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ABSTRACT: Terrestrial export of nitrogen is a critical Earth system
process, but its global dynamics remain difficult to predict at a high
spatiotemporal resolution. Here, we use deep learning (DL) to model daily
riverine nitrogen export in response to hydrometeorological and
anthropogenic drivers. Long short-term memory (LSTM) models for
the daily concentration and flux of dissolved inorganic nitrogen (DIN)
were built in a coastal watershed in southeastern China with a typical
subtropical monsoon climate. The DL models exhibited excellent accuracy
for both DIN concentration and flux, with Nash-Sutcliffe efficiency
coefficients (NSEs) up to 0.67 and 0.92, respectively, a performance
unlikely to be achieved by generic process-based models with comparable
data quality. The flux model ensemble, without retraining, performed well
(mean NSE = 0.32−0.84) in seven distinct watersheds in Asia, Europe,
and North America, and retraining with multi-watershed data further improved the lowest NSE from 0.32 to 0.68. DL interpretation
confirmed that interbasin consistency of riverine nitrogen export exists across different continents, which stems from the similarities
in rainfall−runoff relationships. The multi-watershed flux model projects 0.60−12.4% increases in the nitrogen export to oceans from
the studied watersheds under a 20% increase in fertilizer consumption, which rises to 6.7−20.1% with a 10% increase in runoff,
indicating the synergistic effect of human activities and climate change. The DL-based method represents a successful case of
explainable artificial intelligence in environmental science, providing a potential shortcut to a consistent understanding of the global
daily-resolution dynamics of riverine nitrogen export under the currently limited data conditions.
KEYWORDS: nitrogen, riverine export, nonpoint sources, deep learning, LSTM, transfer learning, artificial intelligence

1. INTRODUCTION

Biogeochemical flows pose huge threats to terrestrial andmarine
ecosystems and damage the Earth system’s resilience and
habitability.1,2 Quantifying the riverine export of nitrogen has
long been the key to understanding the significance of global
biogeochemical flows.3−5 Given the current state of technology,
the long-term and high-frequency monitoring of riverine
nitrogen remains costly and applicable only to a small number
of rivers worldwide. Thus, modeling approaches have
advantages in estimating historical exports and projecting future
exports under climate change. Process-based watershed models
such as SWAT,6 HSPF,7 and INCA8 can accurately simulate
riverine nitrogen export with a high temporal resolution.
However, it is time-consuming to develop such models, and
fidelity usually requires a complete dataset and skillful modelers.
In contrast, classic empirical approaches such as the export
coefficient method9 and Load Estimator (LOADEST) model10

require fewer data and less adept modeling skills but can hardly
generate models with adequate spatial transferability (i.e., the
ability to apply a model in settings beyond where it has been
calibrated and validated). As a compromise, hybrid approaches

such as the spatially referenced regression on watershed
attributes (SPARROW) technique5,11 that integrate empirical
modeling with the consideration of watershed processes have
also been developed. Nevertheless, although to some extent such
diversified modeling approaches are suitable at different spatial
and temporal scales, they require diverse types of datasets and
exhibit different levels of simulation accuracy, making it a great
challenge to achieve a coherent understanding of the global
riverine export of nitrogen.
Machine learning (ML), the most representative technology

in artificial intelligence (AI), has been employed for water and
environmental studies for more than two decades.12−14

However, ML was largely deemed a supplement to process-
based approaches and a branch of empirical approaches until
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recent breakthroughs in big data and deep learning (DL)
redefined its role in water sciences.15 In particular, Kratzert et al.
demonstrated the great potential of long short-term memory
(LSTM),16,17 a special type of recurrent neural network (RNN),
in the simulation of runoff; at present, LSTM is themost popular
DL approach in hydrological modeling.18−20 More recently,
Jiang et al. developed a novel framework to implant process
understanding into RNN architectures that further enhanced
the simulation/prediction accuracy and intelligence in DL
deductions on hydrological modeling tasks.21 These studies
achieved DL-based hydrologic models with excellent spatial
transferability.22−24 The fact that DL excels at transferring
prelearned hydrological knowledge to different basins indicates
the interbasin consistency of hydrological processes. Two
further questions of greater importance are whether this
interbasin consistency in hydrological processes manifests in
biogeochemical flows, e.g., the riverine export of nitrogen, and
whether DL can effectively utilize such consistency, if it exists, in
transfer learning at regional, continental, and even global scales.
Recent investigations have reported a burst of LSTM

applications in water quality modeling,25−29 most of which
were focused on the conditions of the target waterbody (e.g.,
water level, temperature, and chemical concentrations) without
considering basin-scale driving forces (e.g., precipitation,
irrigation, and fertilizer application). For example, Liang et al.
forecasted the concentration of chlorophyll a with a 1- to 30-day
lead time using six water quality parameters (including the
chlorophyll a concentration itself) as the input features,26 and
Song et al. predicted the dissolved oxygen (DO) concentration 1
week ahead based on the DO concentrations over the preceding
10 weeks.28 Partially, the good performance of LSTM is due to
the collinearity between different water quality parameters and/
or the strong autocorrelation of the parameters. Zhi et al. built an
LSTM model to predict DO concentrations in unmonitored
rivers with hydrometeorology data and streamflow data.25 The
model was trained using a large set of data collected from 236
basins across the United States, and the results indicated the

