
Research Article Vol. 31, No. 16 / 31 Jul 2023 / Optics Express 25398

Sensing the profile of particulate beam
attenuation coefficient through a single-photon
oceanic Raman lidar
MINGJIA SHANGGUAN,* ZHUOYANG LIAO, YIRUI GUO, AND
ZHONGPING LEE

State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen
University, Xiamen 361102, China
*mingjia@xmu.edu.cn

Abstract: A lidar technique has been proposed and demonstrated for remotely sensing particulate
beam attenuation coefficient (cp) profiles using the Raman backscattered signal from water. In
Raman lidar, the backscatter coefficient at 180° can be considered constant, allowing for the
determination of the lidar attenuation coefficient (Klidar) from the Raman backscattered signal.
This scheme has these features. 1) The bandwidth of the filter that used to extract the Raman
component from the backscattered signal of the lidar was optimized to ensure sufficient lidar
signal strength while minimizing the influence of chlorophyll fluorescence on inversion. 2) A
receiving telescope with narrow field of view (FOV) and small aperture was utilized to suppress
multi-scattering components in the backscattered signal. 3) A relationship between the beam
attenuation coefficient (c) and Klidar was established after simulations via a semi-analytic Monto
Carlo. 4) The value of cp was obtained by subtracting the attenuation coefficient of pure seawater
(cw) from c. According to the theoretical analysis, the maximum relative error of cp is less than
15% for chlorophyll concentrations up to 10 mg/m3. Due to the water Raman backscattered signal
being several orders of magnitude lower than the elastic backscattered signal, a single-photon
detector is required to significantly improve the detection sensitivity to the single-photon level.
To validate this approach, a field experiment was conducted aboard the R/V Tan Kah Kee in the
South China Sea from September 4th to September 5th, 2022, and continuous subsurface profiles
of cp were obtained. These measurements confirm the robustness and reliability of the oceanic
single-photon Raman lidar system and the inversion method.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The particulate beam attenuation coefficient (cp) is a crucial parameter in oceanography. It
quantifies the rate at which light beam is absorbed and scattered by particles suspended in seawater,
which affects the propagation of light and the amount of energy available for photosynthesis
and other biological processes. Since cp is closely related to the concentration, size, shape, and
composition of particles in the water column, it provides valuable information on the physical
and biogeochemical properties of marine ecosystems.

One of the key applications of cp in ocean science is its use in estimating the amount of
particulate organic carbon (POC) in the water column, which is a major component of the oceanic
carbon cycle [1]. POC is an important constituent of carbon budgets in the ocean, being produced
by primary producers such as phytoplankton and exported to the deep ocean through sinking and
vertical mixing processes. The concentration of POC in seawater can be challenging to measure
directly, but several indirect methods have been developed based on the relationship between
cp and POC. Numerous studies have demonstrated a strong relationship between cp and POC
in certain regions of the ocean [2–4]. It is now well established that cp is a useful proxy for
estimating POC concentrations from remote sensing and in situ measurements.
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Over the years, various technologies have been developed to measure c of water, from which
cp can be obtained by subtracting the contribution of pure seawater (cw). These technologies
include the Beer-Lambert law, the stimulated Brillouin scattering, transmissometer method, and
spectrophotometric method, among others [5–7]. While in situ measurements offer high accuracy,
they are constrained by their limited spatial coverage and shallow depth range, which can hinder
their ability to capture the large-scale variability and dynamics of marine systems. On the other
hand, remote sensing provides an efficient way to monitor changes in c of water over time and
space, making it a valuable tool for environmental management and research.

However, accurately retrieving c through remote sensing techniques, both passive and active,
is still a challenging task [8–10]. One approach is to use the chlorophyll concentration (Chl)
that derived from passive ocean color remote sensing [11]. However, this approach can be
limited by the influence of physiological processes, such as changes in intracellular pigmentation,
as well as the absence of an accurate indicator of non-phytoplankton particle populations.
Another approach for estimating c involves using lidar depolarization measurements and diffuse
attenuation coefficients (Kd), which can be obtained from ocean color products or Brillouin lidar
measurements [9]. However, simultaneous acquisitions of high-precision lidar depolarization
and Kd using satellite sensors remain a challenge.

Fortunately, as an active technique, lidar has the capability to measure time-resolved backscat-
tered and forward-scatter photon contributions arriving at the detector, making it an important
technique for remote sensing of oceanic parameters such as particulate backscattering, size
spectrum, and vertical distribution of ocean particles [12]. Despite its potential benefits, it
remains a challenge using oceanic lidars in accurately retrieving c. The primary challenge lies in
accurately inverting the lidar attenuation coefficient (Klidar), with the second challenge being the
calculation of c or Kd from Klidar. Tremendous efforts have been devoted to developing advanced
algorithms [13] and updating the hardware of lidar [14,15].

