
1. Introduction
It is well established that oceanic horizontal kinetic energy spectra in log-log coordinates feature a large-scale 
plateau at low frequencies, a falling constant-slope band due to mesoscale variability and an internal gravity wave 
continuum interleaved with peaks at near-inertial and tidal frequencies (Ferrari & Wunsch, 2009; Fu et al., 1982). 
These spectral characteristics have been confirmed by numerous observations, including the McLane profiling 
data scattered around the Pacific (Savage, Arbic, Alford, et al., 2017), tidal gauge data (Savage, Arbic, Richman, 
et al., 2017), and moored measurements distributed globally (Luecke et al., 2020). Nevertheless, recent studies 
based on high-resolution observations and numerical simulations demonstrate that this view needs to be refined. 
For example, low-frequency submesoscale flows have overlaps in timescale with mesoscale flows but are charac-
terized by wavenumber spectra with different slopes (Capet et al., 2008); similarly, high-frequency submesoscale 
flows have overlaps in timescale with internal gravity waves (IGWs) (Bühler et al., 2014; Torres et al., 2018), 
especially in strong currents such as the Kuroshio, the Gulf Stream, and the Antarctic Circumpolar Current 
(von Storch et al., 2019). In realistic oceanic settings, balanced flows (e.g., large-scale currents, mesoscale and 
submesoscale flows) and unbalanced flows (e.g., barotropic tides and IGWs) coexist and interact, to different 
extents, with one another. This naturally raises the need for flow decomposition to reveal the respective charac-
teristics of multiscale oceanic motions and examine their dynamical interactions. Normally, filtering-based or 
flow-oriented approaches are used to decompose the simulated full flow of numerical models.

Eulerian filtering, including temporal filtering, spatial filtering, spatiotemporal filtering, is a filtering-based 
approach in the Eulerian frame of reference. In an idealized f-plane simulation of a baroclinically unstable chan-
nel flow, Barkan et al. (2017) associated temporally lowpass-, bandpass-, and highpass-filtered fields with mesos-
cales, submesoscales, and IGWs, respectively. Spatial filtering of the vertical velocity was used by Sugimoto and 
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Plougonven (2016) to separate smaller-scale IGWs emitted from an idealized larger-scale eddy dipole on an f 
plane. On the basis of a significant discontinuity in the slope of summertime sea surface height (SSH) wavenum-
ber spectra, Torres et al. (2019) accomplished unbalanced-balanced flow decomposition through an equivalent 
spatial filtering in order to characterize unbalanced-balanced energy exchange. Spatiotemporal filtering has been 
recently proposed by Qiu et al. (2018) and Torres et al. (2018). Based on outputs from a global, tide-resolving 
and submesoscale-admitting simulation termed as LLC4320 (Rocha, Chereskin, et  al.,  2016; Rocha, Gille, 
et al., 2016), Qiu et al. (2018) computed frequency-wavenumber spectra of surface horizontal velocity and SSH, 
attributed the energies above the dispersion relation curve of mode-10 IGWs and tidal frequencies to unbalanced 
flows, attributed the energies below to balanced flows, defined the transition length scale from balanced to 
unbalanced flows and explored seasonality of this transition scale over the global ocean. Also using the LLC4320 
simulation, Torres et al. (2018) extended similar partitioning analysis, but only relying on the dispersion relation 
of mode-10 IGWs, to other surface-ocean variables such as relative vorticity, horizontal divergence, and sea 
surface temperature. Although Eulerian filtering works well for specific settings or specific purposes, notable 
overlaps exist among the decomposed components (e.g., Jones et al., 2023, Preprint), raising concerns on their 
generic applicability to process studies focusing on interaction mechanisms which require the decomposition to 
be as accurate as possible.

As another kind of filtering-based approach, Lagrangian filtering is recently developed to isolate IGWs and has been 
applied to a number of idealized or realistic (e.g., spontaneous internal-wave-generating or internal-tide-resolving) 
configurations (Bachman et  al.,  2020; Nagai et  al.,  2015; Shakespeare & Hogg,  2017,  2019; Shakespeare 
et al., 2021). In contrast to Eulerian filtering, Lagrangian filtering, which is designed to address the Doppler shift 
issue, operationally identifies IGWs as flows with frequencies above the inertial frequency in a frame of reference 
moving with the full flow. Although it represents an ingenious effort in multiscale flow decomposition, Lagran-
gian filtering requires particle tracking and is thus computationally expensive.

