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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• A pCO2 algorithm combining semi- 
mechanistic and machine learning 
methods. 

• The East China Sea was a CO2 sink that 
annually absorbed 14.80 Tg C. 

• The Yellow Sea was a weak CO2 sink on 
an annual basis but a source in summer. 

• The Bohai Sea is nearly neutral in 
annual scale with strong seasonal 
variations.  
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A B S T R A C T   

The Bohai Sea (BS), Yellow Sea (YS), and East China Sea (ECS) together form one of the largest marginal sea 
systems in the world, including enclosed and semi-enclosed ocean margins and a wide continental shelf influ
enced by the Changjiang River and the strong western boundary current (Kuroshio). Based on in situ seawater 
pCO2 data collected on 51 cruises/legs over the past two decades, a satellite retrieval algorithm for seawater 
pCO2 was developed by combining the semi-mechanistic algorithm and machine learning method (MeSAA-ML- 
ECS). MeSAA-ML-ECS introduced semi-analytical parameters, including the temperature-dependent seawater 
pCO2 (pCO2,therm) and upwelling index (UISST), to characterise the combined effect of atmospheric CO2 forcing, 
thermodynamic effects, and multiple mixing processes on seawater pCO2. The best-selected machine learning 
algorithm is XGBoost. The satellite-derived pCO2 achieved excellent performance in this complicated marginal 
sea, with low root mean square error (RMSE = 20 μatm) and mean absolute percentage deviation (APD = 4.12 
%) for independent in situ validation dataset. During 2003–2019, the annual average CO2 sinks in the BS, YS, 
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ECS, and entire study area were 0.16 ± 0.26, 3.85 ± 0.68, 14.80 ± 3.09, and 18.81 ± 3.81 Tg C/yr, respectively. 
Under continuously increasing atmospheric CO2 concentration, the BS changed from a weak source to a weak 
sink, the YS experienced interannual fluctuations but did not show significant trend, while the ECS acted as a 
strong sink with CO2 absorption increased from ~10 Tg C in 2003 to ~19 Tg C in 2019. In total, CO2 uptake in 
the entire study area increased by 85 % in 17 years. For the first time, we present the most refined variation in 
the satellite-derived pCO2 and air-sea CO2 flux dataset. These complete ocean carbon sink statistics and new 
insights will benefit further research on carbon fixation and its potential capacity.   

1. Introduction 

The importance of marginal seas in the global carbon cycle has been 
widely recognised (Gruber, 2015; Liu et al., 2018; Dai et al., 2022) 
despite their small total area, ~ 8 % of the global ocean surface area. 
With the rapid growth of in situ ocean carbon observations (especially 
the underway sea surface partial pressure of CO2 (pCO2) measurements) 
in the past decades, the estimates of the air-sea CO2 absorption in the 
global marginal seas have converged to 0.2 to 0.5 PgC/yr (Borges et al., 
2005; Cai et al., 2006; Chen et al., 2013; Chen and Borges, 2009; Dai 
et al., 2013; Dai et al., 2022; Gruber, 2015; Laruelle et al., 2010; Laruelle 
et al., 2014; Liu et al., 2018; Roobaert et al., 2019), which accounts for 
10 % to 20 % of the annual CO2 absorption in the global ocean (Cai et al., 
2006; Chen and Borges, 2009; Laruelle et al., 2010; Roobaert et al., 
2019). However, this estimated value still has significant uncertainty. 
Due to the complexity of the marginal seas, determining the refined 
temporal and spatial variations in seawater pCO2 and air-sea CO2 flux is 
still a considerable challenge (Dai et al., 2022; Gruber, 2015). These 
marine systems receive a large amount of carbon and nutrients from 
river runoff, upwelling, and the open ocean, which promote high bio
logical production and respiration, and the interactions of physical and 
biogeochemical processes significantly affect the carbon cycle processes 
in the marginal seas (Chen and Borges, 2009; Dai et al., 2022; Hales 
et al., 2005; Huang et al., 2015; Roobaert et al., 2019; Wang et al., 
2013). 

The Bohai Sea (BS), Yellow Sea (YS), and East China Sea (ECS) sys
tem, adjacent to the Chinese mainland and the Korean Peninsula, ac
count for approximately 3 % (1.27× 106 km2) of the global marginal sea 
area, of which 70 % (0.9 × 106 km2) is located on the continental shelf 
with a water depth of <200 m. The carbon cycle here is quite chal
lenging to decipher due to the complicated hydrodynamic and biogeo
chemical processes (Bauer et al., 2013; Dai et al., 2004; Shim et al., 
2007; Zhai et al., 2014). The average water depth of the BS is only 18 m, 
and it is surrounded by land on three sides and many rivers along the 
coast (including the Yellow River, which has a high sediment concen
tration), so it is significantly affected by terrestrial inputs and human 
activities. The YS, with an average water depth of 44 m, is a semi- 
enclosed marginal sea that is strongly influenced by anthropogenic 
disturbance, terrestrial inputs, and the East Asian monsoon, thus form
ing a unique internal circulation current system with a long residence 
time of the water mass (Su, 1998). The ECS is featured by a large amount 
of material transport from the Changjiang River (the fourth largest river 
in the world in terms of runoff) on the west side, and the east side is 
subject to dynamic exchanges with the oligotrophic Kuroshio (western 
boundary current) (Chen and Wang, 1999). 

Many studies have been conducted to determine whether the com
plex marginal seas like BS, YS, and ECS are sources or sinks of atmo
spheric CO2 (Choi et al., 2019; Guo et al., 2015; Liu et al., 2018; Shim 
et al., 2007; Tseng et al., 2014; Tseng et al., 2011; Tsunogai et al., 1999; 
Wang et al., 2000; Wang and Zhai, 2021; Xue et al., 2012; Xue et al., 
2011; Zhai and Dai, 2009). Due to the high heterogeneity of the coastal 
and continental shelf regions, the biogeochemical process and the air- 
sea CO2 exchange flux have significant spatial and temporal vari
ability (Deng et al., 2021; Takahashi et al., 2009). Marine CO2 dynamics 
in the BS have not been well documented owing to a paucity of obser
vations. Based on four surveys conducted by the State Oceanic 

Administration of China (SOA) during 2011–2012, the Bulletin of Marine 
Environmental Status of China in 2012 (SOA, 2013) reported that the BS is 
a net source of atmospheric CO2 (0.55 mmol/m2/d) on an annual scale, 
with a strong carbon efflux (3.9 mmol/m2/d) in autumn, but a weak sink 
in spring and winter (− 0.2 and − 1.9 mmol/m2/d). Yin et al. (2012) 
collected in situ pCO2 from 30 stations around the BS and reported that it 
acted as a weak source (averaged 5.03 mmol/m2/d) in September 2009. 
There are more studies in the YS than in the BS, but considerable un
certainties remain in estimating the net CO2 flux. Xue et al. (2011 & 
2012), based on data collected in the South and North YS (SYS and NYS) 
during nine cruises covering all seasons in 2001 and 2005–2007, 
concluded that the YS acted as a net CO2 source (3.16 mmol/m2/d). 
However, recent reports have reconsidered the YS as a sink of CO2 with a 
yearly mean influx rate of 2.39–2.79 mmol/m2/d (Choi et al., 2019; 
Wang and Zhai, 2021; Xu et al., 2016). Even on a seasonal scale, a va
riety of source–sink patterns still exist, as Qu et al. (2014, 2015 & 2017) 
noted that the SYS was a source of atmospheric CO2 in the summer of 
2011 (2.8 mmol/m2/d) and a CO2 sink in the summers of 2012 and 2013 
(− 2.63 mmol/m2/d). The ECS has the most abundant observations 
among the three seas. Previous studies have shown that the ECS is 
generally a net sink of atmospheric CO2 on an annual scale and is one of 
the strongest carbon sinks in the world, with significant seasonal vari
ations (Chou et al., 2011; Chou et al., 2009; Deng et al., 2021; Guo et al., 
2015; Kim et al., 2013; Liu et al., 2022; PENG et al., 1999; Qu et al., 
2013; Qu et al., 2017; Qu et al., 2015; Shim et al., 2007; Tseng et al., 
2014; Tseng et al., 2011; Tsunogai et al., 1999; Wang et al., 2000; Zhai 
and Dai, 2009). Guo et al. (2015) collected 24 sampling surveys in the 
ECS from 2006 to 2011 and reported that the current air-sea CO2 flux 
estimates range from − 3.3 to − 6.5 mmol/m2/d in spring, − 2.4 to − 4.8 
mmol/m2/d in summer, 0.4 to 2.9 mmol/m2/d in autumn and − 13.7 to 
− 10.4 mmol/m2/d in winter. However, it has also been reported that 
near-shore areas outside the Changjiang River estuary acted as a source 
of atmospheric CO2 in the summers of 2003 and 2018, with observed air- 
sea CO2 fluxes of 3.29 and 1.75 mmol/m2/d, respectively (Liu et al., 
2022; Zhai and Dai, 2009). 

