4], [3], [5]. In addition, the SCS receives abundant
terrestrial inputs from the surrounding terrain. These complex
dynamic processes promote diverse biogeochemical processes
and carbon cycling [2], [6].

As early as 2000, measurements of the seawater partial
pressure of CO2 (pCO2) were conducted in the SCS. Zhai
et al. [1] summarized the seasonal distribution of the seawater
pCO2 and air–sea CO2 fluxes in four subregions (off the
Pearl River estuary, northern basin, the central and southern
basin, and west of the Luzon Strait) of the SCS based on
in situ data from 14 cruises in 2003–2008 and estimated
that the annual average air–sea CO2 flux density was 1.1 ±

0.9 mol C/m2/year (positive value/“+” represents source/efflux
and negative value/“–“ represents sink/influx). Based on the
in situ dataset from 47 cruises (2000–2018), Li et al. [2]
demonstrated the spatiotemporal variations of seawater pCO2
and air–sea CO2 fluxes in the five subregions of the SCS
(northern shelf, northern slope, SCS basin, west of the Luzon
Strait, and western SCS) and updated estimations of the annual
average CO2 flux to 0.4 ± 0.6 mol C/m2/year. Li et al. [2] also
preliminarily analyzed the impact of freshwater input from
the Pearl River, typhoons, and El Niño-Southern Oscillation
(ENSO) events on the air–sea CO2 flux and found that the
CO2 sink in the northern SCS shelf was enhanced in the
winter. Zhai et al. [1] and Li et al. [2] presented the integrated
analysis of the pCO2 and CO2 flux data in the SCS over the
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past two decades; however, the spatiotemporal coverage of
the in situ data was insufficient. Thus, they were unable to
cover all areas with different biogeochemical characteristics
and could only present data on seasonal scales. It is necessary
to obtain seawater pCO2 with higher spatiotemporal resolution
and broader coverage in the SCS using remote sensing to better
estimate the surface pCO2 and air–sea CO2 fluxes and display
the carbon source-sink pattern and variation.

Current research on SCS pCO2 remote sensing retrieval
or model simulation algorithms has mainly focused on the
northern shelf, where abundant observations are available. Zhu
et al. [7] established an empirical algorithm for pCO2 based
on a cruise of in situ sea surface temperature (SST) and
chlorophyll-a concentration (Chl-a) in July 2004. Jo et al.
[8] used in situ pCO2 (May 2001, February, and July 2004)
from northern SCS cruises, satellite-derived SST and Chl-a,
and their longitude and latitude, to establish a seawater pCO2

retrieval model based on a neural network. Lv et al. [9] used
the mechanistic semianalytical method (MeSAA) of seawater
pCO2 retrieval proposed by Bai et al. [10] and data of six
cruises during 2004–2011 to establish a pCO2 algorithm in
the Pearl River Estuary in summer. The MeSAA algorithm
considered horizontal mixing, thermodynamics, and biological
effects; however, pCO2 in coastal zones was underestimated
due to the lack of consideration of coastal upwelling. Zhao
et al. [11] developed a 3-D physical and biogeochemical cou-
pling model to simulate the carbonate system in the Pearl River
Estuary and adjacent northern SCS under typical summer con-
ditions and theoretically analyzed the impact of riverine input,
biological processes, and air–sea exchange on seawater pCO2.

Few studies have been conducted on retrieving seawater
pCO2 at the SCS basin scale. To obtain better spatiotemporal
grid data for the SCS, Wang et al. [12] proposed a method to
produce a reanalysis dataset. They used an empirical orthogo-
nal function (EOF) method to reconstruct seawater pCO2 with
a grid resolution of 0.5◦

× 0.5◦ in summer by integrating
massive in situ data and satellite-derived seawater pCO2
product. The satellite-derived pCO2 production over the whole
SCS was based on the MeSAA algorithm developed by Bai
et al. [10] (SCS-pCO2 V1.0), with a root-mean-square error
(RMSE) of 33.8 µatm evaluated by Wang et al. [12]. With
more underway cruises and updated satellite-derived pCO2

products (SCS-pCO2 V2.0) [13], Wang et al. [14] updated
the reanalysis dataset of the SCS based on a machine learning
(ML) method, which significantly improved the reconstruc-
tion performance (RMSE = 16 µatm) and thus produced a
monthly seawater pCO2 in the SCS with a 5-km resolution
from 2003 to 2020. The SCS-pCO2 V2.0 was generated by
a pure ML algorithm (XGBoost) with eight input parame-
ters [SST, sea surface salinity (SSS), Chl-a, remote sensing
reflectance at 443, 488, and 555 nm (Rrs(443), Rrs(488),
and Rrs(555), respectively), mixed layer depth (MLD), atmo-
spheric CO2 presented in the CO2 mole fraction in the air
(xCO2), and upwelling index (UISST), and SST difference of
various water masses (upwelling, alongshore currents, and so
on) in the same latitude], which has an RMSE of 20.66 µatm.
However, in the estuarine area in summer, the RMSE reaches
29.96 µatm, as evaluated by Wang et al. [12].

Fig. 1. (a) Number of months with underway seawater pCO2 observations in
the SCS in 2003–2019. The pink line indicates the continental shelf boundary
and center basin, and the red lines define the entire SCS boundary. The
boundary of dividing central basin and northern shelf is along the 200-m
isobath. T and H mean Taiwan Island and Hainan Island, respectively. (b) and
(c) In situ seawater pCO2 histogram statistics observations in year and month.

Recently, most existing remote sensing and reanalysis pCO2
products tend to be driven by a large volume of in situ data,
and all possible influencing parameters, including SST, SSS,
Chl-a, and atmospheric CO2 concentration, are used as inputs
of the ML algorithm to generate a model that fits well with the
in situ seawater pCO2 in a form of incomprehensible black
box. The mechanistic-based algorithms can better analyze
the pCO2 variation and obtain stable results; however, the
current capacity of analytical or semianalytical algorithms is
insufficient to quantify complex spatiotemporal processes.