interbasin consistency of water quality processes; however, the
underlying mechanisms were not explored. Compared with
streamflow and DO, nitrogen is involved in more complex
watershed processes, and much less observational data are
available. Accordingly, how to fully exploit the predictive power
of DL in nitrogen modeling under such conditions and how to
achieve prediction accuracies comparable to those of hydrologic
modeling remain unaddressed. In addition, the black-box nature
of DL models has raised many arguments about whether such
models are sufficiently comprehensible.30 Consequently,
interpretative DL is now an emerging research front in many
fields, including hydrology,31−33 as it can provide insights into
black-box model processes regarding how DL models produce
outputs for given inputs and thereby enhance users’ confidence
in the prediction. A wide variety of post hoc interpretation
methods, e.g., layerwise relevance propagation,34 integrated
gradients,35 and expected gradients,36 have been developed.
However, watershed biogeochemical flows have not yet been
examined with interpretative DL.
This study developed a DL-based approach to model the

dynamic riverine export of nitrogen that explicitly considers
nonpoint sources of nitrogen. The dissolved inorganic nitrogen
(DIN, including nitrite, nitrate, and ammonia) flux of a coastal
watershed in southeastern China with a typical subtropical
monsoon climate was modeled using LSTM, and post hoc
interpretation was performed on the DL models. The trans-
ferability of the trained models was examined in seven distinct
watersheds distributed on three continents (i.e., Asia, Europe,
and North America). This study aims to address three major
research questions: (1) From the perspective of DL-based AI,
what are the critical basin-scale driving forces of the daily
riverine export of nitrogen? (2) Does the riverine export of
nitrogen exhibit interbasin consistency, and if so, what is the
mechanism? and (3) Can DL-based AI leverage interbasin
consistency for transfer learning from data-rich watersheds to
unmonitored watersheds? Overall, this study demonstrates that
the deep learning method can substantially improve the

Figure 1. Study area. (a) Location of the Jiulong River watershed in China; (b) the river network and hydrological and weather stations in the
watershed; and (c) land uses and cropping structure in the watershed.
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predictability of riverine nitrogen export, in both time and space
dimensions, while respecting the existing knowledge, which
represents a successful case of explainable AI37,38 in environ-
mental science.

2. MATERIALS AND METHODS
2.1. Study Area. The Jiulong River watershed (JRW) in

southeastern China (Figure 1a) is a good testbed for studying
the biogeochemical processes of nutrients under a subtropical
monsoon climate.39−41 Long-term studies in this area have
accumulated an adequate amount of nutrient data for practicing
DL-based modeling. The JRW has a total area of 14 740 km2,
with an average annual temperature of 20.9 °C and an average
annual precipitation of 1600 mm. Three river branches, the
North River, West River, and South River, drain water from the
JRW into the ocean (Figure 1b). The riverine nitrogen export
from the JRW was estimated to have increased nearly 5 times
from 6 × 103 tN/a in 1980 to 28 × 103 tN/a in 2010.42 The
North River watershed (NRW) is the largest subbasin, with a
drainage area of 9570 km2 and a mean annual runoff of 8.33
billionm3 (approximately 2/3 of the total runoff from the JRW);
thus, the NRW was selected to train the DL model in this study.
The NRW covers five administrative areas, including the

entire city of Longyan, Zhangping city, Hua’an County,
Changtai County, and a part of Zhangzhou city. Seventy-eight
percent of the area of the NRW is forest, while 16% comprises
arable land, 3% is urban and residential land, 2% is water, and 1%
is covered with bare land and grassland (Figure 1c). Agriculture
is the dominant industry in the NRW, and fertilizer accounts for
more than half of the nitrogen source input over this subbasin,
while livestock breeding makes up 20% of the nitrogen source
input.43 Paddy rice is themain crop in theNRW, with a cropping
area of 617.3 km2. In addition, many commercial crops are
planted, including tea, litchee, banana, grapefruit, seedlings,
peanuts, corn, and vegetables. Peanuts, litchi, paddy rice,
banana, and corn are fertilized mainly in spring and summer,
while the other crops are fertilized throughout the year. The
plant structure in each of the five administrative areas and the
fertilization schedules for different crops are summarized in the
Supporting Information (SI) in Tables S1 and S2, respectively.
2.2. Data Sources and Hypotheses of Fertilizer

