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Absorption coefficient and chlorophyll concentration (Chl) are important optical and biological properties 
of the aquatic environment, which can be estimated from the spectrum of water color, commonly measured 
by the remote sensing reflectance (Rrs). In this study, we extended the band-difference scheme for Chl of 
oceanic waters developed a decade ago to the estimation of absorption coefficient at 440 nm (a(440)). As 
demonstrated earlier for the estimation of Chl, a(440) product from the band difference of Rrs showed much 
smoother spatial pattern than that from a semianalytical algorithm. More importantly, it is found that the 
upper limit of using band difference of Rrs can be extended from −0.0005 sr−1 (the upper limit set a decade 
ago for the estimation of Chl) to ~0.0005 sr−1 (corresponding to a(440) ~0.08 m−1), which covers ~91% of 
the global ocean. We further converted a(440) to Chl based on the “Case-1” water assumption and found 
that the standard Chl product of oligotrophic waters (Chl ~ 0.1 mg/m3) distributed by NASA is generally 
~20% higher than Chl converted from a(440), possibly a result of different datasets used to determine 
the algorithm coefficients. These results not only extended the application of the band-difference scheme 
for more oceanic waters but also highlighted the need of more accurate field measurements of Chl and Rrs 
in oligotrophic oceans in order to minimize the discrepancies observed in satellite Chl products derived 
using the same algorithm concept but different empirical approaches.

Introduction

The absorption coefficient of aquatic environments is one of 
the most important environmental properties. It not only plays 
a key role in determining the appearance of water/ocean color 
[1] but also is a key property in regulating the attenuation of 
solar radiation through the water column from water surface 
[2,3], heating of the water column [4], as well as converting 
inorganic carbon to organic materials by phytoplankton 
through photosynthesis [5]. In addition, the estimation of chlo-
rophyll concentration (Chl, in mg/m3) in the surface layer via 
ocean color remote sensing is also through the relationship, 
directly or indirectly, between the absorption coefficient and 
chlorophyll concentration [6,7]. It is thus no surprising to see 
that the inversion of absorption coefficient and other inherent 
optical properties (IOPs) from water color is an important 
aspect of ocean optics and ocean color remote sensing.

In the past decades, empirical and semianalytical algorithms 
have been developed for the estimation of absorption coeffi-
cient (in the visible domain) from remote sensing reflectance 
(Rrs, in sr−1), which is the ratio of water-leaving radiance to 

downwelling irradiance just above the surface [8]. These 
algorithms in general performed very well for error-free Rrs. 
However, as highlighted by Hu et al. [9,10], due to issues related 
to sensor’s sensitivity, calibration to atmosphere correction, Rrs 
from ocean color satellites always contains various levels of 
uncertainties or errors. In particular, Rrs around 550 nm 
(Rrs(55x)) of oceanic waters is very small, thus containing 
relatively large uncertainties from those processes. Because 
Rrs(55x) of oceanic waters plays a key role in the algorithms 
based on the blue–green ratio of Rrs (represented as BGRRrs in 
the following) [1,11] or in the semianalytical algorithms (e.g., 
the quasi-analytical algorithm [QAA] and the generalized 
inherent optical properties [GIOP]) [12,13], these uncertain-
ties are propagated into the estimated Chl or IOPs. Such uncer-
tainties can be visualized in the Chl or IOP imagery speckle or 
pepper noises. In realizing the spectrally covarying nature of 
the uncertainties (errors) in satellite produced Rrs (due mainly 
to the imperfect atmospheric correction or other corrections), 
Hu et al. [9] proposed an innovative algorithm for the estima-
tion of Chl for oceanic waters, which uses a 3-band or multi-
band difference of Rrs (represented as MBDRrs in the following) 
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to minimize the impact of spectrally covarying uncertainties 
in these bands, which substantially improved Chl image prod-
ucts in terms of reduced speckle noise and improved accuracy 
and cross-sensor consistency. After extensive evaluations, 
National Aeronautics and Space Administration (NASA), 
National Oceanic and Atmospheric Administration, and European 
Space Agency adopted this approach for the generation of Chl 
products for the various ocean color missions for Chl less than 
~0.2 mg/m3. Similarly, based on the same concept of band dif-
ference to minimize the impact of spectrally covarying errors 
from atmospheric correction, new band-difference algorithms 
have been proposed for the estimation of particulate inorganic 
carbon [14] and particulate organic carbon [15].