Thus, in this study, we proposed a new model that combined
advantages of the mechanistic semianalytic and ML algorithms
to retrieve pCO2. First, we analyzed and parameterized the
controlling mechanism of seawater pCO2 in the SCS based
on the MeSAA to determine input parameters more accurately
and ensure its stability. Subsequently, we established a pCO2
retrieval algorithm, MeSAA-ML-SCS, using ML methods
based on multiyear in situ seawater pCO2 data and finally
produced the dataset of monthly seawater pCO2 and CO2
fluxes in the SCS with a high spatial resolution (1 km) during
2003–2019 and presented a refined estimation of the air–sea
CO2 flux in the whole SCS.

II. DATA AND METHODS

A. Underway pCO2 Data in the SCS

We compiled in situ pCO2 data from 44 cruises/legs
(2003–2019), with a total 739 705 observations. The sur-
vey periods and sources are listed in Table I. A total of
43 cruises/legs were organized by Xiamen University (XMU),
most of which were published by Zhai et al. [1], [15],
Li et al. [2], Jo et al. [8], Lv et al. [9], and Zhai [16].
Nine unpublished cruises/legs collected by XMU (Dai et al.
unpublished) and one leg by the Surface Ocean CO2 Atlas
(SOCAT, version 2021) were included. The in situ seawater
pCO2 was measured by R/Vs Dongfanghong-2 and Tan Kah
Kee (TKK). During the cruises, seawater pCO2 was collected
continuously. The measurement and data processing followed
those of the SOCAT protocol [2]. Underway data provided by
SOCAT in the fugacity form of carbon dioxide ( f CO2) were
converted to pCO2 using the corresponding in situ SST and
equation reported by Takahashi et al. [17].
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TABLE I
UNDERWAY SEAWATER pCO2 DATA USED IN THIS STUDY. THE CRUISES

WITH RED FONT COMPOSE THE INDEPENDENT VALIDATION DATASET,
AND THOSE WITH BLACK FONT ARE THE TRAINING DATASET

The cruise tracks are shown in Fig. 1(a), with a con-
centration of data located in the northern part of the SCS,
especially the northern shelf; however, the space-time cov-
erage over the whole sea basin was still low. The in situ
data histogram statistics for the year and month spans are
shown in Fig. 1(b) and (c). The observations were conducted
every year during 2003–2019, except for 2013; 2018 had the
maximum data volume (∼1.8 × 104 records). Furthermore,
the in situ data were reliable seasonal representatives with at
least 5000 monthly data points, except in March.

B. Satellite and Modeled Data

The ocean color data, i.e., Chl-a and Rrs(443), and remote
sensing reflectance at 555 nm [Rrs(555)] employed in this
study were derived from MODIS-Aqua with a spatial reso-
lution of 4 km, associated with processing version 2018.0.
The monthly SST dataset adopted was AVHRR_OI (optimal
interpolation), provided by the Group for High-Resolution SST

TABLE II
SOURCE AND INFORMATION OF SATELLITE AND MODELED

DATA USED IN THIS STUDY(2003–2019)

(GHRSST), National Oceanic Atmospheric Administration
(NOAA), with a 0.25◦ resolution, processing version 2.1.
SSS and MLD obtained from the Copernicus Marine Service
(CMEMS) with the product name GLOBAL-REANALYSIS-
PHY-001-030 at a spatial resolution of 0.083◦. The sea-level
pressure (SLP) and xCO2 were obtained from NOAAs Carbon
Tracker version CT2019B. The wind speed (WS) at 10 m
above the sea surface is derived from the ERA5 dataset
provided by the European Center for Medium-Range Weather
Forecasts (ECMWF). The sources and information of the
satellite and modeled data are listed in Table II.

C. Data Gridding and Matching-Up

To match the in situ pCO2 with satellite and modeled data,
all data were first gridded with a time window of the month
and a spatial window of 1 km. The principle of in situ data
gridding is that each sample can belong to only one grid.
For the grid containing more than three samples, abnormal
values were identified using the 3σ principle and eliminated.
The average value of valid in situ data falling into a grid was
considered as the value of the grid. The satellite and model
data were also resampled to a 1-km resolution before matchup.

The matching-up processing is that, first, the nearest latitude
and longitude identified the central pixel colocated with each
in situ data; to avoid the impact of the noise within satellite
products on the modeling, only those pixels with at least
ten valid pixels in the surrounding 5 × 5 box satisfied the
homogeneity criteria that the coefficient of variation <0.15 is
considered valid. Finally, valid central pixels and correspond-
ing gridded in situ data are matched to create database for the
modeling of seawater pCO2. The data volume of the matched
database was 115 273.

D. Classification of Training and Validation Datasets

The matched-up database, with a volume of
115 273 records, was further categorized into training
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Fig. 2. Spatial distribution and corresponding histogram statistics of (a)–(h)
training dataset and (i)–(p) validation dataset in four seasons. The winter
months (December, January, and February); the spring months (March, April,
and May); the summer months (June, July, and August); and the fall months
(September, October, and November).

and validation datasets. The data were divided independently
by cruise (see Table I). Moreover, we ensured that the training
and validation sets had good seasonal and spatial coverage,
and the validation set accounted for more than 25%. Fig. 2
shows the spatial and numerical distributions of the training
and validation data for the four seasons. We obtained full
coverage on the northern shelf and the central basin over four
seasons on both the training and validation datasets. We only
had one summer cruise in the southwest of the basin, which
was included in the validation set to ensure the evaluation
accuracy of the modeling predictability. The final validation
set accounted for 28.64% of the total data volume, and the
portion of the validation sets varied between 24% and 35% in
all four seasons, although the observations were concentrated
on the summer (56 049 groups of matchups) and relatively
less on other seasons (approximately 20 000 groups on
average).