One major limitation of an elastic backscatter lidar is that it faces an ill-posed mathematic
problem, as it needs to infer two unknowns, namely, attenuation coefficient (Klidar) and backscatter
coefficient at 180° (β), from a single measurement. Numerous attempts have been made to
resolve this inherent ill-posed problem in the lidar equation. Initially, various algorithms have
been proposed without changing the mechanism of elastic backscatter lidar, including the slope
method [16], Klett method [17], Fernald method [18] and perturbation method [19], among others.
Nevertheless, each method is based on a set of assumptions that may not be perfect, leading to
certain levels of inverse error. An important leap in retrieval accuracy has been achieved with the
high spectral-resolution lidar (HSRL) technique, which can independently measure backscattering
and attenuation by separating the particulate and molecular backscatters in wavelength distribution
[20,21]. Recently, by combination the HSRL technique and a developed multiple scattering
correction algorithm, Kd can be estimated accurately [15]. However, the complexity of the HSRL
system and its high requirements for frequency stability limit its implementation and operation to
some extent.

Compared to HSRL, Raman lidar systems are easier to implement and maintain. While
a Raman lidar has been proposed and utilized to profile atmospheric attenuation coefficient
[22], its application in remote sensing of oceanic optical parameters is still limited [23,24]. In
this work, an oceanic Raman lidar is proposed and demonstrated for remotely sensing the cp
profiles. In Raman lidar, β can be treated as a constant value [22]. Therefore, analyzing of the
Raman lidar signal alone permits the determination of Klidar. On the other hand, to overcome
the disadvantage that the intensity of Raman backscattered signals is 2-3 orders of magnitude
lower than the elastic backscattered signals, a single-photon detector is required to enhance the
detection sensitivity to a single-photon level. The single-photon detector technique has been
widely applied in atmospheric and target imaging [25–27], but its application in oceanic lidar is
limited [28–30], particularly in oceanic Raman lidar.
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After acquiring Klidar, the next challenge is to invert the values of c from the Klidar data. Based
on Monte Carlo (MC) simulation, researches have concluded that Klidar is determined by c
when lidar backscattered signal is dominated by quasi-single scattering, while Klidar is given by
Kd when backscattered signal is dominated by multi-scattering [31]. Based on these findings,
in this work, an all-fiber connected Raman lidar with a receiver telescope with narrow FOV
(2.1 mrad) and small aperture (22 mm) was developed to suppress the multi-scatter components
in backscattered lidar signal. Finally, with a relationship between c and Klidar establish by MC
simulations, c can be estimated from Klidar. The organization of this article is as follows: Firstly,
an introduction to methodology is presented, including principles and an analysis of potential
influencing factors. Next, the MC method is introduced to establish the relationship between c
and Klidar. Finally, a field experiment is introduced, which validate the robustness and feasibility
of this approach and the lidar system.

2. Methodology

Let the Raman lidar equation be written as follows:

Pw(λ, z) = K · O(z + n · h)βtexp
{︃
−

∫ z

0
Kt

lidar(λL, λ, ξ) dξ
}︃ /︂

(z + n · h)2 (1)

where Pw represents the water Raman backscattered signal at a depth of z; h represents the height
at which the lidar is located above the water surface, which in this case is 15 m; λL denotes the
wavelength of the transmitting laser, which is 532 nm; λ represents wavelength of Raman signal
emitted by water; K is a constant that includes parameters that are independent of depth such
as the output laser power, quantum efficiency of the detector, and transmittance of the optical
system for both the transmitted and received signals; O(z+n · h) is the overlap function [32]; n is
the index of refraction of water; βt represents the total backscatter coefficient at 180° at 650 nm,
which includes both the Raman backscatter coefficient at 180° of water (defined as βR) and the
backscatter coefficient at 180° of chlorophyll fluorescence (defined as βF) at this wavelength;
Kt

lidar is the round-trip attenuation coefficient of lidar, including the attenuation coefficients of
downwelling Klidar(532, z) and upwelling Klidar(650, z).
βt can be represented by the following equation:

βt = βR + βF (2)

Assuming that βt is dominated by βR, while the influence of βF can be neglected (the error
caused by this assumption will be analyzed in detail in section 4.1). Since the density of seawater
varies slightly with depth within the subsurface water (≤15 m) [33], the influence of density on
βR can be considered negligible in this work. Then, βR can be expressed as follows [34]:

βR(λ) = bR(λL, λ) · fR(λL, λ) · β̃R(π) (3)

where bR is the Raman scattering coefficient of the water molecules, which tells how much of
the irradiance at the excitation wavelength λL scatters into all emission wavelengths λ; fR is the
Raman wavelength redistribution function; β̃R(π) is the Raman scattering phase function. It
should be noted that since βR is only related to water molecules and can be considered constant
[34], the two unknowns in the lidar equation, βR and Klidar, can be reduced to only one unknown,
Klidar. This is the reason why a Raman lidar can accurately invert Klidar.