Here, using SeaWiFS data as an example, we extend this 
concept for the generation of absorption coefficient at 440 nm 
(a(440), in m−1) of oceanic waters from the error-bearing Rrs, 
in view of that the peak absorption by chlorophyll is centered 
at this band. Further, the estimated a(440) is converted to Chl 
following the “Case-1” concept of oceanic waters. More impor-
tantly, in addition to the smoother image product of a(440) 
from SeaWiFS by such a scheme, it appears that the upper limit 
of the a(440)-derived Chl could be extended to ~0.8 mg/m3, 
which would then significantly expand the global applicability 
of Chl product from the band difference approach, a scheme 
that is much more tolerant to noises in the Rrs product.

Materials and Methods
Following Hu et al. [9] and for the SeaWiFS bands, the absorp-
tion coefficient at 440 nm, a(440), is expressed as

Here, MBDRrs440 is the multiband difference of Rrs aimed 
for a(440), which is the same formulation as the color index 
defined by Hu et al. [9] but used for a different purpose. F rep-
resents a function of MBDRrs440, which is determined by the 
nature and characteristics between MBDRrs440 and a(440). Note 
that due to the small difference between a(443) and a(440), 
a(440) in this study represents values of absorption coefficient 
at 440 or 443 nm.

For an empirical algorithm represented by Eq. 1 to work 
well, as all empirical algorithms, a high-quality and inclusive 
dataset is the key. To meet this requirement, the dataset having 
concurrent measurements of the diffuse attenuation coefficient 
(Kd) and Rrs compiled by Lin et al. [16] were utilized, where 
absorption coefficients were further analytically derived from 
the combination of Kd and Rrs. Compared to the absorption 
coefficients determined from water samples or from hyper-
spectral absorption and attenuation meters (WET Labs Inc., 
USA), the derived absorption coefficients from Kd and Rrs have 
much higher fidelity [16]. Further, this IOP dataset was aug-
mented with measurements from the Biogeochemistry and 
Optics South Pacific Experiment (BIOSOPE) cruise [17], which 
was taken in the South Pacific Gyre covering the clearest natural 
waters. While the Lin dataset covered oceanic to coastal waters, 
the addition of BIOSOPE data is critical for the MBDRrs-based 
algorithm as such a scheme works the best for oligotrophic 
waters. For consistency with the Lin dataset, the absorption 

coefficients of the BIOSOPE dataset were also derived from a 
combination of the diffuse attenuation coefficient (Kd) and Rrs 
following the approach described by Lin et al. [16]. Figure 1 
shows the distributions of a(440) of this dataset (termed as 
a(440)Kd), where a(440)Kd varied in a range of ~0.01 to 2.0 m−1. 
There are nearly 700 points having a(440)Kd < 0.1 m−1, corre-
sponding to Chl ~1.0 mg/m3 following Morel and Maritorena [18].

To check the quality of this dataset, the total absorption 
coefficient was further inverted from Rrs following QAA 
(termed as a(440)QAA) [12], with Fig. 2 showing a comparison 
of a(440) from the two independent determinations. For the 
wide range of a(440), the coefficient of determination (R2) is 
0.98 (N = 1,161), with a slope as 0.96, negligible intercept, and 
an average of unbiased absolute relative difference of 12.8%. 
These measures suggest that this Rrs(λ) and a(440) matchup 
dataset has an excellent fidelity.