E. Flux Calculation

After the seawater pCO2 was generated, CO2 flux between
the surface water and the atmosphere (air–sea CO2 flux, mmol
C/m2/day) can be calculated from

FCO2 = k×K CO2
H × 1pCO2 (1)

where k is the gas transfer velocity (cm/h), K CO2
H is the

solubility of CO2 gas in seawater (mol/kg/atm.) [18], and
1pCO2 is the difference between atmospheric and surface
seawater pCO2. k was parameterized using the empirical
function of Sweeney et al. [19], and nonlinear correction of gas

transfer velocity with WS was adopted following Wanninkhof
et al. [20] and Jiang et al. [21]:

k = 0.27 × C2 × U 2
mean ×

(
Sc
660

)−0.5

(2)

C2 =
1
n

×

∑n
j=1 U 2

j

U 2
mean

(3)

where Umean is the monthly mean wind speed at 10 m above
sea level (in m/s), Sc is the Schmidt number at in situ temper-
atures for surface seawater [22], C2 is the nonlinear coefficient
for the quadratic term of the gas transfer relationship, U j is the
6-hourly WS (in m/s), the subscript “mean” indicates average
values, and n is the number of available WS measurements
for the month.

The atmospheric pCO2 (pCOAir
2 ) was calculated using

xCO2 in the air, the SLP, and the vapor pressure of water
at 100% relative humidity (pH2OAir), using the following
formula [23]:

pCOAir
2 = xCO2 ×

(
SLP − pH2OAir). (4)

The net CO2 flux in a certain region is estimated by
multiplying the mean CO2 flux density among the available
pixels by the total area of the region. The input parameters
to derive the seawater pCO2 and calculate the CO2 flux are
shown in Table II.

F. Performance Evaluation

The performance evaluation was based on three statistical
measures: the coefficient of determination (R2), RMSE, and
mean absolute percentage deviation (APD) as follows:

R2
=

[
1
N

N∑
i=1

(
X i − X̄

σX

)(
Yi − Ȳ

σY

)]2

(5)

RMSE =

√∑N
i=1(X i − Yi )

2

N
(6)

APD =
1
N

N∑
i=1

|
X i − Yi

Yi
|×100% (7)

where X i , Yi , and N are the algorithm retrieved values, in situ
measurement values, and sample number, respectively, and σX

and σY are the standard deviations of X i and Yi , respectively.

III. ALGORITHM DEVELOPMENT

A. Mechanism Analysis and Input Parameter Strategy

Bai et al. [10] proposed the MeSAA algorithm for retriev-
ing seawater pCO2 using remote sensing data. In MeSAA,
the variation in seawater pCO2 was analytically expressed
as the sum of the first-order partial differentials of indi-
vidual pCO2 components controlled by major factors such
as the temperature-dependent thermodynamic effect, mixing
effects between different water masses, biological effects, the
air–sea CO2 exchange that affects the seawater pCO2 itera-
tively, and other individual processes that vary independently
of the above-identified processes. The MeSAA algorithm
has been successfully applied to the East China Sea [10]
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(Bering Sea [24], Northern Shelf of the SCS [9], Gulf of
Mexico [25], and Coral Sea [26]). However, the existing
MeSAA algorithm still had difficulties in its analytical ability
for complicated physical and biogeochemical processes.

In this study, we fully utilized the ML method advantage
in solving the complex nonlinear problem and maintaining the
MeSAA ability to understand the influence of the controlling
factors by applying it to the input parameters selection. The
parameter selection strategies are given as follows.

1) Target Parameter: pCO2 or 1pC OSea–Air
2 : Except for

the northern shelf of the SCS, the vast SCS basin belongs to
the oligotrophic zone, which leads to a centralized distribution
of pCO2 data (“narrow-type histogram”) in the sea basin.
In most sea basin areas, the forcing effect of atmospheric
CO2 was evident, and the seawater and atmospheric pCO2
changed at a similar rate at 2.10 ± 0.79 and ∼2.2 µatm/year,
respectively [2]. Due to the significant similarity between
seawater and atmospheric pCO2, if pCOAir

2 was directly used
as an input parameter to retrieve seawater pCO2, the weight of
pCOAir

2 would be too large and would mask the weight of other
control mechanisms, and correspondingly, the model would
be unstable. We found that the generated satellite images
had significant patches when pCO2 was directly outputted.
Therefore, we used 1pCOSea–Air

2 as target to increase the data
gradient and reduce the gap between the mean and standard
deviation values (mean ± SD). For example, the mean value
of seawater pCO2 was 387.25 ± 42.86 µatm, but 1pCOSea–Air

2
was –9.06 ± 43.25 µatm, which solved the model instability
when the inputs and outputs were highly similar.

2) Comparison of Various Input Parameters in Major Con-
trolling Processes: In previous studies, four major controlling
effects on seawater pCO2 variation in the SCS were identi-
fied: atmospheric CO2 forcing, thermodynamics effect, water
mixing, and biological activities [7], [8], [9], [11]. Thus,
we selected the appropriate proxies to denote these three
processes: SST, xCO2, and pCO2_therm as a group to explore
the atmospheric CO2 forcing and thermodynamics effect;
MLD, UISST, and in situ SSS (SSSinsitu) as a group to proxy
for mixing processes; and the ocean color parameters such as
Chl-a, Rrs(443), and Rrs(555) for biological effects in various
domains.

To determine the impact of different inputs on the model,
we performed multiple comparative experiments on the selec-
tion of parameters. The above parameters were divided into
eight sets (Cases 1–8) for model training (see Table III) and
the relative feature importance (RFI) of each input is shown
in Fig. 3. The detailed calculation of RFI was presented
in Text S1. Here, we directly used the optimal XGBoost
model to select the input parameters to reduce the document
length (the performance of different ML methods is shown in
Section III-B).