Application. Six years of daily streamflow data between 2014
and 2019 were collected from the Punan station on the North
River, and daily meteorological data (including temperature,
precipitation, relative humidity, wind speed, surface pressure,
and solar radiation) during the same time period were obtained
from four weather stations (Figure 1b) run by the local
governments. The concentration of DIN, denoted CDIN, was
monitored at the outlet of the NRW by the Marine Monitoring
and Information Service Center, Xiamen University (MMIS).
We obtained the daily CDIN data from 2014−2019 from MMIS.
Additional information on the water sample processing and
measurement procedures is provided in Text S1 in the SI.
One distinctive feature of the DL-based modeling scheme in

this study is that a nonpoint source of nitrogen (i.e., fertilizer
application and livestock breeding) is considered a basin-scale
driving force, which is critical if the model is used to project
future scenarios and/or to support watershed management
practices. To drive daily CDIN simulations, data on daily nitrogen
fertilizer application rates (FARs, kg N/day) and livestock
breeding are needed. However, such high-resolution informa-
tion is largely unavailable in real-world situations. In this study,
only yearly estimates of fertilizer application and livestock

breeding at the city/county level are available from the statistical
yearbooks of the cities/counties within the NRW. Therefore, to
match the modeling time scale, we first derived the monthly
FARs (kg N/month) of each administrative area from its yearly
FARs (see Text S2 in the SI for details regarding the calculation)
based on the cropping structure and fertilization schedule (see
Tables S1 and S2, respectively). As no reliable information is
available to further downscale the monthly FARs to daily values,
an inverse approach was adopted in this study.44 We proposed
and compared the following four hypotheses.
Hypothesis 1: The monthly FAR is randomly distributed

among each day in the month. With this hypothesis, the daily
FAR (denoted DayFARi) can be expressed as

=
∑

×

=
=

=
i

n m

DayFAR
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where n is the number of days in monthm, MonFARm is the total
nitrogen FAR in month m, and RandNum is a random number
that has a uniform distribution between 0 and 1.
Hypothesis 2: The monthly FAR is equally distributed among

each day in the month. The daily FAR can then be expressed as
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Hypothesis 3: The monthly FAR is equally distributed on each
rainy day. The daily FAR can be expressed as
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where pi is the precipitation on day i. The value of ε(pi) is 0 if pi =
0 and 1 if pi > 0.
Hypothesis 4: The monthly FAR is distributed among rainy

days in proportion to the daily precipitation. The daily FAR can
be expressed as
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Hypotheses 1 and 2 represent two common strategies for
temporal downscaling of pollutant source loading data when no
auxiliary information is available, while Hypotheses 3 and 4
reflect our speculation on the potential relationship between
weather conditions and fertilization behavior. All of these
hypotheses were examined during the establishment of the DL
models for the DIN concentration and flux, and the most
plausible hypothesis was identified inversely based on model
performance testing. Considering that there are no significant
variations in livestock breeding scale within a year, we assumed
that the pollution from livestock and poultry is equally
distributed on each day.

2.3. DL Models. This study built DL models using LSTM, a
network with a special RNN architecture proposed in 1997.45
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Compared with traditional RNNs that can remember only
sequences within 10 time steps,46 LSTM contains a memory cell
that can store information over a long time period. LSTM was
originally designed to solve the vanishing gradient problem
encountered during the training of traditional RNNs on time
series tasks. Text S3 and Figure S1 in the SI provide additional
information on LSTM, and more technical details can be found
in the literature.17,47,48

In building the LSTM models for the NRW, the data from
2014 to 2017 were used for training, while the data from 2018 to
2019 were used for testing. The runoff (Q), nonpoint sources of
nitrogen (NSN), that is, nitrogen FARs and livestock breeding
of different administrative areas, andmeteorological variables on
the present and preceding 20 days (preliminary tests showed
that features beyond 20 days would have a negligible impact)
were candidate model inputs (i.e., input features). The
meteorological variables included temperature, precipitation
(P), relative humidity, wind speed, surface pressure, and solar
radiation, and basin-wide daily mean values were considered.
Using basin-wide mean values of meteorological inputs is a
common practice in LSTM-based hydrological modeling,16,22,33

although recent studies show that high-resolution data fields of
meteorological inputs may further enhance the prediction
accuracy of neural networks.49,50 This study used the average
values derived from the fourmeteorological stations in the NRW
(Figure 1) for the following main reasons: (1) reanalyzed
meteorological data of high spatial resolution are not available
for the two Chinese watersheds, and the publicly accessible
reanalysis datasets are of coarse resolution (e.g., the ERA-551

and ERA-interim52 datasets have grid sizes of approximately 31
and 80 km, respectively); (2) the four stations are national

stations whose locations were carefully determined to ensure
representativeness, and the quality of data collected at these
stations is high. All input features were normalized through min-
max normalization. The mean square error was adopted as the
loss function, and theNash-Sutcliffe efficiency coefficient (NSE)
was used to evaluate the model performance. We performed two
numerical experiments (see Table S3 in the SI for a summary) to
build a variety of LSTM models for the NRW.
Experiment 1: Examining the four hypotheses of daily

nitrogen FAR. In this experiment, we built four groups of
LSTM models corresponding to the four hypotheses, each with
250 random replicates. The LSTM models corresponding to
Hypothesis 1 were assigned fixed initial weights but a randomly
selected daily FAR, which is the dominant source of uncertainty
in this experiment, while the LSTM models in the other three
groups were run 250 times with random initial weights.
Meanwhile, for each group of LSTM models, the features that
contributed the most to the CDIN and FDIN predictions were
identified using a DL interpretation algorithm (see Section 2.4),
and other features with minor contributions were excluded from
the models. The hypothesis leading to the best model
performance was adopted in the following analyses, and the
models with the best performance in predicting CDIN and FDIN
under this hypothesis (denoted as LSTM-C and LSTM-F,
respectively) were further interpreted (see Section 2.4).
Experiment 2: Examining model transferability. In this

experiment, we chose two ensembles of models under the
most plausible hypothesis in Experiment 1, one for CDIN