Results and Discussion

A) Empirical algorithm for the absorption coefficient
Figure 3 shows the relationship between MBDRrs440 and 
a(440)Kd&a(440)QAA. It is found that for MBDRrs440 < ~0.0005 sr−1, 
a tight dependence emerged between MBDRrs440 and a(440). 
This upper limit of 0.0005 sr−1 is a significant extension of that 
determined by Hu et al. [9] for the estimation of Chl, where the 
upper limit was set as −0.0005 sr−1. The extension, at least for 
this dataset, indicates that band difference of Rrs could be applied 
for much wider range of waters.

Further, Fig. 3 suggests that log(a(440)) varies nonlinearly 
with MBDRrs440; we thus used the following formula to empir-
ically estimate a(440) from MBDRrs440,

The model coefficients (for SeaWiFS bands), −2.21, 1.01, 
and 228.82, were obtained through least-square fitting against 
a(440)QAA for MBDRrs440 up to 0.0005 sr−1, as a(440)QAA repre-
senting an average dependence between a(440) and MBDRrs440 
for this dataset. Figure 4 compares Eq. 2 modeled a(440) (termed 
as a(440)MBD) vs known a(440), where there is an excellent agree-
ment for a(440) up to ~0.08 m−1. For a(440)MBD < 0.08 m−1, the 
mean unbiased absolute relative difference (MUARD) is 4.6% 
between a(440)MBD and a(440)QAA, with R2 as 0.98; or MUARD 

(1A)

(1B)a(440) = F
(

MBDRrs440

)

(2)a(440) = 10−2.21+1.01 Exp(228.82×MBDRrs440)
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Fig. 1. Range and distribution of a(440) used in this study.

D
ow

nloaded from
 https://spj.science.org on A

ugust 15, 2023

https://doi.org/10.34133/remotesensing.0063


Lee et al. 2023 | https://doi.org/10.34133/remotesensing.0063 3

as 11.0% and R2 as 0.90 between a(440)MBD and a(440)Kd. These 
statistical measures indicate a robust relationship between a(440) 
and MBDRrs440 for these oceanic waters. Here, MUARD is calcu-
lated as following,

with xi and yi representing the two independent sets of a(440) 
under evaluation.

The band-difference algorithm is suitable only for olig-
otrophic waters, where the upper limit of MBDRrs440 was set as 
−0.0005 sr−1 for the estimation of Chl in the study by Hu et al. 
[9], corresponding to Chl ~0.25 mg m−3. In order to determine 
a suitable upper limit of MBDRrs440 for the estimation of a(440), 
Table 1 lists the performance of the MBDRrs440 inversion 
method, with MBDRrs440 being under 0.001, 0.0005, and 0 sr−1, 
respectively. With the decrease of MBDRrs440 among the 3 limits, 
the R2 values increased from 0.95 to 0.99, while slope decreased 
from 1.04 to 1.0, all with negligible intercepts. These compar-
isons suggest that for waters with MBDRrs440 > ~0.0005 sr−1 

(a(440) > ~0.084 m−1), the impact of particle backscattering is 
getting stronger [9]; thus, there are higher uncertainties in the 
estimated a(440) from MBDRrs440 (also see Fig. 3). Compared 
to those with MBDRrs440 < 0.0005 sr−1, the agreement between 
a(440)MBD and known a(440) (either a(440)Kd or a(440)QAA) is 
slightly stronger for MBDRrs440 < 0 sr−1 (a(440)MBD < ~0.063 m−1), 
but the difference is small. In view of this small difference in 
performance, and with a goal to obtain more coverage with such 
an innovative multiband-difference algorithm, we tentatively 
set the upper limit of MBDRrs440 as 0.0005 sr−1, corresponding 
to a(440) as 0.084 m−1 following Eq. 2. Spatially, this upper 
limit extended the coverage of the MBDRrs scheme from ~73% 
of the global ocean (−0.0005 sr−1 as the limit) to ~91%, which 
is a significant expansion of the MBDRrs approach for process-
ing global ocean color satellite data.