3) Atmosphere Forcing and Thermodynamic Effect: xCO2

or pCO2_therm: When constructing a nearly 20-year sequence
of pCO2 data, the atmospheric CO2 forcing effect on sea-
water pCO2 cannot be ignored due to the variation range
of increasing atmospheric CO2. Similar studies have usually
used xCO2 directly as an input, mainly on a global scale.
However, the SCS includes different subsystems with high

TABLE III
VALIDATION GROUP USING DIFFERENT PARAMETERS

spatiotemporal variability, while the xCO2 product provided
by Carbon Tracker has a low spatial resolution (3◦

× 2◦ grid).
Thus, xCO2 directly used as an input will cause model instabil-
ity and induce patches in the retrieved seawater pCO2 images.
Here, we proposed a new mechanism parameter (pCO2_therm)

to simultaneously characterize the thermodynamic effect of
SST and the forcing effect of long-term atmospheric CO2
rise on seawater pCO2. pCO2_therm is the theoretical seawater
pCO2 value under the impact of only temperature-dependent
thermal dynamics, assuming that seawater CO2 can reach
equilibrium with atmospheric CO2 within one year through
the air–sea exchange. It was calculated as follows [27]:

pCO2__therm = pCOAir
2(o) × e0.0423(SST−SST(o)) (8)

where pCOAir
2(o) and SST(o) are the annual mean pCOAir

2 and
SST, respectively. Fig. 4(a)–(h) shows pCO2_therm for four
typical months in 2003 and 2019; for example, features of
seasonal thermodynamic effect and atmosphere forcing of
increasing CO2 are clearly depicted.

According to the RFI of Cases 1–8 (see Fig. 3), the
group of SST, pCO2_therm, and xCO2 is shown in green. The
results of Cases 4 and 5 in Table III show that pCO2_therm
(RMSE = 12.53 µatm and APD = 1.63%) was better
than xCO2 (RMSE = 12.68 µatm and APD = 1.60%)
when pCO2_therm and xCO2 were included with Case 1. In
addition, the RFIs of pCO2_therm (∼11%) and xCO2 (∼15%)
have similar contributions to Cases 4 and 5 (see Fig. 3),
indicating that pCO2_therm can mechanistically replace xCO2
but can avoid the image patches result from the low spatial
resolution of xCO2.

4) Mixing Effects: SSS, MLD, and UISST : The hydrody-
namic characteristics of the SCS northern shelf are complex
and involve freshwater input from rivers, seasonal coastal
currents, upwelling, and so on. Mesoscale eddies, a feature of
the SCS, markedly impact ecological processes, thus changing
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Fig. 3. Percentage pie chart for RFI of Cases 1–8 in XGBoost model.

Fig. 4. Monthly pCO2_therm for (a) February 2003, (b) May 2003, (c) August
2003, (d) November 2003, (e) February 2019, (f) May 2019, (g) August 2019,
and (h) November 2019. Multiyear (2009–2019) averaged monthly UISST for
(i) February, (j) May, (k) August, and (l) November.

pCO2 [28]. As shown in Fig. 4(i)–(l), a UISST index, defined as
the SST at each pixel minus the mean SST at the same altitude
in study area [29], can describe the upwelling, alongshore
currents, and Kuroshio intrusion in the SCS. The SCS is also
a region dominated by oceanic processes and is affected by
the Kuroshio and upwelled deep water characterized by high
dissolved inorganic carbon (DIC) [4], which partly reflects the
seasonal variation of the MLD. Meanwhile, as the considerable
difference in MLD between the shelf and basin, MLD can also
be used to distinguish these two systems.

SSS denotes the mixing between different water masses. As
satellite-derived SSS products had lower accuracy and spatial
resolution (0.25◦), introducing significant error propagation,
we used SSSinsitu as one of the inputs to test the performance

of other mixing proxies. In Fig. 3, the blue color represents the
mixing characteristics of MLD, UISST, and SSS. Comparing
SSSinsitu in Cases 2 and 7 and UISST in Cases 3 and 8, UISST
achieves a similar result as SSSinsitu although with slightly
lower statistical values in model performance. In Cases 2 and 3
(see Fig. 3), the RFIs of UISST (∼17%) and SSSinsitu (∼21%)
are also similar, indicating that UISST can approximately
replace SSSinsitu. Finally, MLD and UISST together contributed
34% and were selected as proxy of the mixing effects on pCO2
in the selected Case 8.

5) Biological Effects: Chl-a and Rrs: Compared to reanal-
ysis data, the high spatial resolution (4 km) and observa-
tion frequency (daily) of ocean color data reduce the gap
between underway measurements and satellite data. Therefore,
we chose the most common parameter, Chl-a, to characterize
the biological effect. Although pCO2 has a highly complex
response to biological processes, such as productivity and res-
piration, Chl-a is still the most stable and practical parameter
[10]. We added Rrs(443) and Rrs(555) to characterize addi-
tional water ecological information. Rrs(443) mainly includes
the effects of chromophoric dissolved organic matter and
Chl-a. Rrs(555) contains information about particulate matter
(phytoplankton, nonalgal, and terrestrial particles) and turbid-
ity. Although Chl-a was calculated using the blue-to-green
band ratio algorithms (OCx algorithm) and color index (CI)
algorithm [30], [31], the spectral information of each band
and Chl-a as input parameters can characterize biological
characteristics in different ecological areas (e.g., offshores,
basins, and mesoscale processes) and algal blooms under the
same Chl-a concentration. In Fig. 3, the biological effects
are represented by Chl-a, Rrs(443), and Rrs(555) with orange
color, whose RFIs are very large, indicating that the biological
effects have irreplaceable effects on 1pCOSea–Air

2 in the SCS.
We also tested the addition of more Rrs to other bands.
Although addition of more inputs to the SCS slightly increases
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Fig. 5. Flowchart of retrieving the seawater pCO2.

the statistical value of the model, model instability will be
propagated to the final satellite image with artificial patches;
therefore, we used two bands of Rrs(443) and Rrs(555) as
inputs.