Generally, previous estimates of the air-sea CO2 flux in the BS, YS, 
and ECS were based mainly on limited surveys with spatial and obser
vation frequency restrictions; thus, they are unable to reveal long-term 
changes in the carbon cycle process. To obtain observations with 
higher frequency and broader coverage, remote sensing data have 
become an essential tool for estimating seawater pCO2 (Chen et al., 
2011; Chen et al., 2019; Olsen et al., 2004; Sarma, 2003; Sarma et al., 
2006; Stephens et al., 1995). Few remote sensing algorithms for 
seawater pCO2 in the Changjiang River-ECS system have been reported 
thus far, owing to the high spatial heterogeneity and complex biogeo
chemistry characteristics of various water masses. Tseng et al. (2011 & 
2014) proposed an empirical algorithm using the Changjiang discharge 
and sea surface temperature (SST) to calculate the monthly average 
seawater pCO2 from 1998 to 2011. Their results showed that the entire 
ECS continental shelf is a significant CO2 sink, and the annual CO2 flux is 
− 4.9 ± 1.4 mmol/m2/d. To overcome the poor applicability of a single 
empirical method to multiple regions with different biogeochemical 
features, Bai et al. (2015) proposed a mechanistic semi-analytical 
method (MeSAA), summarised the seawater pCO2 variations resulting 
from a series of control processes, including thermodynamics, water 
mass mixing, and biological effects; and carried out an item by item 
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parameterisation, thus retrieving summer seawater pCO2 values on the 
ECS shelf. Since MeSAA is more effective and mechanistic than the 
empirical regression method, it has been applied successfully to the 
Bering Sea (Song et al., 2016b), the Northern Shelf off the Pearl River 
estuary in the South China Sea (Lv et al., 2018), the Gulf of Mexico (Le 
et al., 2019), and the Coral Sea (Zhang et al., 2023). 

Although the semi-mechanical model has interpretational advan
tages, the existing MeSAA algorithm still has considerable uncertainty in 
its ability to analyse complicated biogeochemical processes owing to its 
insufficient parameterisation capability. Recently, machine learning 
algorithms such as neural networks and random forests have been 
applied to retrieve seawater pCO2 values (Chen et al., 2019; Joshi et al., 
2022; Landschützer et al., 2014; Laruelle et al., 2017; Roobaert et al., 
2019). The continuous accumulation of underway pCO2 measurements 
also promotes the use of machine learning methods. Although big data- 
driven methods have statistical advantages, we still need to fully use the 
mechanisms we understand and add more mechanistic or semi- 
mechanistic algorithms into the machine learning network, which is 
also a development trend in the new generation of artificial intelligence. 

Therefore, this study proposes a model combining mechanical ana
lytic and machine learning methods to estimate the seawater pCO2 in 
complicated marginal seas. We collected in situ data on 51 cruises/legs in 
the BS, YS, and ECS, the most abundant data thus far, to support the 
development of machine learning algorithms. We also updated the 
MeSAA algorithm by considering the impact of thermodynamics, water 
mass mixing, biological effects, and atmospheric CO2 forcing on 
seawater pCO2, analysed the parameterisation and input combination 
strategies of these mechanisms, and compared the performance of 
various machine learning methods, thus establishing the pCO2 retrieval 
algorithm, MeSAA-ML-ECS (MeSAA-Machine Learning). We produced 
monthly average pCO2 and CO2 fluxes with a high spatial resolution (1 
km) for 17 years from 2003 to 2019 and showed the high-precision 
spatial and seasonal distributions, as well as long-term trends, of pCO2 
and carbon source–sink patterns in the BS, YS, and ECS for the first time. 

This paper is arranged as follows. In Section 2, we introduced the 
sources and processing methods of the in situ, satellite, and model data 
we used, as well as the performance evaluation indicators and air-sea 
CO2 flux calculation methods. In Section 3, based on the MeSAA algo
rithm, we described the parameterisation of the main control factors of 
seawater pCO2, as well as the input strategy and machine learning model 
selection. Then we verified the final MeSAA-ML-ECS model with in situ 
pCO2 data from independent cruise data. In Section 4, we displayed 
satellite-based pCO2 and air-sea CO2 flux maps in the BS, YS, and ECS, 
compared our results with previous studies to illustrate the advantages 
of our products in mechanism understanding and statistics, and finally 
showed the most refined long-term trends in pCO2 and CO2 fluxes. 

2. Materials and methods 

2.1. In situ data 

A total of 1,048,166 underway pCO2 records, collected on 51 cruises/ 
legs from 2003 to 2019, are compiled in this study and shown in 
Table S1. Data from 35 cruises/legs were collected from Guo et al. 
(2015); Guo et al. (2021); Wang et al. (2014); Wang and Zhai (2021); 
Zhai et al. (2014); Zhai and Dai (2009). Underway data from ten cruises/ 
legs were provided by the Surface Ocean CO₂ Atlas (SOCAT, version 
2021) in the form of fCO2 (fugacity of carbon dioxide), which was 
converted to pCO2 using the corresponding in situ sea surface tempera
ture (SST) and equation reported in Takahashi et al. (2017): 

pCO2 = fCO2 ×
(
1.00436 − 4.66910− 5SST

)
(1) 

Seven unpublished surveying cruises were included, one of which 
was conducted in the eastern YS in June 2009 by the State Key Labo
ratory of Marine Environmental Science (MEL), Xiamen University, and 

the others were conducted in the BS and provided by Dr. Huade Zhao. 
The pCO2 measurement of these unpublished surveys followed the 
procedure described by Guo et al. (2015). pCO2/fCO2 in all cruises were 
continuously measured every 80 s (Guo et al., 2015). 

Fig. 1(a) shows the tracks of all the cruises/legs, whose data covered 
most of the BS, western YS, and ECS, with fewer data collected on the 
east side (deep ECS). The annual and seasonal spans of the in situ data are 
shown in Fig. 1(b) and (c). The observations were conducted every year 
from 2004 to 2019; 2007 had the maximum data volume (~1.9 × 104 

records), and few data were collected in 2013, 2015, and 2019. These in 
situ data were soundly representative of seasonal patterns, with at least 
1000 records collected each month. 

2.2. Satellite and modeled data 

The ocean colour data, i.e., chlorophyll concentration (CHL) and 
remote sensing reflectance at 443 nm (Rrs(443)), 488 nm (Rrs(488)), 
and 555 nm (Rrs(555)), employed in this study were derived from 
MODIS/Aqua with a spatial resolution of 4 km and associated with 
processing version 2018.0. The adapted monthly SST dataset was the 
AVHRR_OI (optimal interpolation) dataset provided by the Group for 
High Resolution Sea Surface Temperature (GHRSST), NOAA, with a 
0.25-degree resolution and processing version 2.1. The sea surface 
salinity (SSS) was obtained from the GLOBAL-REANALYSIS-PHY-001- 
030 product of the Copernicus Marine Service (CMEMS) with a spatial 
resolution of 0.083◦. The monthly sea level pressure (SLP) and atmo
spheric CO2 presented in the mole fraction of CO2 in the dry air (xCO2) 
were obtained from NOAA’s CarbonTracker, version CT2019B (Jacob
son et al., 2020), with a spatial grid of 3◦ × 2◦. The wind speed at 10 m 
(WS) above the sea surface was derived from the ERA5 dataset provided 
by the European Centre for Medium-Range Weather Forecasts (ECMWF) 
with a special resolution of 25 km and a temporal resolution of a month 
and 6 h. 

2.3. Data gridding, match-up, and sub-dataset classification 

To match the underway pCO2 measurements with satellite and model 
data and to ensure a sufficient number of match-ups to support the 
machine learning algorithm, all the data were first gridded to a time 
window of one month and a spatial window of 1 km. The principle of in 
situ data gridding is that each in situ sample can only belong to one grid. 
For a grid containing more than three samples, abnormal values were 
identified by the 3σ principle and eliminated. The averaged value of 
valid sample data in each grid was considered the value of the grid. The 
satellite and model data were also resampled to 1 km resolution before 
the match-up. 

The match-up processing between the gridded in situ data and sat
ellite data involved the following process: First, the nearest latitude and 
longitude identified the central pixel co-located with each in situ data; to 
avoid the impact of the noise in the satellite products on the subsequent 
algorithm development, only those pixels with at least ten valid pixels in 
the surrounding 5 pixels×5 pixels box and that satisfied the homoge
neity criteria of a coefficient of variation <0.15 were considered valid; 
Finally, valid central pixels and corresponding gridded in situ data were 
matched up to compile the database for retrieving seawater pCO2. 