B) Application to SeaWiFS images and its 
comparison with semi-analytical algorithm
To demonstrate the applicability of MBDRrs for the absorption 
coefficient, we applied Eq. 2 to a randomly selected SeaWiFS 
image, which was collected on June 9, 2008, with Fig. 5 showing 
the spatial distribution of the obtained a(440)MBD. Also included 
in Fig. 5 is the a(440) product distributed by NASA (repre-
sented as a(440)GIOP), which was obtained from the GIOP algo-
rithm [13], an approach completely independent of the MBDRrs 
algorithm for a(440). Figure 6 shows scatterplots between 
a(440)MBD and a(440)GIOP for this SeaWiFS measurement. It 
is found that the two independent determinations of a(440) 
are highly consistent, with R2 ~ 0.91, slope close to 1.0, negli-
gible intercept, and MUARD as ~9.6%. These results provide 
an independent verification of a(440)MBD for oceanic waters 
in the general patterns of spatial distributions.

On the other hand, it is clear that there are deviations of 
a(440)GIOP for a given a(440)MBD (see Fig. 6). This deviation, 
in part due to different strategies of algorithms, also reflects the 
impact of noises in Rrs spectrum that were propagated to the 
retrieved a(440)GIOP. This impact can be demonstrated with 
the coefficient of variation of a(440) (represented as CVa(440)) 
for any box with 3 × 3 pixels and having at least 5 valid satellite 
products. Figure 7 shows the histogram of CVa(440) for a(440)MBD 
in the range of 0.02 to 0.04 m−1, reflecting clear oceanic waters 

(3)MUARD =
2

N
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Fig. 2. Comparison between a(440)Kd and a(440)QAA of datasets used in this study.
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Fig. 3. Relationship between a(440) and MBDRrs440. The red vertical line indicates the 
location of MBDRrs440 = 0.0005 sr−1.
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Fig. 4. Equation 2 estimated a(440) is compared with known a(440).
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where the spatial variation of physical-biogeochemical prop-
erties is in general mild. For a(440)MBD, the range of CVa(440) 
is 0.01 to 0.12, with a mode as 0.025; however, for a(440)GIOP, 
the range of CVa(440) is 0.01 to 0.20, with a mode as 0.038. These 
results further indicate the better tolerance of MBD to the 
noises in measured Rrs spectra.

C) Estimation of oceanic Chl from a(440)
There could be multiple applications of the estimated total 
absorption coefficient, for example, estimating Chl from a(440). 
Based on broad coverage of in situ measurements, Morel and 
Maritorena [18] showed that the apparent optical properties 
[19] of oceanic waters to the first order can be modeled as a 
function of Chl, which is the base of band ratio of Rrs to estimate 
Chl [1,18]. This is also the commonly termed “Case-1” system 
[20–22]. Thus, following the steps (Eqs. 3 to 5 and 8 – 8”) 
articulated by Morel and Maritorena [18], the Kd spectrum of 
a given Chl can be converted to the spectrum of total absorption 
coefficient. Subsequently, a relationship (see Eq. 4 and Fig. 8) 
between Chl and a(440) can be developed for global oceanic 
waters under the “Case-1” assumption, expressed as (here Chl 
is limited to a range of 0.01 to 2.0 mg/m3)

where 0.0044 m−1 is the absorption coefficient of pure seawater 
at 440 nm [23]. This dependence is supported by modeling 
a(440) as a sum of three general constituents [24]

with subscripts “w, p, y” representing pure seawater, particles, 
and yellow substance, respectively. Values of A and B are avail-
able from Bricaud et al. [25]. Considering the absorption 
coefficient of yellow substance covaries with that of phyto-
plankton for “Case-1” waters [20,21] and taking a Y value as 
0.8 [26,27], the relationship between a(440) and Chl following 
Eq. 5 is also included in Fig. 8. For Chl in a range of 0.01 to 
2.0 mg/m3, a(440) values resulted from the two completely 
independent approaches (Eqs. 4 and 5) are nearly identical, 
with MUARD as 2.3% and R2 ~ 1.0. These results indicate a 
solid general relationship between Chl and a(440) for such 
“Case-1” waters.