Flow-oriented approaches exploit balanced dynamics (e.g., quasi-geostrophic (QG) theory) for flow decomposi-
tion. Balanced flows, especially mesoscale flows, by definition are essentially governed by the balanced dynam-
ics (e.g., QG theory). It is thus feasible to separate balanced flows from IGWs by imposing underlying dynamical 
constraints. For example, Danioux et al. (2012) first diagnosed the QG vertical velocity and then took the differ-
ence between the total vertical velocity and the QG estimate as that due to IGWs which were generated spon-
taneously by a zonal flow undergoing baroclinic instability. A similar idea worked moderately well in isolating 
tidal SSH from an unstable baroclinic jet subject to idealized tidal forcing (A. L. Ponte et al., 2017). Obviously, 
efficiency of these methods is highly dependent on the applicability and accuracy of the assumed dynamical 
constraints (von Storch et al., 2019). In fact, the QG omega equation cannot account for all contributions from 
balanced motions (Danioux et al., 2012).

Here, we seek to develop dynamics-based methodologies that can be operationally used to decompose the full 
flow, as unambiguously as possible, into large-scale currents, barotropic tides, low-mode IGWs, mesoscale flows, 
high-mode IGWs, and submesoscale flows. Specifically, large-scale currents and barotropic tides are isolated 
as flows with the largest horizontal scale and are further separated from each other through temporal filtering; 
mode-1 and mode-2 IGWs, together termed as low-mode IGWs, are extracted according to their dispersion rela-
tions to guarantee that the polarization relations are satisfied in a dynamically consistent manner; mesoscale flows 
are recovered as the low-frequency flows with the horizontal scale larger than the first baroclinic deformation 
radius; high-mode IGWs (i.e., IGWs excluding low-mode IGWs) and submesoscale flows are distinguished from 
each other based on the relative size of spectral magnitudes of the horizontal divergence and relative vorticity, 
without any a priori assumption that submesoscale flows (high-mode IGWs) are non-divergent/weakly divergent 
(irrotational).

The paper is organized as follows. Section 2 introduces the LLC4320 simulation. Section 3 develops the meth-
odology of decomposition. Section 4 evaluates the decomposition methodology in the South China Sea (SCS), 
particularly focusing on examination of the dynamical consistency among variables for each decomposed flow 
regime. This paper concludes with a discussion in Section 5 and a summary in Section 6.

2. The LLC4320 Simulation
The global 1/48° LLC4320 simulation is based on the Massachusetts Institute of Technology general circulation 
model (MITgcm; Marshall et al., 1997) and outputs hourly snapshots for 14 months, from September 2011 to 
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November 2012. The vertical grid spacing varies from 1 m at the surface to ∼30 m near the 500-m depth, with 
40 vertical levels in the top 525 m. At the surface, the simulation is forced by 6-hourly atmospheric fields from 
the 0.14° European Center for Medium-Range Weather Forecasts atmospheric operational model analysis. Astro-
nomical tidal forcing, in terms of the full luni-solar potential, is applied to the MITgcm as an additional atmos-
pheric pressure forcing (R. Ponte et al., 2015). Readers are referred to Arbic et al. (2018) for a detailed description 
of the LLC4320 simulation configuration.

Several previous studies have evaluated various aspects of the LLC4320 simulation against observations (e.g., 
Luecke et al., 2020; Qiu et al., 2018; Rocha, Chereskin, et al., 2016; Rocha, Gille, et al., 2016; Savage, Arbic, 
Alford, et al., 2017; Savage, Arbic, Richman, et al., 2017; J. Wang et al., 2018; Yu et al., 2019). A complete 
summary is beyond the scope of this study but we note that the simulated large-scale currents (J. Wang et al., 2018), 
mesoscale variabilities (Qiu et al., 2018) and super-inertial flows (Savage, Arbic, Alford, et al., 2017) generally 
agree well with the observations.