Through the above mechanism analysis, we determined
that pCO2_therm, SST, MLD, UISST, Chl-a, Rrs(443), and
Rrs(555) were used as input parameters to obtain the output
of 1pCOSea–Air

2 in the ML model.

B. ML Model Selection

In the published literature, many ML technologies [i.e., mul-
tilayer perceptron neural network (MLPNN), random forest
(RF), and light gradient boosting machine (LightGBM)] have
been successfully applied to develop satellite-based surface
pCO2 models [14], [32], [33], [34], [35], [36]. The MLPNN is
a feedforward neural network model based on the Levenberg–
Marquardt backpropagation algorithm [37], [38], while RF,
LightGBM, and XGBoost are based on the decision tree (DT)
algorithm. RF adopts the “bagging” method to evenly extract
training samples, and XGBoost adopts the “boosting” method
and samples according to the error rate [39]. LightGBM is
a fast, distributed, and high-performance ML framework, but
it is sensitive to the noise of datasets due to its bias-based
algorithm, which might lead to worse results [40].

Recently, XGBoost has proven to be more accurate than
RF and MLPNN in various ML algorithms [41], [42], [43],
[44], [45]. XGBoost aggregates a weak ML model to form a
more robust estimator in an iterative process [46]. XGBoost
can find data separation points more precisely and reduce the

TABLE IV
MODEL COMPARISON OF DIFFERENT ML APPROACHES

influence of the extreme values on the model stability by using
a “presorted feature” algorithm [47]. The publicly available
Scikit-Learn and XGBoost packages were used to complete
the pCO2 retrieval model. The scheme of parameter settings in
XGBoost was given as follows: the number of regression trees
was 1200, the maximum depth of trees was 6, the learning
rate was 0.1, and the weight of the L2 regularization term
was 0.01 [48]. The MLPNN comprised one input layer, three
hidden layers, and one output layer. The number of neurons
was 30, 20, and 10 for the three hidden layers in the MLPNN,
with a tan-sigmoid function as the transfer function.

To verify the effectiveness of the different ML models,
we compared MLPNN, DT, RF, LightGBM, and XGBoost
based on the same dataset and inputs. The common con-
figuration parameters (i.e., the number of regression trees is
1200 and the maximum depth of each tree is 6) of DT, RF,
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Fig. 6. Scatter density plot comparison between the in situ and satel-
lite-derived pCO2 for (a) training and (b) independent validation datasets.
Gray shading represents the area within three standard deviations of the aver-
age values. (c) Monthly satellite-derived and corresponding sampling pCO2 at
SEATS station in 2003–2019. (d) Matching-up between satellite-derived pCO2
and the sampling pCO2 calculated from in situ DIC and TA at the SEATS
station.

and LightGBM were all consistent with those of XGBoost
in this experiment. Table IV presents the results of each
ML method. XGBoost showed the best performance, with
RMSE = 11.69 µatm, R2

= 0.92, and APD = 1.59%
in the model validation, followed by LightGBM, with
RMSE = 13.14 µatm, R2

= 0.90, and APD = 1.76%. The
performances of the MLPNN and DT were worse than those
of the other three ML approaches. Therefore, XGBoost was
selected.

C. Summary of the MeSAA-ML-SCS Algorithm

In summary, the flowchart of MeSAA-ML-SCS is shown in
Fig. 5, which includes three parts: input parameter selection,
ML model selection, and pCO2 retrieval. First, we determined
input parameters and ML technique based on pCO2 mecha-
nism analysis and multiple experiments. Then, 1pCOSea–Air

2
was estimated by the XGBoost model with input param-
eters [pCO2_therm, SST, MLD, UISST, Chl-a, Rrs(443), and
Rrs(555)]. Finally, seawater pCO2 was obtained by sum-
ming pCOAir

2 and 1pCOSea–Air
2 . Furthermore, we conducted

validation with independent in situ pCO2 data to ensure
the performance of the algorithm and satellite products in
Section III-D.

Fig. 7. Comparison between the retrieved pCO2 and in situ pCO2 for three
cruises in (a)–(d) July 2004, (e)–(h) April 2005, and (i)–(l) May 2011.

D. Model Validation

1) Overall Performance Statistics of the Model: As we
used matchup satellite data and grid data as model inputs
instead of in situ data to develop the algorithm, validation
of the model was equivalent to that of the final product.
Fig. 6(a) and (b) compares the in situ and retrieved pCO2
values for the training and independent validation datasets. In
the training dataset, the retrieved pCO2 values were consistent
with the in situ values, with R2

= 0.95, RMSE = 8.73 µatm,
and APD = 1.16%. Fig. 6(b) shows that the R2, RMSE,
and APDof the independent validation dataset were 0.92,
11.69 µatm, and 1.59%, respectively, slightly lower than those
of the training dataset but still within a reasonable error range.
Moreover, the scatters in Fig. 6(a) and (b) outside the gray
shaded area might be due to the impact of some complex
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physical or biological processes (e.g., mesoscale eddies or
algal blooms). Overall, the differences in the statistical mea-
sures between the training and independent validation datasets
were relatively small, indicating that the established model
can learn from the training dataset accurately and has strong
stability and robustness.

2) Long-Term Trend Accuracy of Satellite Products: As
the timespan (2003–2019) was long, the accuracy of the
seawater pCO2 trend became crucial to evaluate the product
quality; therefore, we adopted observed data from long-term
series stations to verify the pCO2 products. Dai et al. [49]
produced a long time series (2003–2019) of pCO2 data at the
Southeastern Asia Time-series Study (SEATS) station (116◦E,
18◦N), which were calculated from measured DIC and total
alkalinity (TA) and were not involved to train the pCO2
retrieval model. Therefore, we used these time-series data to
test the accuracy of the long-term trends of our retrieved pCO2
with the results. Fig. 6(c) reveals that the long-term changes in
retrieved seawater pCO2 at the SEATS station were consistent
with observed values, and the retrieved pCO2 increased at a
rate of 2.44 ± 0.24 µatm/year. Fig. 6(d) further describes the
slight differences in the matched-up pCO2 dataset between the
retrieval values and observed data during 2003–2019. Overall,
the long-term trends of our pCO2 retrieval model showed high
reliability.