When the Raman backscattered signal passes through a Raman filter, it can be expressed as
the convolution of the Raman backscattered signal Pw and the transmission function of the filter,
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as shown in the following equation:

Pm(z) = Pw(z) ⊗ g(λ,σ) (4)

where g(λ,σ) is the transmittance function of the filter, which can be represented by a Gaussian
function in this work, namely,

g(λ,σ) = 1/(σ
√

2π) exp[−λ2/(2σ2)] (5)

where σ is its standard deviation, which can be expressed as FWHM/2
√

ln 4, and FWHM is the
full width at half maximum of the Raman filter.

When the geometric overlap factor O(z) beneath the water surface is equal to 1, Kt
lidar can be

calculated using a simple slope method, as follows:

Kt
lidar( z) =

d
dz

{︃
ln

[︃
1

Pm(z) · (z + n · h)2

]︃}︃
(6)

Then, through a semi-analytic MC simulation, which will be described in section 5, the relationship
between Kt

lidar and the total beam attenuation coefficient can be established as follows:

ct(z) = exp{m · [Kt
lidar(z)]

2 + n · Kt
lidar(z) + t} (7)

where m, n and t are fitted parameters. It should be noted that ct(z) is the sum of the beam
attenuation coefficients c at the transmitted wavelength of 532 nm and the received wavelength of
650 nm, namely,

ct(z) = c(532, z) + c(650, z) (8)

where c can be expressed as the sum of the absorption coefficient (a) and scattering coefficient
(b). By separating the particle contribution and the pure water contribution in c, ct can also be
expressed as:

ct(z) = ct
p(z) + ct

w (9)

ct
w is the sum of the beam attenuation coefficients of pure water at 532 nm and 650 nm, which can

be regarded as a constant. Similarly, ct
p represents the sum of the particulate beam attenuation

coefficients at 532 nm and 650 nm. By substituting Eq. (9) into Eq. (7), ct
p can be obtained as

follows:
ct

p(z) = exp[m · Kt
lidar(z)

2 + n · Kt
lidar(z) + t] − ct

w (10)

Subsequently, the particulate beam attenuation coefficient at 532 nm, namely cp (532, z), is
obtained through the ratio of particulate beam attenuation coefficients (r650/532), which can be
expressed as:

r650/532 = cp(650, z)/cp(532, z) (11)

Several models for the inherent optical properties (IOPs) of water bodies [35–41] have revealed
that, for both Case 1 and Case 2 waters, the ratio r650/532 only exhibits a small range for chlorophyll
concentration (Chl) varying between 0.01 mg/m3 and 10 mg/m3 (further details regarding this
will be provided in section 4.1). Thus, the profile cp (532, z) can be expressed as:

cp(532, z) = {exp[m · Kt
lidar(z)

2 + n · Kt
lidar(z) + t] − ct

w }/(1 + r650/532) (12)

To provide a clear overview of the inversion process, Fig. 1 provides a complete flowchart of the
inversion process.
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Fig. 1. Flowchart of the inversion process.

3. Optimization of the bandwidth of the Raman filter

Based on Eq. (4), it is evident that the intensity of the backscattered signal is influenced by the
shape and bandwidth of the filter after it passes through the filter. The primary impact of the
filter on the backscattered signal is reflected in its effect on βt [25]. This effect can be analyzed
using β′t, which is mathematically expressed as follows:

β′t = βt ⊗ g(λ,σ) = βR ⊗ g(λ,σ) + βF ⊗ g(λ,σ) (13)

To simplify the analysis of the impact of the filter transmission function on βR and βF , we define
β′R = βR ⊗ g(λ,σ) and β′F = βF ⊗ g(λ,σ), where βR is obtained from Eq. (3). It should be
noted that the center wavelengths of Raman scattering and fluorescence scattering are different,
with respective values of 650 nm and 685 nm. Additionally, in order to simplify the analysis, a
model for chlorophyll fluorescence is applied to calculate βF when only considering chlorophyll
fluorescence and ignoring fluorescence from other substances in the water. This model is
applicable in Case 1 water, where the inherent optical properties can be adequately described by
phytoplankton (represented by chlorophyll concentration, or Chl). The effect of fluorescence
from other substances on the inversion will be studied in our future work. Then, βF can be
expressed as [42]:

βF(λ, Chl) = aph(532, Chl) · ΦC
532
λ

hC(λ) ·
1

4π
(14)

where aph(532, Chl) is the chlorophyll absorption coefficient at the excitation wavelength of
532 nm, which can be obtained from Bricaud’s model for a given Chl [43]; FC is the quantum
efficiency for chlorophyll fluorescence, with a value between 0.005 and 0.07 [44], and 0.06 being



Research Article Vol. 31, No. 16 / 31 Jul 2023 / Optics Express 25403

used in this study; hC denotes the chlorophyll fluorescence wavelength emission function from
the model [45]. Further, aph (532, Chl) and hC(λ) can be mathematically expressed as:

aph(532, Chl) = 0.0113 · Chl0.871 (15)

hC(λ) = W
√︃

4 ln 2
π

1
25

exp[−4 ln 2(
λ − 685

25
)2] + (1 − W)

√︃
4 ln 2
π

1
50

exp[−4 ln 2(
λ − 730

50
)2]

(16)
where W represents the weight of the Gaussians, which is set as 0.75 in this study.