The SCS is featured by well-developed basin-scale circulation (e.g., Hu et al., 2000), energetic barotropic tides 
(e.g., Zu et al., 2008), enormously strong internal tides (Zaron, 2019; Zhao, 2014), intense mesoscale activity 
(Cheng & Qi, 2010; Chen et al., 2011; Chu et al., 2020), and abundant submesoscale features (Lin et al., 2020; 
Ni et al., 2021). Lin et al. (2020) evaluated LLC4320 simulation outputs in the SCS against both moored and 
remote-sensing observations. They concluded that the basin-scale circulations, mesoscale and submesoscale vari-
abilities, and tidal motions are reproduced with a high degree of realism. As such, the outputs of the LLC4320 
simulation in the SCS can serve as a virtual laboratory for evaluating the proposed flow-decomposition method-
ology. Specifically, we select a sub-region of the central SCS indicated by the red rectangle in Figure 1 to carry 
out our analysis.

3. Methodology
The frequency-wavenumber spectra were the basis of several recent LLC4320-based studies (e.g., Qiu et al., 2018; 
Savage, Arbic, Alford, et  al.,  2017; Torres et  al.,  2018). The starting point for our decomposition is also 
frequency-wavenumber spectra. Here the decomposition is illustrated using SSH; other variables are decomposed 
following the same approach. The LLC4320 simulated SSH in the study region is collected in a three-dimensional 
(3D) matrix (zonal, meridional, and temporal), namely 𝐴𝐴 𝐴𝐴Full(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) . Missing values due to bathymetry are inter-
polated/extrapolated by means of the discrete cosine transform (Garcia, 2010; G. Wang et al., 2012). Following 

Figure 1. ETOPO1 bathymetry (shading) and the gravity-wave phase speeds (contours) of the South China Sea and adjacent 
regions. The gravity-wave phase speeds for the (a) first and (b) second baroclinic modes are calculated using a MATLAB 
script (i.e., dynmodes.m; https://sea-mat.github.io/sea-mat/) based on the World Ocean Atlas (WOA2018). The red rectangle 
indicates our study region and the magenta pentagram shows the location of the extracted mooring data discussed in 
Section 3.1.
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standard practice, the mean and linear trend are removed in each dimension and the matrix is then multiplied by 
a 3D Tukey window with a taper-constant ratio of 0.2 (Arbic et al., 2014), producing the modified matrix 𝐴𝐴 𝐴𝐴𝑚𝑚Full . 
By applying the Fourier transform to 𝐴𝐴 𝐴𝐴𝑚𝑚Full and taking the azimuthal average (Savage, Arbic, Alford, et al., 2017), 
the frequency-wavenumber spectra are finally obtained (Figure 2). For clarity, various oceanic motions that the 
spectra can resolve are labeled in Figure 2. These motions will be separated based on their respective dynamical 
characteristics. It is necessary to note that the mean and trend are not actually discarded and will be immediately 
shown to include important flow components.

3.1. Separating Large-Scale Currents and Barotropic Tides

Large-scale currents have a horizontal scale of O(10 3) km and have frequencies much lower than the inertial 
frequency. Barotropic tides have a similar horizontal scale to large-scale currents but have super-inertial frequen-
cies. Due to their large horizontal scale, both large-scale currents and barotropic tides are contained in the mean 
and linear trend mentioned above. Further separation of large-scale currents from barotropic tides can be accom-
plished via tidal harmonic analysis using for example T_TIDE (Pawlowicz et al., 2002) or simply via a 3-day 
lowpass-highpass filtering. As an example, Figure 3 shows SSH time series for the mean and linear trend at a 
randomly selected location (116.39°E, 16.85°N; denoted by the magenta pentagram in Figure 1). Evidently, baro-
tropic tides (blue and green curves) account for a considerable proportion of the total variability, in agreement 
with dynamical characteristics of the study region (e.g., Yan et al., 2020; Zu et al., 2008). The large-scale currents 
(black curve), including geostrophic and Ekman components, show a significant seasonal variation essentially in 
response to the seasonally reversing monsoonal wind forcing (e.g., Hu et al., 2000).