Thus, when a(440) is obtained by Eq. 2, Chl can be further 
estimated following Eq. 4, with results termed as Chla440. We 
compared Chla440 with Chl from water samples of two datasets 
(see Fig. 9): the NASA bio-Optical Marine Algorithm Dataset 
(NOMAD) [28] and the satellite-in situ datasets compiled by 
Hu et al. [9]. As Chl estimated from a(440) covers values higher 
than 0.25 mg/m3, for reference, the performance of BGRRrs 
(OC4) algorithm for Chl [11] (results termed as ChlOC4) with 
the same datasets was also included for comparison. The sta-
tistical measures (see Table 2) of the two approaches show 

(4)a(440) = 0.0044 + 0.093 Chl0.654

(5A)a(440) = aw(440) + ap(440) + ay(440)

(5B)= aw(440) + A(440)ChlB(440) [1 + Y ]
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Fig. 5. Global distribution of a(440) obtained from either MBDRrs (for MBDRrs440 < 0.0005 sr−1) or GIOP for SeaWiFS measurements of June 9, 2008. White color for land or 
no valid retrievals.

Table 1. Statistics between a(440)MBD and known a(440) (a(440)QAA and a(440)Kd, respectively) under different upper limits of MBDRrs440.

Upper limit of MBDRrs440 (sr−1) R2 Slope Intercept MUARD N

a(440)MBD vs a(440)QAA 0.001 0.95 0.91 0.0036 0.054 773

0.0005 0.98 0.96 0.0016 0.046 668

0 0.99 0.98 0.0007 0.045 547

a(440)MBD vs a(440)Kd 0.001 0.89 0.87 0.0065 0.116 773

0.0005 0.89 0.88 0.0055 0.111 668

0 0.89 0.89 0.0044 0.108 547
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slightly different results from that of Table 1 by Hu et al. [9] 
because (a) fluorometric Chl is used here and (b) the data covers 
a much wider range. Overall, these statistical measures are very 
similar, with OC4 showing slightly higher R2 and lower root 
mean square difference (RMSD) for NOMAD. However, it is 
necessary to keep in mind that the algorithm coefficients of 
OC4 were optimized with NOMAD, but the algorithm coeffi-
cients of MBDRrs were independent of NOMAD. These results 
thus indicate that for waters with MBDRrs440 up to 0.0005 sr−1, 
there are no preference between the 2-step (MBDRrs-a(440)) 
and 1-step (OC4) schemes on the estimation of Chl from Rrs. 
The same observations are obtained from the SeaWiFS-in situ 
dataset. These results suggest that when being evaluated with 
discrete data points, at least for data used in this study, the 
performance of both OC4 and MBDRrs-a(440) schemes in 
estimating Chl is similar.

However, when being evaluated using image pixels, there 
are noticeable differences between the two. The MBDRrs-a(440) 
scheme (Eqs. 1 to 2 and 4) was applied to a SeaWiFS image of 
November 14, 2010 (randomly selected) to estimate Chl for 
MBDRrs440 as high as 0.0005 sr−1 (corresponding to Chl ~0.8 
mg/m3). Figure 10 compares Chla440 with the “standard” Chl 
distributed by NASA (ChlNASA) that was estimated using both 

band difference (for Chl < ~0.25 mg/m3) and band ratio (for 
Chl > ~0.25 mg/m3) of Rrs [9]. It is found that for Chla440 in 
a range of ~0.01 to 0.8 mg/m3, the two Chl products are highly 
consistent, with MUARD as 14.8% and R2 = 0.96 (in linear 
scale). For Chla440 higher than ~0.2 mg/m3, it appears that the 
mode of ChlNASA matches that of Chla440 very well for any given 
Chla440, except that on average ChlNASA is about ~18% lower 
than Chla440 for Chla440 in the range of ~0.7 to 0.8 mg/m3. As 
expected, there are obvious scatters for a given Chla440, or 
vice versa, indicating impacts of algorithm strategies and/
or noises in Rrs.