The effect of filter bandwidth on β′R is first analyzed, as shown in Fig. 2(a). it can be seen
that the larger the bandwidth, the stronger the Raman backscattered signal, as indicated by the
increasing value of β′R. Therefore, on one hand, using a larger filter bandwidth is advantageous
for improving the signal-to-noise ratio (SNR) of the detection. On the other hand, a larger
bandwidth also results in more chlorophyll fluorescence being detected in the lidar backscattered
signal, as shown in Eq. (13). This increase in fluorescence causes the assumption of a constant
βt to no longer hold, introducing errors in the inversion of cp.

Fig. 2. (a) Effect of the bandwidth of Raman filter on backscatter coefficient at 180°,
(b) effect of filter bandwidth on β′t for the Chl ranging from 0.01 to 10 mg/m3.

Then, the effect of filter bandwidth on β′t is analyzed as follows:

Effect = [β′t (650,σ, Chl) − β′t (650,σ, 0.01)]/β′t (650,σ, 0.01) × 100% (17)

where β′t (650, σ, 0.01) is a reference value when Chl is set to 0.01 mg/m3. As shown in
Fig. 2(b), an increase in the filter bandwidth and an increase in Chl both lead to a larger relative
error in β′t.

To minimize the influence of chlorophyll fluorescence while maintaining the strength of
the Raman backscattered signal, the bandwidth of the Raman filter was optimized. Finally, a
bandwidth of 6 nm was selected to guarantee that the effect of chlorophyll fluorescence on β′t
remained below 5% for Chl ranging from 0.01 to 10 mg/m3.

4. Analysis of the effects of r650/532 and chlorophyll fluorescence on cp(532)
inversion

4.1. r650/532 effect

As described in the methodology section, determining the r650/532 ratio is crucial for calculating
cp(532) from ct data. In this study, we utilized the IOPs model for Case 1 waters and measured
data from Case 2 waters to investigate the variation of r650/532 in different water bodies. Previous
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researches have extensively investigated the IOPs of Case 1 waters, which are primarily influenced
by phytoplankton, as initially proposed by Morel and Prieur in 1977 [46] and is still widely
adopted today. In this study, we employed two empirical relationships to calculate the particulate
absorption coefficient (ap) [35,36,41], and four empirical relationships to calculate the particulate
scattering coefficient (bp) [37–40], as listed in Table 1. Figure 3(a) shows the spectrogram of
cp from 400 nm to 700 nm, with Chl ranging from 0.01 to nearly 60.0 mg/m3. In most Case 1
waters, Chl ranges from 0.01 to 1.00 mg/m3 [47–49]. However, to illustrate the distribution of
r650/532 in Case 2 waters with high Chl, we extended Chl up to nearly 30.0 mg/m3.
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Fig. 3. (a) Spectrogram of the cp under varying Chl, (b) distribution of r650/532 in case 1
water (lines) and case 2 water (circles). cp1 is the sum of ap1 and bp1; cp2 is the sum of ap1
and bp2; cp3 is the sum of ap1 and bp3; cp4 is the sum of ap1 and bp4; cp5 is the sum of ap2
and bp1; cp6 is the sum of ap2 and bp2; cp7 is the sum of ap2 and bp3; cp8 is the sum of ap2
and bp4 [Refs. 50–55].

Table 1. Absorption and scattering coefficients of particles in case 1 water.

Empirical relationships of ap and bp Applicable range of Chl References

ap1(λ) = Ap(λ) · ChlEp(λ) 0.02 ∼ 25 mg/m3 [35,36]

ap2(λ) = 0.06A(λ) · Chl0.65 0.02 ∼ 20 mg/m3 [41]

bp1(λ) = 0.416 · 550 · Chl0.766/λ 0.02 ∼> 30 mg/m3 [37]

bp2(λ) = 0.252 · 660 · Chl0.635/λ ∼0.01 ∼ 4.5 mg/m3 [39]

bp3(λ) = [0.309 − 0.000384(λ − 550)] · Chl0.60 ∼0.02 ∼ 2 mg/m3 [38]

bp4(λ) = 0.3 · 550 · Chl0.62/λ 0.01 ∼ 30 mg/m3 [40]

By combining two sets of empirical relationships for parameters ap [35,36,41] and bp [37–40],
we generated eight different models for parameter cp. These models were used to calculate
the r650/532 ratio at different Chl levels, as shown by the dashed lines in Fig. 3(b). As shown
in Fig. 3(b), the r650/532 ratio tends to stabilize as Chl increases, especially when Chl exceeds
3 mg/m3. However, for oceanic waters with relatively low Chl concentrations, r650/532 exhibits a
significant relative variation with changes in Chl.