3) Cruise-by-Cruise Comparisons: We also validated our
satellite products in detail for each cruise. Naturally, the
results of the comparison along the cruise were favorable
(see Fig. 7) in cases where scatter plots compared well [see
Fig. 6(a) and (b)]; however, the cruise-by-cruise comparison
provides more details on the satellite products reliability. In the
main text, we only present the comparison of three cruises with
longer routes, focusing on the cruise across the whole basin
area and the complex north shelf. The pCO2 comparisons for
all cruises are shown in Figs. S1–S54.

Fig. 7 compares the retrieved and in situ pCO2 in July
2004, April 2005, and May 2011. Among them, the in situ
data in July 2004 [see Fig. 7(a)–(d)] and May 2011 [see
Fig. 7(i)–(l)] were from the training datasets, and those in April
2005 [see Fig. 7(e)–(h)] were from the independent validation
datasets. The consistency and continuity in Fig. 7(c), (g),
and (k) indicate that the retrieval model has high applicability
in the SCS basin. Comparing Fig. 7(g) with (e), the spatial
variations of the retrieved pCO2 were consistent with those
of in situ pCO2 in the southern Taiwan Strait. Furthermore,
the regions with low pCO2 values in Fig. 7(a)–(c), (e)–(g),
and (i)–(k) indicate the potential influence of the river plume
in summer and temperature effect in April on pCO2 and
can also be reflected in the retrieval model. Specifically,
Fig. 7(g) presents an evident gradient change (from ∼370
to ∼430 µatm) in seawater pCO2 from the waters of north-
ern Luzon to the waters of western Luzon, which is seen
in Fig. 7(e). Similarly, multiple significant gradient changes
(from ∼300 to ∼380 µatm) also exist on the northern shelf
of the SCS, shown in Fig. 7(c), which is consistent with
the results in Fig. 7(a). These results indicate that pCO2
products can capture high-precision spatiotemporal variation
information and mesoscale and microscale changes.

Fig. 8. Spatial distributions of (a) RMSE and (b) APD of the retrieval and
in situ pCO2 data for the validation dataset. Seasonal and annual (c) RMSE
and (d) APD in northern shelf, central basin [pink line areas, same as that in
Fig. 1(a)], and Pearl River Estuary (red box).

4) Model Uncertainty: We evaluated the uncertainty of the
model by calculating the RMSE and APD of the retrieval
and in situ pCO2 data at 0.1◦

× 0.1◦ grid for the validation
dataset and the spatial distribution shown in Fig. 8(a) and (b).
Then, the gridded RMSE and APD were averaged seasonally
and annually over the northern shelf, central basin, and Pearl
River Estuary to analyze the model uncertainty in these
regions [see Fig. 8(c) and (d)]. Relatively large uncertainty
(RMSE > 20 µatm and APD > 4%) might be affected by the
river plumes, mesoscale eddies, short-term heavy precipitation,
submarine groundwater discharge, and other events that have
short timescale and small areas. The annual RMSEs are ∼4.9,
∼11.4, and ∼16.1 µatm in northern shelf, central basin,
and Pearl River Estuary, respectively, and the annual APDs
are ∼1.1%, ∼2.6%, and ∼3.6%, respectively. The model
uncertainty in the central basin is relatively small (RMSE <

∼5.5 µatm and APD < ∼1.2%) in four seasons. In Pearl
River Estuary, relatively large RMSE (∼29.4 µatm) and APD
(∼7.3%) mainly concentrated in summer might be due to
the short-term heavy precipitation and Pearl River plume [1],
[12], [14]. However, annual RMSE (∼16.1 µatm) and APD
(∼3.6%) indicate that the MeSAA-ML-SCS can reconstruct
well the nonlinear relationship between the ecological envi-
ronment characteristics and seawater pCO2 in the estuary area
in similar situations. Overall, our algorithm has the ability to
retrieve the seawater pCO2 with relatively low uncertainty in
most areas of SCS.

IV. RESULTS AND DISCUSSION

A. Seasonal Variations in Seawater pCO2

The monthly climatological seawater pCO2 values for the
entire SCS are shown in Fig. 9. The seasonal variation of
seawater pCO2 on the northern shelf was over 70 µatm, which
is much higher than that in the central basin (∼30 µatm) (see
Fig. 9). Generally, it follows a pattern of high levels in summer
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Fig. 9. Distribution of monthly average of seawater pCO2 from 2003 to 2019. (a)–(l) From January to December.

and fall and low levels in winter, which aligns with Li et al. [2].
From December to March, the northern shelf is undersaturated
for atmospheric CO2 (pCO2 values are less than 350 µatm)
and associated with low SST. The closer to the coast, the lower
the pCO2 value. Post pCO2 reaching a peak value of 400 µatm
in May, it remains oversaturated until October. Of note, data
with 1-km resolution show the pCO2 distribution along the
coast and estuary. Far-oversaturated CO2 was captured along
the Guangdong Coast and in the Pearl River Estuary from
April to December, which may be influenced by high terrestrial
organic matter input and coastal upwelling, as previously
observed [6], [50]. A low pCO2 (∼330 µatm) plume emerges
from the Pearl River and extends eastward from summer to
mid-fall, which may be related to high biological productivity
and low turbidity (compared to the estuary) [1]. Li et al. [2]
also reported an extremely high pCO2 (up to 650 µatm) in the
near-shore area and a low pCO2 value (as low as 150 µatm)
in the area influenced by the Pearl River plume in summer,
based on in situ pCO2.