(denoted as LSTM-C-TL) and the other for FDIN (denoted as
LSTM-F-TL), to perform transfer learning across continents

Figure 2. Locations of the North River watershed (NRW) for building the nitrogen flux models and the seven watersheds for transfer learning,
including the West River watershed (WRW) in China; the Lillebæk, Odderbæk, and Uggerby watersheds in Denmark; and the Newport Bay (NPB),
North Raccoon River-Sac City (NR-SC), and Upper Kankakee River (UKR) watersheds in the United States.
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(Section 2.5). The selected models’ NSE should be (1) in the
range of 5−95 quantiles and (2) above 0.5.
2.4. Method of DL Interpretation. We adopted the post

hoc approach known as Shapley additive explanations
(SHAP)53 to further interpret the behaviors of LSTM models.
The SHAP approach is based on the Shapley value in
cooperative game theory. In a cooperative game, the Shapley
value assigns a unique and fair distribution of the total generated

surplus among all players of a coalition.54 The Shapley value of a

feature (i.e., predictor) is its contribution to the prediction: the

larger the absolute Shapley value is, the higher the contribution

of the feature. Given a characteristic function val in a coalition

game, the Shapley value is defined as

Figure 3. Performance of the deep learning models built under different hypotheses of daily fertilizer application rates (FARs). (a, b) Violin plots of
NSE (testing period) under the four hypotheses for the prediction of CDIN and FDIN, respectively. (c, d) Simulation results of the best concentration
model (LSTM-C) and flux model (LSTM-F), respectively, where colored (red and green) lines represent the simulations and black lines with shading
represent the observations. The training period is 2014−2017, and the testing period is 2018−2019.
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where S is a subset of the features used in the model; x is the
vector of feature values of the instance to be explained; p is the
feature dimensions; and val(S∪{xj} − val(S)) refers to the
marginal contribution of xj to the prediction.
The contribution of each feature to the prediction in the

SHAP approach is manifested by the SHAP value, which is an
estimation of the Shapley value. Given a prediction model f, the
SHAP value is calculated as
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where f x (S) = E[f(x)|xs]. By averaging the absolute SHAP
values per feature across the data, we obtain the feature’s global
importance:

∑ ϕ= | |
=

Ij
i

n

j
i

1

( )

(7)

where n is the sample size of feature j in the training dataset.
2.5. Transfer Learning across Continents. To investigate

the potential interbasin consistency of riverine nitrogen export,
Experiment 2 was conducted, in which the selected models (i.e.,
LSTM-C-TL and LSTM-F-TL) trained and tested in the NRW
were “naively” (i.e., without retraining) used in seven distinct
watersheds located on different continents (Figure 2). These
seven watersheds included the West River Watershed (WRW),
another subbasin of the JRW (Figure 1b); the Lillebæk,55

Odderbæk,56 and Uggerby57 watersheds in Denmark; and the
Newport Bay (NPB),58 North Raccoon River-Sac City (NR-
SC),59 and Upper Kankakee River (UKR)60 watersheds in the
United States. These seven watersheds are significantly different
in size, climate, and geographic and socioeconomic conditions
(Figure 2). More detailed descriptions of these watersheds can
be found in the SI (Text S5, Figure S2, and Table S4), indicating
their distinctive watershed conditions. In these watersheds, we
have adequate input data to drive the flux models, and the data
were prepared in the same format as that in the NRW case (see
Text S4 and Tables S3 and S5). The model’s transferability was
then assessed by comparing the simulation results against the
respective observations.
For each of the seven watersheds, Pearson correlation analysis

and wavelet coherence analysis61,62 were performed to
characterize the dynamic response of streamflow to rainfall.
The relationships between the response characteristics and the
model transferability in different watersheds were further
examined, based on which insights into the interbasin
consistency of riverine nitrogen export were achieved. A
technical overview of the wavelet coherence analysis and results
is included in Text S6 and Figure S3 in the SI.