In contrast to Case 1 waters, cp in Case 2 waters is not solely determined by Chl. We analyzed
the variations in r650/532 at ten different locations in Case 2 waters, and their corresponding
values versus Chl are illustrated by circles in Fig. 3(b). Detailed information on the specific
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locations and relevant references is also provided in Fig. 3(b). The minimum and maximum
values of r650/532 for Case 2 waters are 0.47 and 0.92, respectively, with corresponding Chl values
of 19.8 mg/m3 and 1.2 mg/m3. The range of variation in r650/532 determined through this analysis
is employed to investigate the impact of changes in the r650/532 value on the inversion of cp.

Based on the previous analysis, it is evident that the value of r650/532 actually varies with
Chl. However, in the inversion process, we assume it to be a fixed value due to the lack of prior
knowledge on Chl. Assuming that the ratio of particulate beam attenuation coefficients used in
the inversion process is r′650/532, and the corresponding particulate beam attenuation coefficient
obtained from the inversion is cp(r′650/532), the relative deviation between cp(r′650/532) and the
true ground of cp(r650/532) can be expressed as follows:

Errorr = [cp(532, r′650/532) − cp(532, r650/532)]/cp(532, r650/532) (18)

Combined with Eq. (12) in the methodology section, Errorr can be simplified as:

Errorr = {[1/(1 + r′650/532)] − [1/(1 + r650/532)]}/[1/(1 + r650/532)] × 100 % (19)

The distribution of Errorr, when the value of r′650/532 used in the inversion process, varies
from 0.45 to 0.9, and the true ground value of r650/532 also varies within this range, is shown
in Fig. 4(a). The results indicate that the Errorr is small when r′650/532 is close to r650/532, and
the error increases as the deviation between r′650/532 and r650/532 becomes larger. However, the
Errorr remains within the range of -23.7% to 31.0%. in this work, r′650/532 is set to 0.65, and
Errorr ranges from -12.1% to 15.2%, as shown in Fig. 4(b).

Fig. 4. The estimated error caused by the change of the ratio r650/532 to the inversion of cp.

4.2. βF effect

In this section, we will analyze the error that arises from neglecting the vertical variation of
the backscattered coefficient of chlorophyll fluorescence βF during the inversion of cp. Firstly,
four typical Chl profiles were obtained, including open-ocean, mid-latitude case 1 water, lakes,
and water surrounding Europe [56–59]. These water bodies were chosen to represent a diverse
range of non-uniform aquatic environments and their associated chlorophyll distributions. Then,
cp(532, Chl) was calculated based on models using Chl profiles [35–41]. According to Eq. (9)
and Eq. (11), ct can be expressed as a function of cp as follows:

ct = (1 + r650/532)cp(532, Chl) + ct
w(λL,R) (20)

Then, Kt
lidar was obtained by using the relationship between ct and Kt

lidar established based on
the inverse function of Eq. (10). βt was obtained by using Chl profile based on Eq. (2). Finally,
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the normalized signal of the Raman lidar was simulated based on Eq. (1). Then, using the
approach provided in the methodology section, the particulate beam attenuation coefficient can
be obtained, defines as c′p(532, Chl). The deviation between the inversion and true values of the

Fig. 5. Theoretical analysis of errors. The sub-figures (a)-(d) show different chlorophyll
vertical distribution, including (a) linearly decreasing [56], (b) linearly increasing [59], (c)
bimodal with two Gaussian distribution [58], and (d) unimodal with a single Gaussian
distribution [57]. Each sub-figure comprises three panels, with the top showing the
corresponding Chl vertical distribution and relative Chl difference between adjacent depth
intervals (∆Chl). The second panel provides the inversed c′p and its ground true cp, while
the third panel displays the Errorf and Errorr distribution. The bottom panel shows the
Errort distribution.
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particulate beam attenuation coefficient can be estimated as follows:

Errorf = [c′p(532, Chl) − cp(532, Chl)gt]/cp(532, Chl)gt × 100% (21)

where cp(532, Chl)gt is the true value calculated by the models provided in Table 1, with the
provided Chl profiles.

In the above evaluation process, the same value of r650/532 was used to generate the lidar
backscattered signal from the known vertical distribution of Chl and to invert cp(532, Chl) from
the lidar backscattered signal. Therefore, this relative deviation only considers the effect of Chl
variation on βt, but does not consider the effect of r650/532 on the inversion.