The pCO2 in the central basin of the SCS is relatively
homogeneous and primarily controlled by SST, which rela-
tively has high pCO2 in the summer (June, July, and August)
and low pCO2 during the winter (December, January, and
February). The regional-averaged pCO2 in the SCS basin
is oversaturated throughout the year except in winter, which
agrees with the observations of .Zhai et al. [1] and Li et al.
[2] based on in situ data. In the winter months, pCO2 in the

southern part of the central basin (∼410 µatm) was higher
than that in the north (∼385 µatm), while the pattern reversed
in the summer and early fall months. Noticeably, in the spring
months, especially May, the central basin witnessed the highest
and most homogeneous pCO2 value (>410 µatm) over the
year, due to the high SST (recorded from satellite data).

B. Seasonal Variations in Air–Sea CO2 Fluxes

This study reports the most comprehensive dataset of CO2
fluxes based on satellite data with complete coverage of the
SCS at a monthly temporal resolution and a spatial resolution
of 1 km over 17 years. We employed the same calculation
approach of air–sea CO2 flux adopted by Li et al. [2]. The
climatology of the monthly mean air–sea CO2 flux for the
entire study area is shown in Fig. 10. Most parts of the SCS
were weak-to-moderate sources of atmospheric CO2. The
northern shelf and central basin showed different seasonal
patterns of air–sea CO2 fluxes. In addition, our results of the
seasonal seawater pCO2 and air–sea CO2 flux are basically
consistent with statistics on five subregions defined in [2]
(see Tables S1 and S2 and Text S2 for details). There are
certain differences in some seasons and regions, where there
are very few in situ measurements covered by cruise. Also, the
satellite-derived results have better spatiotemporal statistical
properties than those from limited in situ observations.

The northern shelf serves as an intense CO2 sink in typical
winter and early spring months (with maximum CO2 influx
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Fig. 10. Distribution of monthly averaged air–sea CO2 flux from 2003 to 2019. (a)–(l) From January to December.

Fig. 11. Trends in (a) seawater pCO2, (b) pCOAir
2 , and (c) air–sea CO2 flux. Only pixels with significant trends (p < 0.05) are colored.

rates of 8–10 mmol/m2/day in January) and as a weak CO2
source from May to September (with CO2 efflux rates of 1–2
mmol/m2/day). This pattern is consistent with that reported by
Li et al. [2] based on in situ data. However, high-resolution
satellite estimations showed the Pearl River plume with a CO2
influx of 1–2 mmol/m2/day in summer. In April and October,
the northern shelf showed transitional features between the
typical CO2 influx and CO2 efflux. The very near-shore area
along the Guangdong and Fujian Provinces released large
amounts of CO2 (over 8 mmol/m2/day) into the atmosphere,
corresponding to the far-oversaturated CO2 from April to
December, and the CO2 efflux zone extended in October and

November. The strong carbon source here needs to be further
confirmed and verified by measured data.

Overall, the central basin serves as a weak source through-
out the year, with a mean efflux rate of 1 mmol/m2/day. The
maximum efflux occurred in the southern part of the basin in
December and January, reaching 4–6 mmol/m2/day. However,
the northern edge of the central basin absorbs CO2 in winter
and releases CO2, similar to the other parts of basin, in the rest
of the seasons. Noticeably, our CO2 flux field characterizes a
relatively strong CO2 source located northwest of the Luzon
Island in December and January, observed previously from in
situ data [1], [2].
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Fig. 12. (a)–(c) Long-term series of seawater and atmospheric pCO2 in the entire SCS, central basin, and northern shelf. (d)–(f) Long-term series of
air–sea CO2 flux density in the entire SCS, central basin, and northern shelf. Dashed lines are linear fitting curves. (g) Annual integrated air–sea CO2 flux in
2003–2019. The entire SCS is defined by the red lines of Fig. 1, and the northern shelf and center basin are bounded by the pink line.

Annually, the regional-averaged air–sea CO2 flux was sum-
marized at –1.12 ± 0.30 mmol/m2/day in the northern shelf
and 1.34 ± 0.23 mmol/m2/day in the central basin. The
average of air–sea CO2 flux in the entire SCS was estimated
to be 0.99 ± 0.22 mmol/m2/day.

For the area-integrated CO2 flux, the annual mean CO2
sink of the northern shelf was 2.02 ± 0.64 Tg C (with an
area of 4.15 × 105 km2), accumulating at 34.27 Tg C during
2003–2019. The annual mean CO2 source from the central
basin was 9.89 ± 2.03 Tg C (from an area of 1.71 × 106 km2)

and has accumulated to 168.07 Tg C over 17 years. The
entire SCS released 12.34 ± 3.11 Tg C (from an area of
2.87 × 106 km2) annually and accumulated 209.79 Tg C
during 2003–2019 to the atmosphere.

C. Long-Term Trends in Seawater pCO2 and Air–Sea CO2

Fluxes

Figs. 11 and 12 show the interannual variation in seawater
and atmospheric pCO2 and air–sea CO2 fluxes in the SCS.

The Pearl River Estuary and pixels close to the shore were not
involved in the trend analysis, because of poor data coverage
(data for 204 months from 2003 to 2019 were generated in
this study, and the available data for these regions were less
than 102 months).

The trends in seawater pCO2 in the SCS during 2003–2019
were generally significant [see Figs. 11(a) and 12(a)], with
a rate of 1.98 µatm/year (p < 0.01), which is slightly
slower than that of pCOAir

2 [2.08 µatm/year, p < 0.01,
Fig. 12(a)]. Hence, the trend in air–sea CO2 flux den-
sity, –0.0249 (mmol/m2/day)/year, is significant [p = 0.01,
Fig. 12(d)]. However, the annual carbon source of the whole
SCS decreased by ∼43% from 2003 to 2019 (p < 0.01),
and the total area-integrated carbon release fell from averaged
15.90 Tg C in 2003–2008 to 10.63 Tg C in 2015–2019 [see
Fig. 12(g)].