In total, we obtained a match-up database with a volume of 63,883 
groups, which was further divided into training and validation datasets. 
In contrast to traditional random data classification, we divided the data 
by cruises to ensure their independence of temporal/spatial represen
tation. To ensure that both two datasets (especially the validation 
dataset) have good spatiotemporal representativeness, at least one 
cruise for each region is included for each season. Fig. 1(d) and (e) show 
the spatial and histogram statistics of the training and validation data
sets in the four seasons. We obtained full coverage in the ECS and west 
YS over the four seasons in both the training and validation datasets. The 
BS cruises were mainly conducted in summer and fall, without winter 

S. Yu et al.                                                                                                                                                                                                                                       



Science of the Total Environment 904 (2023) 166804

4

Fig. 1. (a) The number of months with underway 
seawater pCO2 observations in the Bohai, Yellow, and 
East China Seas in 2003–2019. (b) and (c) Histogram 
statistics of underway seawater pCO2 observations in 
years and months. (d) and (e) Spatial and histogram 
statistics of the training and validation datasets in the 
four seasons. The boundaries of the Bohai Sea (BS), 
Yellow Sea (YS), and East China Sea (ECS) are indicated 
by pink dashed lines and the enclosed coastal lines in 
panel a. Areas framed with pink solid lines in panel (a) 
indicate the five domains (Table 1) categorized in Guo 
et al. (2015).   
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cruises. Only one spring cruise was conducted and included in the 
validation dataset to ensure the retrieving predictability. Then, the 
validation dataset should have ~25 %–30 % records of total data vol
ume to provide enough statistics for model performance. The final 
validation set accounted for 25.82 % of the total data volume, and a 
proportion of 15–35 % was also maintained in all four seasons. 

2.4. Performance evaluation 

The performance evaluation of the satellite-derived pCO2 algorithm 
and satellite products was based on three statistical measures, including 
the coefficient of determination (R2), root mean square error (RMSE), 
and mean absolute percentage deviation (APD), as follows: 

R2 =

[
1
N

∑N

i=1

(
Xi − X

σX

)(
Yi − Y

σY

)]2

(2)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Xi − Yi)

2

N

√
√
√
√
√

(3)  

APD =
1
N

∑N

i=1

⃒
⃒
⃒
⃒
Xi − Yi

Yi

⃒
⃒
⃒
⃒× 100% (4)  

where Xi, Yi, and N are the algorithm-retrieved values, in situ mea
surements, and sample number, respectively. X and Y are the average of 
all algorithm-retrieved values and in situ measurements, respectively. σX 
and σY are the standard deviations of Xi and Yi, respectively. 

2.5. Air-sea CO2 flux calculation 

After the seawater pCO2 field was generated, the air-sea CO2 flux 
between the surface water and the atmosphere can be calculated from: 

FCO2 = k×KCO2
H ×ΔpCO2 (5)  

where k is the gas transfer velocity, KCO2
H is the solubility of CO2 gas in 

seawater (Weiss, 1974), and ΔpCO2 is the difference between atmo
spheric and surface seawater pCO2. k was parameterised using the 
empirical function of Sweeney et al. (2007), and nonlinear correction of 
gas transfer velocity with wind speed was adopted following Wan
ninkhof et al. (2002) and Jiang et al. (2008): 

k = 0.27×C2 ×U2
mean ×

(
Sc
660

)− 0.5

(6)  

C2 =
1
n
×

∑n

j=1
U2

j

U2
mean

(7)  

where Umean is the monthly mean wind speed at 10 m above sea level, 
and Sc is the Schmidt number at in situ temperatures for surface seawater 
(Wanninkhof, 1992). C2 is the nonlinear coefficient for the quadratic 
term of the gas transfer relationship, Uj is the 6-hourly wind speed, the 
“mean” subscript indicates the average values, and n is the number of 
available wind speed measurements for the month. 

The atmospheric pCO2 (pCO2
Air) was calculated using xCO2 in the 

air, the barometric pressure (SLP), and the vapour pressure of water at 
100 % relative humidity (pH2OAir) using the following formula (Weiss 
and Price, 1980): 

pCO2
Air = xCO2 ×

(
SLP − pH2OAir) (8) 

To quantify how much carbon was taken up/released in a particular 
region, we calculated the integrated CO2 flux (in Tg C/yr) by multiplying 
the mean CO2 flux density among the available pixels by the total area of 

the region. For the air-sea CO2 fluxes, positive values mean CO2 release 
to the atmosphere, whereas negative values mean CO2 uptake by the sea. 

3. pCO2 algorithm development and validation 

3.1. Parameterisation based on mechanism analysis 

We collected and collated massive amounts of matched in situ pCO2 
and remote sensing data. Considering the ocean characteristics of the 
study area and the complexity of pCO2 changes, we built a pCO2 retrieval 
algorithm using a data-driven machine learning (ML) method and 
considered more mechanistic variation in pCO2 in the selection of input 
parameters. As described by Bai et al. (2015), seawater pCO2 variation 
(ΔpCO2) can be expressed as follows: 

ΔpCO2 =

(
∂pCO2@flux

∂Vflux

)

×ΔVflux+

(
∂pCO2@therm

∂Vtherm

)

×ΔVtherm+

(
∂pCO2@mix

∂Vmix

)

×

ΔVmix+

(
∂pCO2@bio

∂Vbio

)

×ΔVbio+…+

(
∂pCO2@factor− n

∂Vfactor− n

)

×ΔVfactor− n+ε

(9)  

where ΔpCO2 is analytically expressed as the sum of individual pCO2 
components associated with each process or controlling factor 
(

∂pCO2@factor− n
∂Vfactor− n

)
× ΔVfactor− n, in which (Vfactor− n) is the independent variable 

characterising that process. ε is the residual error of the total ΔpCO2. 
Based on first principles and our knowledge of ocean pCO2 research, in 
our study area, we analysed the factors controlling pCO2 variations and 

identified the input parameters as 
(

∂pCO2@flux
∂Vflux

)
× ΔVflux —air-sea CO2 ex

change/atmospheric pCO2 forcing, 
(

∂pCO2,therm
∂Vtherm

)
× ΔVtherm—temperature- 

dependent thermodynamic term, 
(

∂pCO2@mix
∂Vmix

)
× ΔVmix—mixing between 

various water masses with different carbonate components, 

and
(

∂pCO2@bio
∂Vbio

)
× ΔVbio—biological effect.  

1) the air-sea CO2 exchange/atmospheric pCO2 forcing
(

∂pCO2@flux
∂Vflux

)
×

ΔVflux 

Many early regional studies were limited by the number of cruises 
and their brief time spans and did not consider the impact of air-sea CO2 
exchange on seawater pCO2. However, since this study aimed to build a 
decadal-scale (17 years) seawater pCO2 product, during which atmo
spheric CO2 has increased significantly (~34 μatm), the forcing effect of 
this rapid CO2 increase on seawater pCO2 was non-negligible. Previous 
studies have usually used the atmospheric pCO2 measured at nearby 
monitoring stations or xCO2 products as the inputs of their pCO2 
retrieval models (Gloege et al., 2022; Landschützer et al., 2014; Roo
baert et al., 2019; Wang et al., 2022). However, as the BS, the YS, and the 
ECS are closed/semi-closed marginal seas that are greatly affected by 
terrestrial effects (i.e., the atmospheric pCO2 on the land side (east and 
north) is significantly higher than that on the side close to the Pacific 
Ocean), the nearby monitoring stations alone cannot reflect the spatial 
variability of atmospheric pCO2. In addition, the BS, the YS, and the ECS 
have various complex subsystems, and the seawater pCO2 has high 
temporal and spatial variability. However, the current prevailing global 
grid xCO2 product provided by NOAA Carbontracker has a spatial res
olution of 3◦ × 2◦, which is insufficient compared to the spatial scale of 
the study area. If we directly use this xCO2 product as an input, model 
instability will occur, resulting in artificial discontinuities in the spatial 
distribution of the seawater pCO2 product.  