To take the effect of r650/532 into account, r650/532 is no longer considered a constant but a
variable related to the vertical profiles of Chl when using the vertical profile of Chl to generate
the lidar backscattered signal. Based on this backscattered signal and using the same inversion
method as described above, the particulate beam attenuation coefficient can be obtained, defined
as c′p(532, r650/532, Chl). In this case, the relative deviation between the inverted value c′p(532,
r650/532, Chl) and the true value cp(532, Chl)gt can be considered as a total error, defined as
Errort, which takes into account both the influence of the vertical distribution of Chl on βt and
r650/532. It can be expressed as follows:

Errort = [c′p(532, r650/532, Chl) − cp(532, Chl)gt]/cp(532, Chl)gt × 100% (22)

Figure 5 presents the distribution of three types of errors, namely Errorr, Errorf , and Errort under
various Chl vertical distributions. As shown in Fig. 5(a) and Fig. 5(b), when there is a monotonic
change in Chl, whether increasing or decreasing, the errors increase with an increase in Chl. In
such cases, Errort is primarily influenced by Errorr, and the total error Errort remains below
10%. On the other hand, when there is a layered distribution of Chl, Errort is primarily attributed
to Errorr when Chl is low or relatively stable. On the other hand, when there is a layered
distribution of Chl, as shown in Fig. 5(c) and Fig. 5(d), Errort is primarily attributed to Errorr
when Chl is low or relatively stable. However, if Chl is high, both Errorr and Errorf contribute
approximately equally to Errort, and the magnitude of Errort increases with an increase in Chl
variation rate, which is defined as ∆Chl. Regarding Errorf , as shown in Fig. 5, especially in
Fig. 5(c-3) and Fig. 5(d-3), even when the Chl varies significantly with depth, i.e., when βF
varies vertically, Errorf , as calculated using Eq. (21), can be controlled to be less than 8% due to
the utilization of a narrow Raman filter with a bandwidth of 6 nm. Overall, in these four water
types, the maximum value of Errort does not exceed 15%.

5. Monte Carlo simulation

MC simulation is a widely used tool in lidar simulation and has been extensively applied to
simulate the backscattered signal of oceanic lidars [24]. In this study, a brief introduction is
provided to the MC-based simulation of Raman lidar backscattered signals, without going into
specific details. For more information on the simulation process, recent articles can be referred
to [24,60].

The MC is used to simulate the random trajectories of photon propagation in a medium. The
step and direction of photon trajectories depend on the scattering and absorption properties of
the medium. Meanwhile, the MC method treats the photon as a typical particle and ignores its
wave properties. The propagation of laser in water is treated as the combination of many photon
trajectories. Laser energy attenuation is determined by three factors, namely the absorption of
the medium, the scattering probability, and the probability distribution of the steps. To enhance
the utilization efficiency of individual photons, a semi-analytic MC model is applied. This model
enables every photon in the telescope FOV to return its expected value of energy and record its
position [61,62]. Due to the weak intensity of Raman signals, only the first-order Raman signals
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that arise from the initial laser wavelength are considered, while the second-order Raman that
result from the first-order Raman signals are disregarded. The simulated lidar backscattered
signal is dependent not only on the IOPs of the water, but also on the hardware and geometric
parameters of the lidar. Table 2 presents the instrument parameters of the Raman lidar used as
input in the MC simulation. It should be noted that the instrument parameters used in MC are the
parameters of the actual shipborne Raman lidar.

Table 2. Input parameters of lidar system

Parameter Value

Pulsed laser Radius of laser beam 2 mm

Laser divergence angle 0.5 mrad

Coupler Diameter of telescope 22 mm

FOV of telescope 2.1 mrad

Distance between emission axis and reception axis 15 mm

Scattering phase function Petzold phase function [63]

Morel phase function [64]

Other parameters Height above the water surface 15 m

Number of photons 108

Sampling interval 100 mm

The absorption and scattering coefficients are modeled as follows:

a(λ) = aw(λ) + 0.06A(λ) · Chl0.65 + ay(λ) (23)

b(λ) = bw(λ) + bp(λ) (24)

where aw is the absorption coefficient of pure seawater [65], A is the normalized spectral
absorption values of phytoplankton pigments, ay is the absorption coefficient of yellow substance,
bw is the scattering coefficient of pure water [66]. Table 3 provides the model used in MC
simulation.