Further, ChlNASA is found in general higher by ~20% for 
Chla440 around 0.1 mg/m3, which is quite surprising as both 
Chla440 and ChlNASA were derived from MBDRrs440 for Chl in this 
range. This 20% higher estimates are also observed in other 
randomly selected SeaWiFS images and appear consistent with 
an evaluation using the NOMAD dataset (after limiting MBDRrs440 
< −0.0005 sr−1 and Chl < 0.15 mg/m3), where Chla440/Chlinsitu 
centered around 1.0, while ChlNASA/Chlinsitu centered around 1.2 
(see Fig. 11). The reason for this difference might be in the num-
ber and measurement methods used for the development of 
the two algorithms, where the regression parameters of the 
1-step MBDRrs algorithm were obtained from 50 points [9], 
with field Chl measured via high-performance liquid chro-
matography. The Chl-Kd(440) relationship, which is the base 
of the Chl-a(440) relationship (Eq. 4), on the other hand, was 
based on hundreds of measurements [18], along with field Chl 
values determined fluorometrically. Although at this point we 
lack sufficient field measurements in such oligotrophic waters 
to determine the Chl from which algorithm is more accurate, 
it is necessary to note that the size of oceanic gyres is commonly 
based on a criterion of Chl as 0.07 or 0.1 mg/m3 [29,30]. Thus, 
the difference between Chla440 and ChlNASA suggests that the size 
of oceanic gyres will be ~25% larger if the size is based Chla440.

For studies of global oceanic waters, it is always necessary 
to merge data from different ocean color satellites [31], where 
cross-sensor consistency is important for such merges. Hu et al. 
[9] showed that there is a much better consistency between 
SeaWiFS and MODIS Chl products obtained from MBDRrs, 
with an upper limit of MBDRrs440 as −0.0005 sr−1 (see Fig. 20 
of the study by Hu et al. [9]). Also for data of November 2006, 
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Fig. 6. Comparison between a(440)MBD and a(440)GIOP for valid data in Fig. 5.
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Fig.  7.  Distribution of coefficient of variation (CV) of a(440)MBD and a(440)GIOP, 
respectively, calculated for boxes with 3 × 3 pixels. The range of a(440)MBD is limited 
to 0.02 to 0.04 m−1, where the spatial variation of oceanic waters is mild.
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Fig. 8. Relationship between a(440) and Chl for oceanic waters under the “Case-1” 
assumption.
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the MBDRrs-a(440) scheme for Chl (Eqs. 1 to 2 and 4) was 
applied to monthly composites of SeaWiFS and MODIS 
(MODIS Rrs(547) was converted to Rrs(555) following the 
scheme developed by NASA; https://oceancolor.gsfc.nasa.
gov/docs/ocssw/convert__band_8c_source.html), where the 
upper limit of MBDRrs440 was extended to 0.0005 sr−1. Figure 12A 
shows the histogram of Chla440 obtained from SeaWiFS and 

MODIS, respectively, while Fig. 12B shows that of Chl obtained 
by the BGRRrs (OCx) algorithms. Clearly, as indicated in 
the study of Hu et al. [9], compared to the BGRRrs scheme, 
much better cross- sensor consistency was obtained from the 
MBDRrs-a(440) approach, further highlighting the advantages 
of the innovative band-difference scheme on estimating a(440) 
and Chl.
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Fig. 9. Comparison between Chla440, ChlOC4, and measured Chl, along with statistical measures (in log10 scale) included in the figures. The top panel is for the NOMAD dataset, while 
the bottom panel is for a dataset compiled by Hu et al. [9] but limited with MBDRrs440 under 0.0005 sr−1 and in situ Chl under 1.0 mg/m3. The fewer number of points for ChlOC4 
of the NOMAD dataset is due to no Rrs measurements at 510 nm at some stations. The apparent plateau of Chla440 is a result of the upper limit of MBDRrs440 set as 0.0005 sr−1.