2) Temperature-dependent thermodynamic term
(

∂pCO2,therm
∂Vtherm

)
× ΔVtherm 

Bai et al. (2015) proposed a temperature-dependent thermal 
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dynamic pCO2 and used it in the satellite retrieval algorithm by 
combining the SST-dependent thermal dynamic pCO2 with mixing ef
fect. In this study, we define a new thermodynamic term, pCO2,therm, 
simultaneously characterises the thermodynamic effect of temperature 
and the forcing effect of the long-term atmospheric CO2 increase on 
seawater. The pCO2,therm term is the theoretical pCO2 value controlled 
only by the temperature-dependent thermodynamic effect, assuming 
that seawater CO2 can reach equilibrium with atmospheric CO2 within 
one year through the air-sea exchange. This term is calculated as follows 
(Takahashi et al., 1993): 

pCO2,therm = pCO2(o) × e0.0423(SST− SST(o) ) (10)  

where pCO2(o) and SST(o) are the yearly mean atmospheric pCO2 

(pCO2air) and SST in each pixel, respectively; note that pCO2,air has been 
gridded to 1 km in its calculation from xCO2 (see Section 2.3). Fig. 2 
(a~h) show the seasonal distribution of the thermal dynamic seawater 
pCO2 in 2003 and 2019. Under the effect of SST, pCO2,therm has an 
evident seasonal variation pattern; that is, the pCO2,therm value in sum
mer is much higher than that in winter. For the interannual variation, 

the pCO2,therm in 2019 is generally higher than that in 2003, indicating 
that pCO2,therm can reflect the forcing of the increasing atmospheric CO2 

concentration on the seawater pCO2. Moreover, pCO2,therm also illustrates 
the spatial gradient among the BS, the YS, the ECS shelf, and the outer 
sea of the ECS, showing its spatial resolution advantage compared to 
xCO2 data.  

3) Mixing between various water masses with different carbonate 

components 
(

∂pCO2@mix
∂Vmix

)
× ΔVmix 

The dynamic processes in this study area are complicated, including 
the mixing of riverine runoff with seawater, Kuroshio intrusion, seasonal 
coastal currents, and coastal upwelling. Bai et al. (2015) quantified the 
impact of mixing processes on seawater pCO2 by ocean colour-retrieved 
sea surface salinity (SSS) in summer. However, the existing microwave 
satellite SSS data (available from 2010) do not have a sufficient time 
span, and the accuracy of model-derived SSS data in the BS, YS, and ECS 
is strongly affected by the highly turbid coastal water. Therefore, we 
employed an upwelling index (UISST) to approximately reflect the 
impact of most mixing processes on seawater pCO2. Alvarez et al. (2011) 

Fig. 2. Seasonal variation in mechanical parameters, with monthly thermal dynamic seawater pCO2 for (a) February 2003, (b) May 2003, (c) August 2003, (d) 
November 2003, (e) February 2019, (f) May 2019, (g) August 2019, and (h) November 2019. (i-l) Monthly mean UISST over multiple years (2003–2019) for (i) 
February, (j) May, (k) August, and (l) November. 
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used UISST to describe the strength of coastal upwelling, which was 
calculated as the SST difference between coastal and oceanic points at 
the same latitude. Here, we calculated the UISST of each pixel as the SST 
at that point minus the mean SST at the same latitude in area 
117–135◦E. 

Fig. 2 (i~l) show the seasonal distribution of UISST . In the winter, 
represented by February, due to the low temperature on the continents, 
the SST in the western part of the study area (BS, YS, and ECS shelf) is far 

lower than that on the eastern side (close to the Pacific Ocean), and the 
SST near-shore is lower than that offshore; thus, the coastal feature can 
be easily distinguished by a negative UISST value. Additionally, UISST can 
describe the shape of the Yellow Sea Warm Current (YSWC). In spring 
(May) and summer (August), the SST difference between the continental 
shelf and the ocean continues to decrease, and a positive UISST value 
appears in the semi-enclosed bays of the BS under the terrestrial influ
ence. In the fall (November), the UISST distribution shows that 

Fig. 3. Percentage pie chart for 8 groups of inputs in cases 1 to 8 (a~h) in the XGBoost model simulations. The pie charts show 8 cases of input combination and their 
relative feature importance (RFI). In the table, the numbers show the model performance (derived from validation dataset) in each case. Colours in the pie chart and 
table indicate parameters that denote different controlling effects, with green presenting thermodynamic and atmospheric forcing, orange as the biological effect, and 
blue as the mixing effect. 
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transitional features from summer to winter are similar to those in 
spring, but the UISST on the BS coast switches to a negative value. 
Spatially, the UISST pattern is identical to that of salinity, both of which 
show lower values on the shelf than in the deep ECS and open ocean. 
UISST can also reflect the spatial distribution of fresh water in the BS in 
spring and summer, as well as the characteristics of the coastal current, 
coastal upwelling, and some water masses in winter. Therefore, UISST is 
considered to be a good input parameter to characterise the moderating 
effect of the water mass.  

4) Biological effect
(

∂pCO2@bio
∂Vbio

)
× ΔVbio 

Chlorophyll-a concentration (CHL), a primary ocean satellite prod
uct, is widely used in seawater pCO2 remote sensing retrieval to repre
sent the biological effect. In addition to CHL, we used remote sensing 
reflections at three bands, 443 nm, 488 nm, and 555 nm (Rrs(443), Rrs 
(488), and Rrs(555), respectively) in our seawater pCO2 model to 
describe more ecological characteristics of the seawater. Specifically, 
Rrs(443) and Rrs(488) reflect the chlorophyll-a and chromophoric dis
solved organic matter (CDOM) signals in the seawater, and Rrs(555) 
reflects the presence of suspended matter (from both phytoplankton and 
terrain). Although the CHL we adapted is calculated from remote 
sensing reflection (Rrs) at these bands by the standard OC3M band ratio 
algorithm merged with the colour index (CI) of Hu et al. (2012), the 
input of single Rrs can distinguish different biological domains and 
processes with the same chlorophyll concentration, such as seasonal 
high productivities in the eutrophic coastal zones and algal blooms 
caused by mesoscale phenomena in the sea basins. In addition to bio
logical effects, bands in ocean colour satellite images can express the 
influence of offshore transport and water masses with different 
biochemical characteristics. There are other Rrs bands, and we believe 
that the more bands of input parameters there are, the better the effect 
will be; however, considering that the characteristics and data quality of 
the different bands may introduce propagation errors and uncertainties 
(Hu et al., 2013), we only input the Rrs at three bands (443 nm, 488 nm, 
and 555 nm). 

3.2. Input parameter selection 

The above input parameters were preliminarily selected based on the 
mechanism of pCO2 variation in our study area, namely, SST, CHL, Rrs 
(443), Rrs(488), Rrs(555), UISST , and pCO2,therm, and the output was 
pCO2. As discussed in the section above, the satellite-derived SSS and 
modeled xCO2 are unsuitable inputs. Here, we still used them as inputs 
to test our selection, as well as the underway SSS data (SSSin situ) that 
accompanied the underway pCO2 data, which had the best accuracy. The 
above nine parameters were divided into eight combinations as eight 
sets of inputs and tested by the output performance of the machine 
learning model (Fig. 3). The statistic values about the model perfor
mance are derived from validation dataset in each case. We also tested 
several machine learning models (see Section 3.4). For the sake of 
brevity, we only present the results of the best model, the XGBoost 
model. 

We can compare and analyse the pie chart of the relative feature 
importance (RFI) of cases 1 to 8 in Fig. 3. Colours were used to denote 
the group of parameters of mechanistic features. SST, xCO2, 
and pCO2,therm are shown in green in the pie chart and reflect the ther
modynamic characteristics and atmospheric pCO2 forcing in MeSAA- 
ML-ECS. The biological effects of seawater are represented by CHL, 
Rrs(443), Rrs(488), and Rrs(555) in orange. The blue colours represent 
the mixing effects between different water masses with different car
bonate components from UISST and SSSin situ. 

Fig. 3(a) shows the basic parameters as inputs, such as, SST, CHL, and 
Rrs (Case 1). Comparing Case 2–8 and Case 1, inducing more control 
mechanism inputs can improve the model performance. In the aspect of 

mixing effects (Case 2 and 3), the RFIs of UISST (light blue, ~20 %, Case 
2) and SSSin situ (dark blue, ~17 %, Case 3) are almost equal, indicating 
that UISST can replace SSSin situ in the XGBoost model, as shown in Fig. 3 
(b) and (c). In the control mechanism of the thermodynamic charac
teristics and atmospheric pCO2 forcing (Case 4 and 5), the RFI of 
pCO2,therm (dark green, ~22 %, Case 5) is larger than that of xCO2 (green, 
~20 %, Case 4), as compared in Fig. 3(d) and (e), indicating that 
pCO2,therm can replace xCO2. When xCO2 and pCO2,therm were added to 
the SST, CHL, Rrs(443), Rrs(488), and Rrs(555), the model performance 
with pCO2,therm (RMSE = 22 μatm and APD = 4.45 % for the validation 
dataset) as an input was better than that with xCO2 (RMSE = 22 μatm 
and APD = 4.53 % for the validation dataset) as an input. The RFIs of 
Cases 6 to 8 in Fig. 3(f~h) further demonstrate the rationality of 
substituting the input parameter pCO2,therm in this part. 

The results of Fig. 3 show that the parameters of UISST and pCO2,therm 
have good performance in our study area, and thus, we selected SST, 
CHL, Rrs(443), Rrs(488), Rrs(555), UISST, and pCO2,therm as the input 
parameters (Case 8). 