3. RESULTS
3.1. LSTM Performance. LSTM models of DIN concen-

tration and flux were built for the NRW (Figure 1). Post hoc
interpretation using the SHAP approach quantified the global
importance of each feature (i.e., the absolute SHAP value),
which indicates that Q, NSN, and P are the most significant

features for the prediction of CDIN and FDIN, while the remaining
features have negligible contributions (see Figure S4 in the SI).
While the importance ranking of the three features is the same
for CDIN and FDIN (Q > NSN > P), NSN appears to have a more
substantial contribution to the prediction of CDIN than that to
the prediction of FDIN. The normalized importance score of
NSN for CDIN is approximately triple that for FDIN. This
difference may imply that the dynamics of nitrogen concen-
tration are more dependent on biogeochemical processes than
the dynamics of nitrogen flux. In this study, Q, NSN, and P over
the present and preceding 20 days were used as the input
features of the LSTM models.
Figure 3a illustrates the performance of the LSTMmodels for

CDIN in the testing stage under the four hypotheses of
intramonthly variation in FARs (Experiment 1). The violin
plot shows the distribution of the NSE as the performance
measure under each hypothesis based on the 250 model
replicates. The daily FARs of each administrative area under
Hypothesis 1 were generated randomly in each of the 250
simulations, creating a wider NSE range (approximately 0.24).
The variations in the NSE values under the other three
hypotheses resulted from the uncertainties associated with
model training (i.e., the random initialization of weights 250
times). The LSTM-C models under Hypothesis 4 (i.e., FARs
occur on rainy days in proportion to the daily precipitation)
generally exhibit significantly better performance than the
models under the other three hypotheses and the same for the
LSTM-F models (Figure 3b). These results indicate that
Hypothesis 4 may be the most plausible assumption regarding
the daily nitrogen FARs in the NRW. The plausibility of
Hypothesis 4 was further confirmed in a field survey conducted
in August 2020. Because overfertilization is very common in the
study region, if fertilizer is applied in dry periods, farmers would
have to irrigate extra water to dilute the fertilizer to ensure that
the fertilizer could be effectively used by crops and to avoid
burning the seedlings. Naturally, farmers would prefer applying
fertilizer immediately before or during rainfall events, partic-
ularly significant events, to reduce labor and water usage.
Therefore, only Hypothesis 4 was considered in transfer learning
(Experiment 2).
Figure 3c,d shows the simulation results by the LSTM-C and

LSTM-Fmodels with the best performance in the testing period,
respectively. For the LSTM-C model, the values of NSE on the
training dataset and testing dataset are 0.86 and 0.67,
respectively, and the mean predicted CDIN (=2.08 mg/L) is
very close to the observation (=2.07 mg/L) on the testing
dataset, with the root mean square error (RMSE) and mean
absolute error (MAE) being 0.26 and 2.1 mg/L, respectively.
Although some extreme values are not well matched, the
decreasing trend across the years and seasonal variation in CDIN
are nicely captured by the model. The performance of LSTM-C
is closely related to the FAR data quality because daily FAR data
are a rough approximation of the real situation. The mismatches
of some extreme values may be attributed to the inaccuracy of
the daily FAR data, which were downscaled from yearly and
monthly estimates based on Hypothesis 4 (see Section 2.3). For
FDIN, the performance of the LSTM-F model is superior on both
the training dataset and the testing dataset (NSE equaling 0.96
and 0.92, respectively). Such good performance is unlikely to be
achieved by generic process-based models (e.g., SWAT) for
daily nutrient modeling with comparable data quality. For
benchmarking, we also built multiple linear regression models
for CDIN and FDIN for comparison, and the respective NSE values
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on the testing dataset are -2.51 and 0.70, much lower than those
of LSTM-C and LSTM-F.
3.2. Interpreted Model Behaviors. Figure 4a,b presents

the time series of the mean SHAP values, ϕ̅NSN and ϕ̅Q, which
represent the accumulative (considering a time lag of up to 20
days) contributions of NSN and Q, respectively, to the
predictions of CDIN and FDIN on each calendar day averaged
over the 4 years of the training period. While Q is more
influential than NSN on the predictions of both CDIN and FDIN,
the magnitude of ϕ̅Q is 1 order of magnitude higher than ϕ̅NSN

for the DIN concentration (Figure 4a) and 2 orders of
magnitude higher for the flux (Figure 4b). Q is largely
determined by rapid watershed processes such as surface flow
formation and concentration, while nitrogen in fertilizer
undergoes both fast (e.g., surface flow) and slow (e.g.,
groundwater flow and plant uptake) processes before it reaches

the watershed outlet. Thus, Figure 4a,b implies that FDIN is
dominated largely by rainfall−runoff processes, while CDIN

involves more complex phenomena, which may explain the
better performance of LSTM-F demonstrated before. Figure
4c,d illustrates the absolute SHAP values ofQ (|ϕQ|) and NSN (|
ϕNSN|) for different time lags; these plots further confirm that
CDIN involves more complex and slow processes and therefore
has a longer “memory” of historical inputs than FDIN. For LSTM-
F (Figure 4d), the responses of FDIN to runoff generation
(reflected by Q), livestock breeding, and fertilizer application
(reflected by NSN) diminish exponentially within 1 week, while
for LSTM-C (Figure 4c), the influence of Q and NSN on CDIN

lasts approximately 2 weeks.
In addition, ϕ̅NSN demonstrates a significant positive

correlation with NSN for both LSTM-C (middle plot in Figure
4a) and LSTM-F (middle plot in Figure 4b) and is generally