Table 2. Performance (in log10 scale) of 1- and 2-step empirical algorithms for the estimation of Chl from Rrs, for data with MBDRsrs440 less 
than 0.0005 sr−1 and in situ Chl < 1.0 mg/m3. The fewer number of points for BGRRrs of NOMAD is due to no Rrs measurements at 510 nm 
at some stations.

Algorithm Slope Intercept R2 RMSD N
NOMAD MBDRrs 0.88 −0.10 0.72 0.20 1,370

BGRRrs (OC4) 0.77 −0.19 0.74 0.19 1,320

SeaWiFS-in situ MBDRrs 0.84 −0.16 0.59 0.26 757

BGRRrs (OC4) 0.66 −0.22 0.59 0.25 757
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Fig. 10. Chla440 compared with ChlNASA for SeaWiFS measurements of 2010 November 14. 
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Fig. 11. Distribution of the ratio of Chl from algorithms to measured Chl for the NOMAD 
dataset with measured Chl < 0.15 mg/m3 and MBDRrs440 < −0.0005 sr−1.
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Fig. 13. (A) Global distribution of a(440) for SeaWiFS measurements of March 2006. (B) Relative difference between a(440) and a(440)QAA for data in (A).
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D) Merge with a(440) from QAA for the  
global ocean
As MBDRrs works only for oligotrophic ocean, a merge with the 
absorption coefficient derived from other algorithms for less 
clear waters is necessary. The above analyses suggest that the 
MBDRrs scheme works well for MBDRrs440 up to ~0.0005 sr−1, 
with the equivalent a(440) as 0.084 m−1; thus, following Hu et al. 
[9], a merge was developed for the generation of a(440) of the 
global ocean,

Setting the upper limit as 0.0004 sr−1 for the derivation of 
a(440)MBD is a little more conservative but still covers a(440) as 
high as 0.078 m−1 (equivalent Chl as ~0.7 mg/m3). As an exam-
ple, Fig. 13A shows the global distribution of a(440) based on 
SeaWiFS monthly Rrs composite of March 2006, where the gen-
eral patterns are consistent with our understandings of the spa-
tial distribution of phytoplankton in the global oceans. Figure 
13B shows the relative difference between a(440) and a(440)QAA 
((a(440) − a(440)QAA)/a(440)QAA), which indicates that, in gen-
eral, the two products are consistent for oligotrophic waters. The 
differences (most within ±10%), especially for the southern 
ocean, indicate the impact of noises in satellite Rrs on the esti-
mation of a(440) by such semianalytical algorithms, although 
algorithm approaches would also contribute to this difference 
(generally less than ~5%, see Fig. 2).

Conclusions
In the last decades, various algorithms have been developed for 
the estimation of Chl or IOPs from ocean color (Rrs), but only the 
algorithm based on multiband difference of Rrs (MBDRrs) devel-
oped for Chl shows strong tolerance to noises in Rrs for applica-
tions in oligotrophic waters. Here, we extended this scheme to 
the estimation of absorption coefficient of oceanic waters, which, 
not surprisingly, shows that a(440) can be well estimated from 
MBDRrs, where the obtained a(440) image product is much 
smoother than that obtained from a semianalytical algorithm. 
We further converted a(440) to Chl based on the “Case-1” 
assumption and obtained in general consistent Chl product as 
that distributed by NASA from SeaWiFS measurements. More 
importantly, it appears that the upper limit of MBDRrs440 of the 
MBDRrs scheme could be extended from the −0.0005 sr−1 set a 
decade ago to ~0.0005 sr−1, which expands the coverage of oce-
anic waters from ~73% to ~91% for application of the MBDRrs 
scheme, although an optimized upper limit should be determined 
after analyzing large number of satellite images. On the other 
hand, it is found that there is a ~20% difference in the estimated 
Chl for oceanic gyres that was based on the same MBDRrs440 but 
from different approaches (1 step and 2 steps). Such a difference 
suggests a strong necessity of more accurate measurements of Chl 
and Rrs in such waters, as it could significantly impact the studies 
on phytoplankton dynamics in these gyres.
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