Regarding the RFI of Cases 6–8, we can understand that in our pCO2 
model, the mixing effect contributes approximately 16–28 %, the 
temperature-dependent thermodynamic effect contributes approxi
mately 21–34 %, and the biological effect combined with the other 
ocean colour effect contributes approximately 50–56 %, which is 
rational in such high productivity marginal seas. 

3.3. Machine learning model selection 

Recently, various machine learning models have been widely applied 
in geological research mainly due to their superior ability to capture the 
characteristics of geological variables and solve complicated non-linear 
problems among them (Carrión et al., 2021; Tiyasha et al., 2021; Xia 
et al., 2022; Zhang et al., 2022). In the published literature, many ma
chine learning technologies have been successfully applied to develop 
satellite-based surface pCO2 models, such as the multilayer perceptron 
neural network (MLPNN), random forest (RF), and light gradient 
boosting machine (LightGBM) models (Chen et al., 2019; Fu et al., 2020; 
Gloege et al., 2022; Joshi et al., 2022; Wang et al., 2022). In our study, 
we will test the mainstream ML models. 

Chen and Guestrin (2016) proposed an optimised distributed 
gradient-boosting machine learning model, XGBoost, based on a 
gradient-boosting decision tree (GBDT). XGBoost is a gradient-boosting 
algorithm considering more gradient-boosting information of training 
datasets with high efficiency and flexibility (Carrión et al., 2021; Qiu 
et al., 2021; Xia et al., 2022; Zhang et al., 2022) and adds a regular
isation term to the loss function to prevent overfitting. A second-order 
Taylor expansion of the loss function is conducted to approximate this 
objective function in the XGBoost model. Detailed optimisation pro
cesses of the objective function were described in Chen and Guestrin 
(2016). This study used the publicly available Scikit-Learn and XGBoost 
packages to complete the pCO2 retrieval model development process. 
Referring to previous similar studies and our multiple tests, the 
parameter setting scheme in this XGBoost model is as follows: the 
number of regression trees is 1200, the maximum depth of trees is 6, the 
learning rate is 0.05, and the weight of the L2 regularisation term is 0.01 
(Ramraj et al., 2016). 

RF is also a commonly used ML method. Both binary decision trees in 
RF and XGBoost models, including classification and regression trees, 
are usually selected as basic learning models. RF adopts the “bagging” 
method to evenly extract training samples, while XGBoost adopts the 
“boosting” method and samples according to the error rate (Chen and 
Guestrin, 2016). LightGBM is also a fast, well-distributed, and high- 
performance machine learning framework, but unlike XGBoost, 
LightGBM employs a “histogram” algorithm to speed up the training 
process by segmenting continuous feature values into discrete bins 
(Dorogush et al., 2018). Previous studies have shown that LightGBM is 
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sensitive to dataset noise due to its bias-based algorithm, which might 
lead to bad training results (Peng et al., 2022). XGBoost can more pre
cisely find data separation points and reduce the influence of extreme 
values on model stability by its “pre-sorted feature” algorithm (Smirnov 
et al., 2020). XGBoost has been proven to be more accurate than RF and 
MLPNN in recent algorithm competitions (Carrión et al., 2021; Qiu 
et al., 2021; Tiyasha et al., 2021; Xia et al., 2022; Zhang et al., 2022). 

We test the MLPNN, DT (decision tree), RF, LightGBM, and XGBoost 
with the same model inputs of SST, CHL, Rrs(443), Rrs(488), Rrs(555), 
UISST, and pCO2,therm based on the same training and validating datasets. 
In particular, the typical configuration parameters (i.e., the number of 
regression trees and a maximum depth of each tree) of the DT, RF, 
LightGBM, and XGBoost are all basically consistent in this test. The 
MLPNN model is a feed-forward neural network based on the Lev
enberg–Marquardt back-propagation algorithm (Bishop, 1995; Gross 
et al., 1999). The MLPNN comprises one input layer, three hidden layers, 
and one output layer. The number of neurons was 30, 20, and 10 for the 
three hidden layers in the MLPNN, respectively, with a tan-sigmoid 
function as the transfer function. Table S3 shows the results of each 
approach. The XGBoost model showed the best performance for the 
validation dataset, with RMSE = 20 μatm, R2 = 0.94, and APD = 4.12 %. 
The LightGBM model also showed relatively good (but slightly worse 
than XGBoost) performance (RMSD = 21 μatm, R2 = 0.93, and APD =
4.33 %), followed by RF (RMSD = 31 μatm, R2 = 0.82, and APD = 7.37 
%). The performances of MLPNN and DT were worse than that of the 
other three machine learning approaches. 

3.4. Independent validation of satellite products 

Rather than using in situ data to develop the algorithm, we use 
match-up satellite data and grid data as model inputs, which are also 
used for satellite product generation; thus, the validation of the model is 
equivalent to the final satellite product validation. As shown in Fig. 1(d) 
and (e), the training and independent validation datasets have full 
spatial coverage in the ECS and west YS over the four seasons, and fewer 
data are available in the BS; the in situ dataset is classified cruise by 
cruise to ensure independency. Fig. 4(a) and (b) show the scatter density 
plot comparison between the in situ pCO2 values and the pCO2 values 
retrieved by the XGBoost model for the training and independent vali
dation datasets. In the training dataset, the retrieved pCO2 values were 
consistent with the in situ values, with an R2 of up to 0.96, a RMSE of 14 
μatm, and an APD of <3.11 %. Fig. 4(b) shows that the R2, RMSE, and 
APD of the independent validation dataset were 0.94, 20 μatm, and 4.12 
%, respectively, which are slightly lower than those of the training 
dataset but still within a reasonable error range. In addition, the dif
ferences in statistical results (R2, RMSE, and APD) between the training 
and independent validation datasets are relatively small, indicating that 
the established XGBoost model can learn the training dataset accurately 
and has strong stability and robustness. 

Fig. 4(c~j) display the in situ and retrieved pCO2 in August 2009 and 
May 2012. The in situ pCO2 of these two cruises are from the independent 
validation dataset. Comparisons for the rest of the cruises/legs can be 
found in Figs. S1~S41 in the Supporting information. The high consis
tency of pCO2 values indicates that our pCO2 retrieval model has good 
accuracy, high applicability, and stability in the whole region. More
over, MeSAA-ML-ECS can retrieve pCO2 in high-heterogeneity water 
bodies. The spatial variations in the satellite pCO2 match perfectly with 
those of the in situ pCO2 (Fig. 4c), featuring evident ascending gradients 
(from ~200 to ~300 μatm) from the Changjiang estuary to the ECS shelf 
(Fig. 4e). The gradient change (from ~450 to ~350 μatm) in the 
seawater pCO2 from the Yellow River estuary to the BS (Fig. 4e) is also 
well reconstructed by the satellite data (Fig. 4f and g). Compared with 
the MeSAA algorithm (Bai et al., 2015), the current MeSAA-ML-ECS can 

very well describe the gradient changes in the seawater pCO2 in the 
Changjiang estuary-ECS system. The current MeSAA-ML-ECS algorithm 
can better characterise more seawater pCO2 details and produces good 
results in some regions where other algorithms cannot characterise the 
whole BS, YS, and ECS well. 

4. Results and discussion 

4.1. Seasonal variation in seawater pCO2 

The monthly mean seawater pCO2 during 2003–2019 in the entire 
study area is shown in Fig. 5. Seawater pCO2 in the study area ranges 
from 270 to over 600 μatm and has a pattern of high values in summer 
and fall and low values in winter in most of the area. In terms of the 
climatological mean pCO2 value, the BS has the highest value (398 
μatm), followed by the YS (364 μatm), and the ECS has the lowest value 
(347 μatm). 

The BS, an enclosed marginal sea with shallow bathymetry, has a 
large seasonal pCO2 variation with a range of ~250 μatm. In the winter 
and early spring (March and April), CO2 in almost the entire area of the 
BS is undersaturated with pCO2 values of <350 μatm associated with low 
SST. After that, the pCO2 begins to rise in the bays and alongshore until 
September, accompanied by the increase of SST, reaching a value of 
500–700 μatm resulting from terrestrial runoff with high pCO2 as well as 
net community respiration induced by frequent algal blooms in spring 
and summer (Song et al., 2016a; Zhai et al., 2019; Zheng et al., 2021). 