Figure 4. LSTM model interpretation results. (a, b) Mean SHAP values ϕ̅NSN and ϕ̅Q (averaged over the 4 years of the training period) for CDIN and
FDIN, respectively. The time series of ϕ̅NSN and ϕ̅Q (red lines) reflect the accumulative (considering a time lag of up to 20 days) contributions of NSN
and Q, respectively, on each calendar day. The values in the gray boxes indicate the Pearson correlation coefficients of the respective time series. The
NSN (green lines) and Q (blue lines) features, as well as the observed concentration and flux (black lines), are plotted along with ϕ̅NSN and ϕ̅Q. (c, d)
Absolute SHAP values of Q (|ϕQ|) and NSN (|ϕNSN|) for CDIN and FDIN, respectively. |ϕQ| and |ϕNSN| were computed for different time lags, ranging
from 0 to 20 days, across the training dataset. The upper and lower boundaries of the color bands represent the 95th and 5th percentiles, respectively,
and color lines indicate the mean values.
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small in fall and winter and high in spring and summer. This
pattern coincides with the timing of fertilizer application in the
study area. During fall and winter, fertilizer consumption in the
NRW is small, as most crops are harvested in the fall. In spring

and summer, multifarious agricultural activities dramatically
increase fertilizer consumption, and a large amount of reactive N
is introduced into the basin. In contrast, ϕ̅Q is negatively
correlated with Q for LSTM-C (bottom plot in Figure 4a) but

Figure 5. Performance of LSTM-F-TL in the seven watersheds for transfer learning. The goodness of fit of the model ensemble in the (a) WRW, (b)
Lillebæk, (c)Odderbæk, (d)Uggerby, (e) UKR, (f) NR-SC, and (g)NPBwatersheds. The y-axis represents the ensemblemean predictions. Themean
NSE (i.e., the observations against the ensemble mean predictions) is indicated in the top left corner. Covariations of the mean NSE and (h) 1-day-
lagged Pearson correlation coefficients between rainfall and runoff and (i) mean magnitude-squared coherence between rainfall and runoff. (j, k, l)
Time-lagged cross-correlation between rainfall and runoff in the eight watersheds.
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positively correlated with Q for LSTM-F (bottom plot in Figure
4b). In the NRW, the wet season coincides with the growing
season of crops, in which fertilization application occurs. Thus,
the contribution of Q to the flux is more significant in the wet
season (i.e., a higher Q produces a greater nonpoint source
loading of nitrogen), which explains the positive correlation
betweenϕQ andQ for LSTM-F. In the dry season (lowQ), when
fertilization application is minimal, an increase in Q has a
significant dilution effect (i.e., the concentration is sensitive to
Q), while in the wet season, the nonpoint source input and
dilution effect cancel each other out to a certain degree;
therefore, the concentration is less sensitive toQ, which explains
the negative correlation for LSTM-C.
Overall, the temporal patterns recognized by the interpretive

DL are consistent with the physical knowledge, which indicates
that our LSTMmodels have learned the correct knowledge from
the data.
3.3. Model Transferability. The LSTM-C-TL and LSTM-

F-TL model ensembles built in the NRW (selected in
Experiment 2) were further tested without retraining at seven
distinct watersheds across three continents (Figure 2). LSTM-
C-TL showed poor transferability (Figure S5 in the SI), while
LSTM-F-TL achieved surprisingly good agreement between the
predicted and observed FDIN (Figures 5a−g and S6). This
difference in transferability is consistent with outcomes of
observational studies at various scales; that is, discharge varies by
over several orders of magnitude, while nitrogen concentrations
vary only a few factors.63−66 Therefore, the nitrogen flux will be
strongly governed by discharge. If the model accurately
simulates discharge (Figure S7 in the SI shows the excellent
performance of LSTM in simulating the discharge from the
NRW), the nitrogen flux prediction will be reliable. In contrast,
nitrogen concentrations in streams vary within only a few factors
and are controlled by a more complex interplay of hydrological,
geochemical, and microbiological processes; as a result, it is
more difficult to predict nitrogen concentrations. In addition,
inaccurate data on nonpoint sources of nitrogen may also
contribute to the difference in transferability. In this study, the
fertilization data of different watersheds are inconsistent (i.e.,
they were collected from different sources, are in different data
formats and of different spatial and temporal resolutions, and
have different levels of accuracies). However, the transferability
of LSTM-F-TL is not significantly impacted by this data
inconsistency because the importance of nonpoint sources of
nitrogen to the flux simulation is much lower than their
importance to the concentration simulation (Figure S4 in the
SI).
LSTM-F-TL performs the best in the WRW (mean NSE =