Table 3. The models used in MC simulation

Empirical relationships of coefficients Applicable range of Chl References

aw and A is obtained through linear interpolation 0.2-18.4 mg/m3 [65]⎧⎪⎪⎨⎪⎪⎩
ay(λ) = ay(440) exp[−0.014(λ − 440)]

ay(440) = 0.2[aw(440) + 0.06A(440) · Chl0.65]
0.02-20 mg/m3 [67]

bw(λ) = 0.0046(450/λ)4.32 - [66]

bR(λ) = 2.6 × 10−4(488/λ)5.5 - [34]

bp(λ) = 0.3Chl0.62(550/λ) 0.03-30 mg/m3 [40]

In the simulation, two commonly used scattering phase functions were utilized, namely Petzold
phase function and a phase function proposed by Morel et al. [63,64]. The sampling length is 20
m with a sampling interval is 0.1 m, resulting in a total of 200 sampling points for each simulation.
To reduce the effects of multiple scattering in the lidar backscattered signal, a small aperture
telescope with a limited FOV was employed. As illustrated in Fig. 6(a), the simulated signal
exhibits an exponential decay. Based on statistical analysis of the lidar signal, the percentage of
multiple scattering, represented by the second scattering and higher-order scattering, is low when
Chl is low, and the lidar signal is dominated by single scattering. However, as Chl increases, the
percentage of multiple scattering increases. By using the inversion method introduced by the
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methodology section, Kt
lidar values for different Chls can be obtained. The relationship between

ct and Kt
lidar is shown in Fig. 6(b). After exponential fitting, the relationship between ct and

Kt
lidar is determined as:

ct = exp[−0.334 · (Kt
lidar)

2
+ 1.916 · Kt

lidar − 1.540] (25)

From Fig. 6(b), it can be observed that when Chl is low (i.e., ct is small and the lidar backscattered
signal is dominated by single scattering), Kt

lidar is close to ct. However, as Chl increases and
the proportion of multiple scattering in the lidar backscattered signal increases, Kt

lidar becomes
smaller than ct and gradually deviates from the 1:1 line between Kt

lidar and ct (as shown by the
dashed line in Fig. 6(b)). However, there is still a strong correlation between Kt

lidar and ct, as
evidenced by a high coefficient of determination (R2) of 0.99.

Fig. 6. (a) Simulation lidar backscattered signals (lines) and the corresponding proportion
of multiple scattering (PMS) in the signals (scatters) for Chl ranging from 0.01 to 10 mg/m3,
using the Morel phase function, (b) relationships between ct and cp(532) with Kt

lidar , where
scatter represents the results of MC simulations, and the solid line represents the results
fitted by the formula.

6. Field experiment

6.1. Lidar system

Figure 7 illustrates a schematic diagram of the single-photon Raman lidar system setup, which
consists four subsystems: a 532 nm pulsed laser, a transceiver, an optical receiver, and a data
acquisition system. The system uses a compact fiber-based laser that follows a master oscillator
power amplifier (MOPA) architecture, which utilizes a single-mode pulsed seed laser operating
at 1064 nm. This seed laser is amplified through a single-mode ytterbium-doped fiber amplifier
(SM-YDFA) and a high-power ytterbium-doped fiber amplifier (HP-YDFA) before passing
through a lithium borate crystal (LBO) for second harmonic generation, resulting in up to an
average power output of 1.0 W with a beam divergence of 0.5 mrad. The output pulse width is
3 ns, and the repetition frequency is 340 KHz.

To achieve a miniaturized and robust structure, a fiber-connected configuration is specifically
designed for the Raman lidar system. In this configuration, the backscattered signal from water
is coupled into a 105-µm multimode fiber (MMF) through a collimator with a 50.8 mm focal
length, resulting in a narrow FOV of approximately 2.1 mrad. This narrow FOV not only provides
significant suppression of backscattered noise but also suppresses multi-scattering components in
the backscattered signal. The distance between the transmitted laser and the received collimator
is approximately 15 mm. The backscattered Raman photons are extracted using a 45° dichroic
mirror (DM) that reflects the elastic signal at 532 nm and transmits the signal from 550-670 nm,



Research Article Vol. 31, No. 16 / 31 Jul 2023 / Optics Express 25410

Fig. 7. Optical layout of the single-photon Raman lidar. SM-YDFA: Single-Mode Ytterbium-
Doped Fiber Amplifier; HP-YDFA: High-Power Ytterbium-Doped Fiber Amplifier; L: lens;
LBO: lithium borate; DM: dichroic mirror; MMF: Multimode fiber; SPAD: single-photon
avalanche diode; TDC: time-to-digital converter; FG: function generator; PC: personal
computer.

along with a bandpass Raman filter centered at 650 nm with a bandwidth (full width of half
maximum) of 6 nm. By combining the DM with the Raman filter, the isolation degree of the
532 nm elastic backscattered signal can be achieved up to 55 dB, while the transmittance of the
650 nm Raman signal is> 80%. For photon detection, a compact silicon single-photon avalanche
diode (SPAD) with an efficiency of approximately 52% and 100 dark counts per second (cps) at
650 nm is employed. The electronic module utilizes a self-built function generator (FG) using a
Field Programmable Gate Array (FPGA) to generate precise control signals for the laser, the
SPAD, and a self-designed time-to-digital converter (TDC). The TDC, with a resolution of 500
ps, is utilized for recording the timing information of pulse emission and photon detection. A
summary of the system parameters is presented in Table 4.