The YS is characterized by spatial heterogeneity with complicated 
seasonal variations. In the summer and early fall months, seawater CO2 
in the central YS is slightly oversaturated with a pCO2 value of 400–450 
μatm. In comparison, highly oversaturated CO2 with pCO2 values that 
reach over 500 μatm are found at the Subei Shallow. In October, with the 
decreased SST and possible autumn bloom, the pCO2 values in the 
central area become undersaturated, while those in the coastal zones 
completely switch in December, with pCO2 values continuing to 
decrease until they become lower than those in the central area. 
Notably, in the Yellow Sea Warm Current-influenced area in the north 
YS (Xue et al., 2012), a high pCO2 (~450 μatm) water mass is observed 
in January, associated with relatively high SST values of ~7 ◦C. The 
extreme turbidity in the Subei Shallow may lead to the low quality of 
ocean colour data, resulting in uncertainty of the seawater pCO2 
retrieval, and meanwhile, the in situ cruises rarely cover this area. Thus, 
the extremely high pCO2 in the Subei Shallow during summertime needs 
to be further verified by more observations. 

The ECS is a large-river-dominated marginal sea in which the sea
sonal variation in pCO2 is relatively small, within 150 μatm, except for 
coasts along Zhejiang and Fujian Provinces. The seasonal patterns of 
pCO2 are significantly different on the outside and inside of the conti
nental shelf. The pCO2 outside the continental shelf is relatively homo
geneous and basically controlled by SST, presenting a seasonal pattern 
of high values in summer and fall and low values in winter and spring. In 
comparison, the pCO2 on the ECS shelf exhibits substantial spatial var
iations (Fig. 5). In winter and early spring, the pCO2 on the ECS shelf is 
generally undersaturated, with pCO2 of ~300 μatm on the outer shelf 
and ~380 μatm in the coastal zones and outer Changjiang estuary where 
coastal currents may carry terrestrial waters rich in CO2 southwards. In 
late spring and summer, pCO2 in the coastal zones and Changjiang es
tuary increased rapidly, reaching over 700 μatm in August. In the 
meantime, the pCO2 on the outer shelf also increased to 400 μatm in 
August. In comparison, that in the outer Changjiang estuary, where 
dominated by the river plume, significantly decreased to a minimum 
value of under 270 μatm in June and August. In the fall, water with 
higher pCO2 levels spreads offshore, and then the pCO2 on the whole ECS 
shelf becomes homogeneous in November and December, with a value 
of ~375 μatm. 
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Fig. 4. Satellite results and validation. 
Scatter density plot comparison be
tween the in situ pCO2 values and the 
pCO2 values retrieved by the XGBoost 
model for the (a) training and (b) 
validation datasets. (c) and (g) Distri
butions of underway in situ pCO2 in 
August 2009 and May 2012, respec
tively, with the corresponding 
satellite-derived pCO2 along cruise in 
(d) and (h). (e) and (i) Satellite- 
derived pCO2 in August 2009 and 
May 2012, respectively. (f) and (j) 
Comparisons between the satellite re
sults and the in situ underway mea
surements along the two cruise track. 
These results are from two samples, 
and the comparisons for the rest of the 
cruises/legs can be found in 
Figs. S1~S41 in the Supporting 
information.   
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4.2. Seasonal variation in air-sea CO2 flux 

This study reports what we believe to be the most comprehensive 
dataset of the air-sea CO2 fluxes, based on satellite data with complete 
coverage of the BS, YS, and ECS, at a monthly temporal resolution and a 
1 km spatial resolution over 17 years. For comparison with previous 
studies in the air-sea CO2 flux estimation, we employ the gas transfer 
velocity algorithms from Sweeney et al. (2007) and the C2 coefficient for 
the gas transfer relationship adopted by Guo et al. (2015). The multiyear 
monthly mean air-sea CO2 fluxes in the entire study area are shown in 
Fig. 6. 

The BS is near neutralized with a mean air-sea CO2 flux density of 
− 0.48 ± 5.20 mmol/m2/d. The seasonal variation range of air-sea CO2 
flux density reaches 30 mmol/m2/d due to large pCO2 fluctuations. The 

BS acts as an evident CO2 sink in typical winter and early spring months 
(with maximum CO2 influx rates of 12 mmol/m2/d in January) but as an 
intense CO2 source in summer to fall, especially in September and 
October (with CO2 efflux rates reaching 18 mmol/m2/d). In late spring 
(May) and early winter (December), the BS shows transitional features 
between typical CO2 influx and CO2 efflux. 

The YS serves as a CO2 sink at the annual scale, with an air-sea CO2 
flux density of − 2.47 ± 2.74 mmol/m2/d. However, as a whole, the YS 
tends to release CO2 into the atmosphere from July to September and 
absorb CO2 in the remaining months of the year. Remarkably, the Subei 
Shallow acts as a very intense CO2 source in August and September, with 
an efflux reaching 20 mmol/m2/d. The other notable phenomenon is 
that the centre of the south YS absorbs CO2 at an immense flux of over 
15 mmol/m2/d, resulting from the co-effect of the low pCO2 and strong 

Fig. 5. Distribution of monthly average seawater pCO2 from 2003 to 2019.  
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wind in December. 
The CO2 influx rate in the ECS is 4.10 ± 3.61 mmol/m2/d. Seasonal 

patterns of air-sea CO2 flux in different areas in the ECS vary. The area 
outside of the ECS shelf absorbs CO2 in winter and early spring (March), 
with an influx rate ranging from 8 to 13 mmol/m2/d, releases CO2 
(reaching 5 mmol/m2/d) in summer and shows transitional features 
between typical CO2 influx and CO2 efflux in the remaining months. The 
outer ECS shelf acts as a very intense CO2 sink in winter and early spring, 
with a maximum influx rate of over 20 mmol/m2/d (with the peak 
occurring in February), and it remains a weak CO2 sink in the other 
seasons. The Changjiang plume area acts as a weak sink with an influx of 
~5 mmol/m2/d throughout the year except in the fall months, resulting 
from the strong vertical mixing of the subsurface CO2-enriched water 
and spread of oversaturated water from the Subei Shallow. The coastal 
zone and Changjiang estuary are intense sources of atmospheric CO2 in 

summer and fall and weak sinks in winter and spring. Peak efflux rates 
reaching over 20 mmol/m2/d in the coastal zone and Changjiang estu
ary are observed in August and October, respectively. 

Annually, regional average of these CO2 influx rates is estimated at 
− 3.42 ± 3.36 mmol/m2/d. Although the three seas display different 
seasonal variations in air–sea CO2 fluxes, they all serve as sinks of at
mospheric CO2 annually. The annual CO2 sinks of the ECS (with an area 
of 8.4 × 105 km2), YS (with an area of 3.61 × 105 km2), and BS (with an 
area of 7.65 × 104 km2) are 14.80 ± 3.09, 3.85 ± 0.68, and 0.16 ± 0.26 
Tg C, respectively. Combining these three seas together (accounting for 
an area of 1.27 × 106 km2), the entire domain absorbs an annual amount 
of 18.81 ± 3.81 Tg C and a cumulative amount of 319.78 Tg C during 
2003–2019 from the atmosphere. Liu et al. (2018) reported that the 
area-integrated CO2 flux in three seas are − 23.3 ± 13.5, − 1.0 ± 0.3, and 
0.2 ± 0.1 Tg C/yr, respectively, based on the synthesised estimate from 

Fig. 6. Distribution of monthly average air-sea CO2 flux from 2003 to 2019.  
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in situ data. The difference in values may be caused by the difference in 
the spatial and temporal span of the statistics. 

Generally, the whole study area serves as a sink of atmospheric CO2, 
and CO2 influx in the ECS is much more intense than the YS and the BS. 
Owing to high productivity and strong marine dynamic processes, the 
ECS surface has considerable CO2 uptake capacity and can move them 
from the shallow coastal sea to an adjacent deep ocean via a continental 
shelf pump (Tsunogai et al., 1999; Zhai and Dai, 2009; Guo et al., 2015). 
The phytoplankton production in the BS and YS is also at a high level, 
and the SST is lower than that in the ECS; however, the limited water 
exchange in the BS and YS makes the accumulated carbon difficult to be 
removed via transportation and other mechanisms (Xue et al., 2012; 
Wang and Zhai, 2021). Besides, the shallow bathymetry and vertical 
mixing of water columns enable the accumulated carbon in the sub
surface layer to be released back into the atmosphere (Wang and Zhai, 
2021). Hence the CO2 absorption in the BS and YS was limited. There are 

basic understandings of the carbon cycle process in the ECS and YS (Guo 
et al., 2015; Zhai and Dai, 2009; Tseng et al., 2011; Wang and Zhai, 
2021), but still room to achieve a clear understanding of the deep 
mechanism. The comprehensive coverage and high-resolution data 
produced in this study can provide a new perspective for in-depth 
mechanism research. 