0.84), followed by the NR-SC (mean NSE = 0.73) and Lillebæk
watersheds (mean NSE = 0.73). The performance degrades
slightly in the two Denmark watersheds and one U.S. watershed
but is still fair. In the Uggerby (mean NSE = 0.67) watershed,
LSTM-F-TL tends to underestimate large FDIN values, while in
the Odderbæk watershed (mean NSE = 0.55) and the UKR
watershed (mean NSE = 0.65), LSTM-F-FL tends to over-
estimate small FDIN values. The mean NSE in the NPB
watershed equals 0.32, which is the lowest among the seven
watersheds.
We speculate that the transferability of LSTM-F-TL is related

to the rainfall−runoff relationship because FDIN is strongly
governed by discharge, as discussed above. Figure 5j,k,l shows
the time-lagged cross-correlation between rainfall and runoff for
the NRW and the seven watersheds for transfer learning, which

provides a way to compare the rainfall−runoff relationships
among the seven watersheds. As Figure 5j shows, the WRW,
Uggerby, UKR, and NR-SC watersheds have the same
relationships as the NRW, featuring a relatively high cross-
correlation with the peak at a 1-day lag. The Lillebæk and
Odderbæk watersheds also have relatively high cross-correla-
tions, but the rainfall and runoff therein are almost synchronous
(i.e., the correlation peaks at lag = 0), which may be due to their
small drainage areas (Figure 2). The LSTM-F-TL model
ensemble exhibits satisfactory transferability in these six
watersheds. In contrast, the relationship in the NPB watershed
is distinctive from those in the other watersheds, featuring a low,
multimodal cross-correlation pattern. This unique rainfall−
runoff relationship may explain the unsatisfactory transferability
in the NPB watershed.

4. DISCUSSION

4.1. Interbasin Consistency. Although the seven water-
sheds employed for transfer learning are significantly different
from the NRW in size, climate, and geographic and socio-
economic conditions, the LSTM-F-TL model built in the NRW
exhibits good performance in six of them, which offers strong
support for the existence of interbasin consistency. However,
how does the DL model recognize and utilize this consistency?
The answer may be rooted in the special architecture of LSTM
that can mimic watershed nitrogen processes. The architecture
of the LSTM cell has four key components, namely, the cell
state, forget gate, input gate, and output gate (see Figure S1 in
the SI), which may correspond to specific processes when
modeling physical variables (although the correspondence is
untransparent). In modeling the nitrogen flux, the cell state can
analogize the watershed storage of nitrogen (e.g., soil and
groundwater storage). Moreover, the update of the cell state
depends on the three gates, and each gate can analogize certain
processes that influence the export of nitrogen at the watershed
outlet. In each time step, the input gate maps the input features
(Q, NSN, and P in our case) into inputs (e.g., fertilization,
livestock breeding, atmospheric deposition, and biological
nitrogen fixation) that are significant enough to influence the
cell state. The forget gate determines what information of the
cell state in the previous time step can be ignored and can
analogize processes that remove nitrogen from the watershed
system, such as plant uptake, volatilization, and denitrification.
Finally, the output gate determines the response of the output to
the change in the cell state in each time step; intuitively, it
determines how much nitrogen in the storage tank can be
flushed out and delivered to the watershed outlet. Essentially,
the interbasin consistency is reflected by the generalizability of
the trainable parameters of the neural network across different
watersheds.
The similarity between the rainfall−runoff relationship in the

NRW and those in six of the seven tested watersheds (see
Section 3.3) implies that the network parameters mapping the
runoff generation process (possibly associated with the output
gate), after being trained in the NRW, are highly generalizable in
the six watersheds. Moreover, the DL interpretation in Section
3.2 indicates that the DIN export flux is routed mainly by fast
flows such as surface runoff; therefore, the network parameters
mapping the runoff generation process may largely determine
the prediction of DIN export. Together, these pieces of evidence
explain why LSTM-F-TL exhibits good performance in all of the
tested watersheds except the NPB watershed and suggest that
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similarity among hydrological responses is an important
dimension of the interbasin consistency of nitrogen export.
Another dimension of the interbasin consistency may be the

similarity in nitrogen input, which is possibly related to the input
gate of LSTM. Agriculture is the dominant industry in all of the
basins we selected for transfer learning. The high interbasin
consistency of the dominant nitrogen source further endorses
the transferability of LSTM-F-TL. However, the degradation in
the performance of LSTM-F-TL in the three Denmark basins is
possibly induced by their different patterns of nitrogen input.
Farms in the NRW are small in size, and the fertilization
schedule is highly decentralized and irregular, whereas Denmark
has a flat terrain with relatively large farms and a much higher
level of agricultural mechanization than the NRW, which results
in a relatively fixed schedule of fertilization.67

In contrast, LSTM-C-TL demonstrates poor transferability
(Figure S5), which implies inconsistency across the watersheds.
As the DL interpretation results show, CDIN is influenced by
higher-complexity processes in addition to runoff formation,
such as plant uptake and denitrification. Such processes may
significantly vary among the tested watersheds. For example, the
main crop in the NRW is paddy rice, which is different from the
other tested watersheds except the WRW. Climate and
geographic conditions may also cause dissimilarities in the
water environment, for example, by varying the denitrifying
bacterial population and the conditions favoring denitrification
(e.g., oxygen concentration and pH). Such inconsistencies may
lower the generalizability of the network parameters that are
possibly associated with the forget gate. In addition, the
inconsistency in the data of nonpoint source of nitrogen may
also degrade the transferability of the parameters, as discussed in
Section 3.3.
4.2. Toward a Global Model of Dynamic Nitrogen