On the northern shelf, trends in seawater and atmo-
spheric pCO2 [1.97 and 2.14 µatm/year, respectively, see
Fig. 12(c)] are similar; thus, the air–sea CO2 flux did not
show a significant trend. However, rapid pCO2 and air–sea
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CO2 flux increased at a rate of ∼4 µatm/year and over
0.25 (mmol/m2/day)/year were observed along the coast of
the Fujian Province. To investigate the high increase rate,
we further made a support check by comparing the retrieved
and in situ pCO2 at four sites with multiple observations.
The results indicate that this rapid increase could be reliable
as the retrieved pCO2 values exhibited good accuracy (see
Fig. S55 for details). Significant air–sea CO2 flux decreases
were captured in sea areas to the southwest of Taiwan Island
and northeast of Hainan Island, and the Beibu Gulf with the
rate of 0.04–0.06 (mmol/m2/day)/year due to the relatively
slow increase in seawater pCO2 (∼1.0–1.5 µatm/year) com-
pared to the atmospheric pCO2. The annual area-integrated
carbon sink fluctuated between 1.0 and 3.0 Tg C without any
significant trend (p = 0.12) in the northern shelf.

In the central basin, seawater pCO2 generally increased
following pCOAir

2 (at a rate of 2.01 and 2.08 µatm/year).
The increase of pCO2 in the north of the basin is slightly
faster than that in the south, even reaching 3 µatm/year in
some areas, which exceeds the rise of the atmospheric pCO2,
leading to a patch (16◦N, 116◦E) showing enhanced CO2
source in the flux trend map [see Fig. 11(c)]. The air–sea
CO2 flux serves as a source weakened by the annual rate
of 0.02–0.05 mmol/m2/day in the mid and east parts of the
central basin [see Fig. 11(c)] resulting from the slightly slow
increase in seawater pCO2 [∼1.75 µatm/year, Fig. 11(a)].
Thus, the annual area-integrated CO2 efflux in the central basin
decreased from averaged 12.28 Tg C/year in 2003–2007 to
8.63 Tg C/year in 2015–2019 [at the rate of 0.28 Tg C/year,
p= 0.002, Fig. 12(g)].

It is reported that the uptake of CO2 in global shelves
had enhanced under continually increasing atmospheric pCO2
and may have switched from a source to a sink of CO2

[51]. In the estuaries, such as the Mississippi Estuary, CO2
uptakes increased rapidly since seawater pCO2 did not show a
significant positive trend (−0.11 µatm/year in the Mississippi
Estuary) [32]. In the northern shelf of the SCS [see Fig. 12(c)],
the increasing rate of pCO2 in seawater (1.97 µatm/year)
was significant, but smaller than that of atmospheric pCO2
(2.14 µatm/year) can also lead to an increase in CO2 uptakes.
For the entire SCS, long-term trends in seawater pCO2 are
more similar to that in the open ocean. Take the Hawaii
Ocean Time-series (HOT) and Bermuda Atlantic Time-series
Study (BATS) for example, the pCO2 increasing trends of
which were 1.88 ± 0.16 (1988–2007) [52] and 1.78 ±

0.28 (1970–2011) [53] µatm/year, respectively, close to (still
slower than) the atmospheric pCO2 increases. As a CO2
source in the entire SCS, the increasing seawater pCO2
(1.86 µatm/year) was slower than that of the atmospheric
pCO2 (2.08 µatm/year), resulting in gently reducing the CO2
release of the SCS. If this trend continues, the SCS will likely
reach equilibrium in the future.

V. CONCLUSION

In this study, the MeSAA-ML-SCS model was developed
to retrieve seawater pCO2 based on controlling mechanism
analysis and ML method. Then, we produced high spatial
resolution (1 km, monthly) seawater pCO2 and air–sea CO2

flux maps of the SCS during 2003–2019, which were validated
with independent in situ data, including the SEATS time-series
site data. The pCO2 product showed high accuracy with an
11.69-µatm RMSE and 1.59% APD.

Sea surface pCO2 and air–sea CO2 fluxes in the SCS pre-
sented substantial spatiotemporal variations, with significant
long-term trends during 2003–2019. Our results suggested the
SCS as a whole to be a source of atmospheric CO2, releasing
an average of 12.34 ± 3.11 Tg C/year, and the northern
shelf to be an atmospheric CO2 sink, absorbing an average of
2.02 ± 0.64 Tg C/year. Seawater pCO2 in the SCS increased
following the trend of pCOAir

2 but was slightly slower; thus, the
air–sea CO2 flux decreased significantly (p= 0.01). However,
the area-integrated CO2 efflux in the entire SCS and central
basin decreased significantly (p< 0.01) in 2003–2019, with
rates of 0.41 and 0.28 Tg C/year, respectively. In addition to
the seawater pCO2 and air–sea CO2 fluxes, the high spatial
resolution and long temporal span dataset helps to reveal the
controlling factors of the air–sea CO2 fluxes in the SCS and
predict the CO2 source and sink patterns.

Our satellite-derived seawater pCO2 and air–sea CO2 flux
data are shared at Zenodo (https://doi.org/10.5281/zenodo.
7743187). Although only preliminary analysis was conducted
in this study, our dataset has the potential to capture variations
in pCO2 induced by mesoscale processes, such as typhoons
and eddies, due to its high resolution. We hope that our work
will inspire and encourage the community and scholars to
use our dataset for further studies. As the MeSAA-ML-SCS
algorithm may have some uncertainty in the area without in
situ data, we will collect more field measured data to validate
the satellite products and improve the algorithm by introduc-
ing more mechanism analysis and parameterizing controlling
factors to the ML model, and reveal more detail features in
the carbonate system and their mechanisms.
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