4.3. Comparison with previous air-sea CO2 flux estimates 

As remote sensing data has better spatial resolution and coverage, as 
well as temporal continuity, it can provide more information on spatial 
and temporal variability. In this section, we compared our estimation of 
air-sea CO2 flux with typical observations in the same time period and 
region to further understand the impact of temporal and spatial 
coverage on the CO2 flux estimation. Table 1 shows the comparisons of 
the CO2 fluxes estimated in this study with previous reports in the BS, 

Table 1 
Comparison of air–sea CO2 fluxes on the Bohai Sea, Yellow Sea, and East China Sea shelf.  

References Study seasons Sampling times Flux (mmol/m2/d) Domain 

Reference (number of cruises) This study 

SOA (2013) Spring 2011–2012 − 0.2 − 2.37 Bohai Sea 
Summer 0.08 0.87 
Fall 3.9 4.23 
Winter − 1.9 − 5.33 

Xu et al. (2016)a Spring Mar 2011 & 2013 − 14.2 ± 5.0 − 13.93 North Yellow Sea (38◦40′N, 122◦10′E) 
Apr 2011 & 2012 − 7.7 ± 0.6 − 6.04 
May 2011 & 2013 − 2.6 ± 1.5 − 4.92 

Summer Jun 2011 & 2012 − 1.2 ± 1.7 − 3.31 
Jul 2011 & 2013 0.0 ± 0.9 1.32 
Aug 2011 & 2012 − 0.5 ± 0.3 0.34 

Fall Sept 2011 & 2013 − 3.6 ± 1.2 1.46 
Oct 2011 & 2012 − 1.2 ± 0.3 − 1.51 
Nov 2011 & 2013 − 5.0 ± 4.3 − 0.2 

Winter Dec 2011 & 2012 8.4 ± 0.4 7.83 
Feb-12 − 3.1 ± 0.8 − 10.65 

Choi et al. (2019)c Spring May 2017 − 7.5 − 2 Southeast Yellow Sea (34–37◦N, 124–126◦E) 
Summer Jul 2014 − 1.9 − 2.53 
Fall Nov 2015 − 2.3 − 4.25 
Winter Feb 2015 0.6 − 5.67 

Guo et al. (2015)b Spring 2006–2011 Average − 10.7 ± 8.2 (6) − 7.84 ± 1.46 ECS Domain I 
(28.5–33◦N, 122–126◦E) Summer − 6.5 ± 10.7 (5) − 3.98 ± 1.94 

Fall 2.2 ± 6.8 (4) − 1.94 ± 1.82 
Winter − 9.8 ± 4.7 (6) − 8.43 ± 3.31 
Annual − 6.2 ± 9.1 (21) − 5.55 ± 3.49 
Spring 2006–2011 Average − 10.7 ± 3.5 (5) − 6.93 ± 2.13 ECS Domain II 

(25–28.5◦N, 119.33–123.5◦E) Summer − 2.4 ± 3.3 (5) 0.76 ± 1.81 
Fall 0.7 ± 4.1 (4) − 0.69 ± 2.24 
Winter − 8.9 ± 1.4 (5) − 8.90 ± 3.78 
Annual − 5.3 ± 3.7 (19) − 3.94 ± 4.82 
Spring 2006–2011 Average − 17.8 ± 3.1 (1) − 10.87 ± 4.57 ECS Domain III 

(28.5–33◦N, 126–128◦E) Summer − 4.6 ± 4.0 (2) − 1.50 ± 1.77 
Fall − 3.7 ± 5.1 (1) − 2.41 ± 2.45 
Winter − 10.8 ± 1.4 (2) − 13.51 ± 4.24 
Annual − 9.2 ± 4.2 (6) − 7.16 ± 6.34 
Spring 2006–2011 Average − 11.2 ± 2.2 (5) − 9.20 ± 4.37 ECS Domain IV 

(27–28.5◦N, 126–128◦E) Summer 1.0 ± 1.5 (5) 0.98 ± 2.30 
Fall − 9.3 ± 0.5 (2) − 3.69 ± 4.29 
Winter − 10.6 ± 1.3 (4) − 11.79 ± 3.41 
Annual − 7.5 ± 1.7 (16) − 6.05 ± 6.22 
Spring 2006–2011 Average − 6.8 ± 4.3 (5) − 6.34 ± 3.50 ECS Domain V 

(25–27◦N, 120–125.42◦E) Summer 1.8 ± 2.8 (4) 0.77 ± 1.02 
Fall − 8.4 ± 2.0 (1) − 2.29 ± 3.12 
Winter − 10.0 ± 2.5 (3) − 10.96 ± 3.80 
Annual − 5.9 ± 3.4 (13) − 4.86 ± 5.52 
Spring 2006–2011 Average − 11.7 ± 2.5 (7) − 8.44 ± 2.65 ECS Shelf 
Summer − 3.5 ± 4.6 (5) − 1.44 ± 1.39 
Fall − 2.3 ± 3.1 (5) − 2.28 ± 1.72 
Winter − 10.0 ± 2.0 (7) − 10.71 ± 2.51 
Annual − 6.9 ± 4.0 (24) − 5.72 ± 4.49  

a Use the equation of Wanninkhof et al. (2009) to obtain the gas transfer velocity from wind speed. 
b Use the equation of Sweeney et al. (2007) to obtain the gas transfer velocity from wind speed. 
c Use the equation of Wanninkhof (2014) to obtain the gas transfer velocity from wind speed. 
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YS, and on the ECS shelf. 
In the BS, the study of air-sea CO2 fluxes has been very limited. Four 

surveys conducted by the State Oceanic Administration of China (SOA, 
2013) in the BS during 2011–2012 displayed the gridded difference 
between atmospheric and seawater pCO2 and the regional integrated air- 
sea CO2 flux and showed that the BS is a source of atmospheric CO2 in 
fall, a sink in winter and spring, and at near-equilibrium with the at
mosphere in summer. Our results in 2011–2012 highly agree with that 
report regarding the source and sink diagnoses and air-sea pCO2 dif
ferences but disagree regarding the value of the CO2 flux density 
(Table 1). 

Xu et al. (2016) reported the complete monthly variation in air-sea 
CO2 flux at the A4HDYD station (38◦40′N, 122◦10′E) located in the 
North YS based on 21 field surveys conducted from March 2011 to 
November 2013, providing a valuable baseline for understanding the 
temporal variability in air-sea CO2 fluxes. The air-sea CO2 fluxes we 
estimated were highly consistent with Xu et al. (2016), especially in 
spring (APD of <17.5 %). Our results suggested that the area around the 
A4HDYD station was a weak source, with a mean efflux rate of 1.04 
mmol/m2/d from July to September, which differed from the weak sink 
reported by Xu et al. (2016). However, the CO2 flux density observations 
based on surveys in July 2006 (Xue et al., 2012), July 2016, and 
September 2017 (Wang and Zhai, 2021) in the North YS (37–39◦N, 
121–124◦E) were 3.4, 7.2, and 3.7 mmol/m2/d, respectively, illustrating 
that the North YS was very likely to be a source of atmospheric CO2, 
which supports our estimation. Choi et al. (2019) reported the seasonal 
air-sea CO2 fluxes in the south-eastern YS drawing from four surveys and 
identified this region as a sink of atmospheric CO2 (− 2.8 mmol C/m2/d). 
Our result indicates that the corresponding area absorbed atmospheric 
CO2 at a rate of 3.61 mmol C/m2/d but with some differences from Choi 
et al. (2019) during winter and spring. Although there is a lack of in situ 
data on the eastern YS near the Korean Peninsula, and the uncertainty of 
retrieved pCO2 and CO2 flux cannot be quantified, we believe that 
remote sensing data has reliability here due to the similarity in the water 
mass characteristics (Kim et al., 1991) and control mechanism of 
seawater pCO2 (Choi et al., 2019) between the eastern YS and the rest of 
the study area which was well captured by MeSAA-ML. 

In the ECS, Guo et al. (2015) reported a comprehensive dataset of 
surface seawater pCO2 and the associated air-sea CO2 fluxes on the 
continental shelf based on 24 surveys from 2006 to 2011. Our results 
and the air-sea CO2 fluxes observed by Guo et al. (2015) based on the 
multiple cruises highly agreed at the scale of the entire ECS shelf 
(Table 1). Regarding the comparison associated with the sub-domains 
and seasons, the agreement could be summarised as directly propor
tional to the number of observations/cruises. In sea areas with a high 
observation coverage and frequency, e.g., Domains I (lower estuary and 
inner shelf influenced by river plume) and II (inner shelf dominated by 
turbid coastal waters) in Table 1, remote sensing data have been proven 
to estimate the air-sea CO2 flux accurately. On the other hand, in do
mains with limited in situ observations, such as the outer shelf of the 
ECS, significant differences exist between retrieved and observed data. 