Table 4. Key parameters of the Raman lidar system

Parameter Value

Pulsed laser Wavelength 532 nm

Pulse duration 3 ns

Pulse energy 1 µJ

Pulse repetition rate 340 KHz

Telescope Focal length 50.8 mm

Mode-field diameter of the MMF 105 µm

SAPD Detection efficiency at 650 nm 52%

Dark count 100 cps

6.2. Field experiment

To validate the effectiveness of the single-photon Raman lidar for retrieving cp, a field experiment
was conducted aboard the R/V Tan Kah Kee in the South China Sea from 8:38:04 PM on
September 4th to 1:10:54 AM on September 5th, 2022. The lidar was installed on the deck of
the research vessel, positioned approximately 15 m above the water surface, and the laser beam
penetrated the water at a near-zenith angle of 0° after being reflected by a mirror located in front
of the lidar. In this setup, the overlap function beneath the surface can be assumed to be 1.

Initially, the Raman lidar collected data with a time resolution of 1 second and a depth resolution
of 0.5 ns, as shown in Fig. 8(a). To reduce inversion errors, the time resolution was adjusted to
15 seconds and the depth resolution was set to 1 m. The lidar signals was then multiplied by the
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square of the corresponding sampling depth, followed by a logarithmic operation. Kt
lidar profiles

were calculated using the slope method, as provided in section 2. Subsequently, ct profiles were
derived based on the established relationship between ct and Kt

lidar, as shown in Fig. 8(b). Finally,
cp(532) profiles were obtained using the ratio r650/532 (which was selected as 0.65), as illustrated
in Fig. 8(c). While the filter combination can isolate elastic scattering by around 55 dB, it should
be noted that the specular reflection on the water surface can still interfere with the Raman signal
in the first 3 m. Therefore, the inversion results in Fig. 8(b) and 8(c) start from 3 m. In our future
work, we will further improve the isolation of elastic scattering. The raw signal presented in
Fig. 8(a) indicates the presence of a scattering layer beneath the sea surface, whose characteristics
changed slowly during the R/V Tan Kah Kee cruise. By inverting cp(532), as shown in Fig. 8(c),
variations can be clearly observed.

Fig. 8. Inversion results of the field experiment: (a) original Pm(z); (b) profiles of ct;
(c) profiles of cp (532).

7. Conclusion

In this work, we proposed a Raman lidar inversion method for measuring the profile of particulate
beam attenuation coefficient, which remains a challenge for current remote sensing technologies.
In Raman lidar, β can be treated as a constant value. Therefore, analysis of the Raman lidar
signal alone permits the determination of Kt

lidar by using a simple slope method. Furthermore,
using the relationship between ct and Kt

lidar, which was established by a semi-analytic MC mode,
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ct can be obtained. Finally, cp(532) can be obtained from ct after assuming a ratio (r650/532) of
the particulate beam attenuation coefficient at two wavelengths.

In this work, systematic theoretical calculations were conducted, focusing on two main aspects.
Firstly, the bandwidth of the Raman filter used to extract the Raman backscattered signal from
water was optimized to 6 nm, which reduced the impact of chlorophyll fluorescence on cp(532)
inversion while maintaining the intensity of the Raman backscattered signal. Secondly, an
analysis was conducted to investigate the effects of r650/532 and chlorophyll fluorescence on
cp(532) inversion. The calculations showed that Errort is less than 15% when Chl falls within
the range of 0.01-10 mg/m3.

In terms of hardware design, a low-noise and high-efficiency single photon detector was adopted
to enhance the performance of Raman lidar, enabling the detection of Raman backscattered
profiles from water using a low-power laser. Additionally, a telescope with a small diameter and
narrow FOV was designed to reduce the multiple scattering component in the lidar backscattered
signal, resulting in Klidar being closer to c. Ultimately, conducting field experiments served to
validate the proposed method and demonstrate the feasibility and effectiveness of the Raman
lidar in practical applications.

In future work, we plan to conduct a large number of comparative experiments to further validate
our proposed method, comparing Raman lidar measurements with measurements obtained using
in-situ methods. Additionally, more scattering phase functions will be used in the MC simulations
to validate the established relationship between ct and Kt

lidar. Moreover, to reduce the influence
of chlorophyll fluorescence on the Raman backscattered signal, a laser with shorter wavelength,
such as blue laser, will be considered as a transmitter. Once the effect of chlorophyll fluorescence
on the Raman backscattered signal is reduced, the bandwidth of the Raman filter can be further
increased, thus improving the SNR of the Raman backscattered signal. Furthermore, to enable
the single-photon oceanic lidar to operate during daylight, this lidar will be integrated into an
AUV platform in our future work. In summary, we believe that this work has significant potential,
and the development of this technology will enable scientists to better study ocean carbon stocks
and cycles, promoting a greater understanding of the role of the ocean in the global carbon cycle
and the marine ecosystem as a whole.
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