Export into Oceans. It remains greatly challenging to reach a
consistent understanding of the global dynamics of riverine
nitrogen export. This study holistically demonstrated that
interbasin consistency exists for the daily DIN flux and that
this consistency can be effectively utilized by DL-based AI,
thereby providing a promising pathway to a global model of
dynamic nitrogen export into oceans worldwide. In runoff
modeling, it has been demonstrated that the tandem training of
LSTM models in a number of watersheds to achieve a general
model is an effective way to increase the model’s trans-
ferability.17,21,22 In this study, we also conducted a tandem
training experiment for the trial. We trained a uniform LSTM
model using data from seven watersheds (i.e., the NRW, WRW,
Lillebæk, Odderbæk, Uggerby, UKR, and NR-SC watersheds)
and tested the trained model in the NPB (featuring the least
similarity with the other watersheds). Q, P, and NSN (under
Hypothesis 4) on the present and preceding 20 days were used
as the model inputs. The LSTMmodels were run 250 times with
random initial weights, and the mean NSE increased from 0.32
(Figure 5g) to 0.68, which is evidence that sufficient data may
enable LSTM to comprehensively identify this interbasin
consistency (i.e., highly general patterns in hydrological
processes, biochemical processes, and human activities). While
the above co-training procedure with only seven watersheds is
preliminary, it does shed light on the ability to construct a
regional or even global DIN export model with broad
transferability using DL.
In addition to the compilation of a global dataset for training a

general model, two critical issues must be addressed before such
a global model can eventually be developed. The first issue is the

accurate simulation of global runoff. With the emergence of
global hydrology,68 many global hydrological models have been
developed in recent decades, such as WBM,69 WaterGAP,70 and
PCR-GLOBWB.71 However, these process-based global models
are difficult to implement and calibrate, and the simplification of
the hydrological processes in these models further leads to low
simulation accuracies.72 Recently, LSTM has achieved remark-
able successes in predicting streamflow, indicating that it is
feasible to build an LSTM-based global streamflow model. We
expect some promising results to emerge in the near future.
The second issue is the treatment of different types of

interbasin consistency. As indicated by the tandem training
experiment, although including more watersheds in the training
set may enhance the model’s transferability, the improvement
may be limited if the training and testing groups of watersheds
have significantly inconsistent nitrogen export characteristics.
We speculate that LSTM-F-TL in this study would not exhibit
good performance in watersheds where point sources (e.g.,
wastewater discharge) dominate the flux. One possible way to
address this problem is to build submodels for different
categories of watersheds. An appropriate watershed catego-
rization may consider two aspects: (1) the rainfall−runoff
relationship (the Pearson correlation coefficient and mean
magnitude-squared coherence used in this study may be
considered metrics) and (2) nitrogen sources. A more
systematic solution is to incorporate static watershed properties
(e.g., land use and soil attributes) as additional input features
such that different types of interbasin consistency are internally
considered by the DL model. Innovative DL architectures have
been proposed in the field of hydrological modeling,21 and
further studies for nutrient modeling are needed.

4.3. Nitrogen Export into Oceans under Rising
Fertilizer Consumption and Climate Change. Global
fertilizer consumption is forecasted to continue to rise in the
future.73 To examine the sensitivity of nitrogen export to global
oceans to rising consumption, the co-trained LSTM models
(Section 4.2) were run to emulate a hypothetical scenario with a
20% increase in nitrogen fertilizer consumption. This degree of
rise is consistent with the existing predictions.74 The hypo-
thetical scenario assumes that daily FARs are evenly increased
and that the pollution from livestock and poultry remains
unchanged. The increase in the mean annual DIN export in the
seven watersheds ranges from 0.60 to 12.4% (0.60% for
Uggerby, 0.66% for the UKR, 0.73% for Odderbæk, 1.1% for
WRW, 3.3% for Lillebæk, 5.1% for NRW, and 12.4% for NPB),
which reflects the significant heterogeneity across different
regions. We also found that the spatially differentiated responses
would be highly dependent on climate conditions. If the future
climate leads to a 10% increase in runoff in the studied
watersheds, the predicted increase in mean annual DIN export
will range from 6.7 to 20.1% (6.7% for the UKR, 7.7% for
Uggerby, 8.3% for NRW, 9.1% for Odderbæk, 10.2% for WRW,
16.6% for Lillebæk, and 20.1% for NPB). While the above
analysis is preliminary, the heterogeneous response and the
synergistic effect between fertilizer consumption and climate
change shed light on the importance and complexity of nitrogen
management in a rapidly changing global environment. Our
study demonstrates that deep learning is a novel and promising
approach to tackle complexity and therefore deserves more
attention.
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