Multiple factors may contribute to the differences between retrieved 
and observation-based air-sea CO2 flux estimation. Firstly, there is a 
difference in spatiotemporal resolution and representativeness. The SOA 
cruises conducted during winter, spring, and fall did not cover the 
Liaodong Bay, which has a considerable area located in the northeast BS. 
Xu et al. (2016) conducted fixed-point measurements at a specific 
location with 25-hour observations taken during each survey to repre
sent data for that month. Guo et al. (2015) took limited cruises to 
calculate averaged air-sea CO2 fluxes during 2006–2011 in Mid- and 
outer shelf as Domain III, IV, and V (with Domain III characterized by 
visible river plume signals in flood seasons and Domain V characterized 
by upwelling northern Taiwan) of the ECS for some seasons, which may 
somewhat lack representativeness. However, retrieved data can offer 
more representative and statistically reliable estimates by providing 
higher observation frequency (monthly) and full spatial coverage. 

Moreover, the difference may have been contributed by the different 
gas-transfer velocities with wind speed algorithms adopted in the air-sea 
CO2 flux calculation. Xu et al. (2016) used the equation of Wanninkhof 
et al. (2009), which may induce 11 % lower than the Sweeney et al. 
(2007) that we adopted in gas-transfer velocity (Tseng et al., 2014), and 
Choi et al. (2019) employed the equation of Wanninkhof (2014). 
Additionally, we used C2 (~ 1.2) correction in the air-sea CO2 flux 
calculation, which may induce ~13 % higher fluxes. 

4.4. Long-term trends in seawater pCO2 and air-sea CO2 fluxes 

The inter-annual trends (2003–2019) in seawater and atmospheric 
pCO2, as well as air-sea CO2 fluxes, are shown in Fig. 7. The carbon sink 
of the whole study area increased by 85 % from 2003 to 2019, and the 
total carbon absorption rose from 13 to 24 Tg C per year (Fig. 7f). Lar
uelle et al. (2018) also reported that the uptake of atmospheric CO2 in 
global shelves had enhanced as pCO2 in shelf waters lagged the rise in 
atmospheric CO2, and some might have switched from a source to a sink 
during the last century, which employed the SOCAT database spanning 
over 35 years. The Subei Shallow, Changjiang estuary, and areas very 
close to the coastal line were not involved in the trend analysis because 
of the poor data coverage (there were 204 months of data from 2003 to 
2019 generated in this study, but there were fewer than 102 months of 
available data for these regions). 

The trends in seawater pCO2 in the BS during 2003–2019 were rarely 
significant (Fig. 7a), while the atmospheric pCO2 increased continuously 
at a mean rate of 2.17 μatm/yr in the whole domain (Fig. 7b and d). 
Although facing the continuous increase in atmospheric CO2 and SST 
(Figs. 7b and S42b), the lack of substantial change in pCO2 in the BS may 
be attributed to increasing biomass and bloom intensity that reported by 
He et al. (2013). The air-sea CO2 flux in the BS did not present a sta
tistically significant trend as a whole owing to large seasonal variation 
(ranging from − 20 to 20 mmol/m2/d). However, the annually- 
integrated CO2 flux in the BS switched from being a CO2 source of 0.2 
Tg C/yr before 2006 to a sink of − 0.3 Tg C/yr after 2008 (Fig. 7j). 

For the whole YS, the increasing rate of seawater pCO2 (1.74 μatm/ 
yr) is close to that of atmospheric pCO2 (2.18 μatm/yr, Fig. 7e). Seawater 
pCO2 in the near-shore area of the eastern YS and the edge of the Subei 
Shallow increased at an annual rate of 3–4 μatm/yr, and the rising rate 
of pCO2 in most of the central YS area was approximately 1.5–2 μatm/yr 
(Fig. 7a). Accordingly, the air-sea CO2 flux density increased slightly 
(did not pass the significance test) during the study period (Fig. 7h), but 
the annually-integrated CO2 influx escalated from 2.5 Tg C in 2003 to 
4.5 Tg C in 2019 (at a rate of 0.094 Tg C per year, p < 0.002, Fig. 7j). 

In the ECS, the overall rising rate of seawater pCO2 was 0.78 μatm/ 
yr, and that of atmospheric pCO2 was 2.22 μatm/yr (Fig. 7f). The 
seawater pCO2 did not show a significant upwards trend on the ECS 
continental shelf, which accounts for most of the area, while that in the 
Changjiang plume area and off the shelf increased at 3–4 and ~1 μatm/ 
yr, respectively (Fig. 7a). Significant CHL increases (Fig. S43a) maybe 
the key factor that prevented pCO2 rises on the ECS continental shelf. 
Tsao et al. (2023) investigated nine years of time-series data sampled at 
the stations on the “PN-line” (126◦E, 29◦N-128.3◦E, 27.5◦N) within the 
mainstream Kuroshio Current during 2010–2018 and found trends of 
surface seawater pCO2 was 3.70 ± 0.57 μatm/yr. On a two-decade scale, 
pCO2 may not achieve such a rapid increase. Laruelle et al. (2018) re
ported that seawater pCO2 at the region to the northeast of the “PN-line” 
(130◦E, 30◦N) is increasing but at a rate that is moderately slower than 
that of atmospheric pCO2 (~1–1.5 μatm/yr) during 1980–2015. Since 
the seawater pCO2 increase was much lower than the atmospheric pCO2, 
the CO2 flux density showed significant decreasing trends (more nega
tive, stronger sink) in the ECS except for the Changjiang plumes and the 
north area beyond the continental shelf (Fig. 7c). The mean air-sea CO2 
flux density of the whole ECS changed gradually from − 5 mmol/m2/d in 
2003 to − 8.5 mmol/m2/d in 2019 (Fig. 7i), with an average annual 
trend of − 0.2 mmol/m2/d (p < 0.01). The sink enhancing trend on the 
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Fig. 7. Spatial distribution of trends during 2013–2019 in a) seawater pCO2, b) atmospheric pCO2, and c) air-sea CO2 flux; only pixels with significant trends are 
coloured on the map, and the bright grey colour represents insufficient data for estimating a trend (i.e., the number of valid data collected in the statistical period 
(204 months) does not reach 50 %). d)-f) Long-term series of seawater and atmospheric pCO2 in the Bohai Sea, Yellow Sea, and East China Sea. g)-i) Long-term series 
of air-sea CO2 flux density in the Bohai Sea, Yellow Sea, and East China Sea. Dashed lines are linear fitting curves. j) Annual area-integrated air-sea CO2 flux in 
2003–2019. The inset plot shows the Bohai Sea with an enlarged coordinate axis. 
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continental shelf south of 30◦N could reach 0.3–0.4 mmol/m2/d per 
year (Fig. 7c). The annual integrated CO2 absorption of the ECS 
increased from 10 Tg C in 2003 to 19 Tg C in 2019 (Fig. 7j), with an 
average yearly trend of 0.73 Tg C (p < 0.01). 

5. Conclusion and implications 

This study established a MeSAA-Machine Learning (MeSAA-ML-ECS) 
algorithm innovatively combining the parameterized mechanism and 
machine learning model, XGBoost, based on a large amount of in situ 
pCO2 measurements and remote sensing parameters in the BS, YS, and 
ECS. Satellite-derived monthly seawater pCO2 and air-sea CO2 flux 
datasets over 17 years (2003–2009) were retrieved for the first time. The 
results showed that the pCO2 product had high accuracy, with an RMSE 
of 19.6 μatm and an APD of 4.12 % for the independent validation set. 
Based on this dataset, we obtained the spatiotemporal distributions and 
long-term changes of surface water pCO2 and air-sea CO2 fluxes in the 
BS, YS, and ECS. In particular, it makes up for the relative lack of 
research and observations in the BS, the eastern YS, and the outer shelf 
of the ECS. 

Our pCO2 and air-sea CO2 flux data have been shared on Zenodo (doi: 
https://doi.org/10.5281/zenodo.7701112). Although only initial ana
lyses were conducted in this study, our dataset has the potential to 
capture variations in the pCO2 induced by mesoscale processes such as 
typhoons and eddies owing to its high resolution. Hopefully, our work 
can inspire and encourage the community and researchers to use this 
dataset for further studies. 

The MeSAA-ML-ECS model represents a development trend to 
retrieve biogeochemical parameters in complicated marginal seas. For 
now, we introduced the semi-analytic parameter pCO2,therm and UISST to 
reflect the thermodynamics and atmospheric forcing in the air-sea 
equilibrium state and complicated water mass mixing effects, respec
tively. We will continue to develop new versions of these pCO2 and air- 
sea CO2 flux datasets, introducing more analytical or semi-analytic pa
rameters based on the MeSAA algorithm and handing over parameter
isations to machine learning methods to make the most of the potential 
and the advantages of machine learning, thus upgrading simple data- 
driven machine learning algorithms to a more stable and interpreta
tional AI version 2.0. 
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