3.2. Extracting Low-Mode IGWs

Low-mode IGWs are defined to be mode-1 and mode-2 IGWs which are extracted according to their dispersion 
relations. The low-mode IGWs are delimited in Figure 2. The unique dynamical feature of IGWs is that they are 
well-constrained by theoretical dispersion relations. As an example, the dispersion relation curves of mode-1 and 
mode-2 IGWs, which are calculated from the temporally averaged model density profile at a location right in the 
middle of the study region, are shown in Figure 2 as red curves. Remarkably, the super-inertial energy is mostly 
concentrated along the dispersion relation curves. We can thus extract IGWs using signals along those curves. 
Nonetheless, due to the influence of the background flow and spatial variation of the stratification, the energy of 

Figure 2. Frequency-wavenumber spectra of simulated sea surface height in the red-rectangle region of Figure 1. The 
red curves depict dispersion relations for mode-1 and mode-2 internal gravity waves (IGWs). The solid black curves 
surrounding them delimit what is defined as low-mode IGWs in this study. The dashed black lines indicate diurnal (K1, O1) 
and semidiurnal (M2, S2) tidal frequencies. The horizontal magenta line represents the cutoff frequency (i.e., the inertial 
frequency at the southern edge of the study region) between low-mode IGWs and mesoscale motions. The vertical magenta 
line marks the cutoff wavenumber (i.e., the wavenumber corresponding to the minima of the first baroclinic deformation radii 
in the study region) between mesoscale and submesoscale motions. The white dots on the K1, M2 and 0.4-cph lines indicate 
ray-traced wavenumbers detailed in Section 5.1. Also defined and labeled are (a) low-mode IGWs, (b) mesoscale motions, (c) 
high-mode IGWs, and (d) submesoscale motions.
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IGWs is not precisely concentrated along the red dispersion relation curves which are obtained based on a single 
profile; rather, there are high-energy bands spreading wavenumber-wise. Therefore, we allow for a certain range 
(solid black curves in Figure 2) enclosing each dispersion relation curve. By visual inspection, the lower (upper) 
limit wavenumber of the bounding range is set to be below (above) that from the red curve by 𝐴𝐴 7 × 10

−3 (𝐴𝐴 9 × 10
−3 ) 

cpkm; wherever the upper limit of mode-1 IGWs exceeds the lower limit of mode-2 IGWs, the average is taken 
to be the boundary. A similar idea of using the dispersion relation at a specific frequency was applied to extract 
coherent tidal SSH from altimetric or model data, where the wavenumber band was also subjectively determined 
by trial and error (Dushaw, 2015) or through adding/subtracting an offset (Zhao et al., 2019) like our treatment 
here. It is challenging to objectively define the range bounding each dispersion relation curve (Dushaw, 2015) 
somewhat because it is difficult to simultaneously take the nonuniform stratification and background currents 
into account. Under such circumstances, the subjective method could be a convenient and effective choice. Our 
ad hoc selection of the bounding band for each mode will be justified to perform well in Section 4. Mode-3 
IGWs could have been extracted similarly, but the obtained horizontal velocities were not dynamically consistent 
with the extracted SSH according to internal wave dynamics (see Figure S1 in Supporting Information S1). This 

Figure 3. Sea surface height time series for the mean and linear trend at a randomly selected location (indicated by the 
magenta pentagram in Figure 1) in the study region. The red curve in panels (a, c) shows the time series of the removed mean 
and linear trend (MTW, i.e., Mean, Trend, Windowing). The black curve in panels (a, c) indicates the 3-day lowpass-filtered 
time series (i.e., large-scale currents). The blue curve in panels (b, d) denotes the 3-day highpass-filtered time series, and 
the green curve in panels (b, d) is obtained through tidal harmonic analysis (i.e., two different estimates of barotropic tides). 
Panels (c, d) are the same as (a, b), respectively, but zoomed in for the period highlighted in magenta in panels (a, b). Note the 
different y-axis ranges.
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probably implies that the spatiotemporal overlap between IGWs and submesoscale flows (e.g., McWilliams, 2016) 
becomes significant starting from this mode, weakening the effectiveness of using the dispersion relations to 
constrain IGWs at these scales. We hence define the first two modes as low-mode IGWs and the rest as high-mode 
IGWs. The low-mode IGWs (�̂�wave ; ^ denotes the Fourier transform with respect to x, y, and t; thus all variables 
with ^ are functions of 𝐴𝐴 (𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘) which denotes the zonal wavenumber, meridional wavenumber and frequency, 
respectively) are first extracted from the modified full flow (i.e., �̂�Full ) in spectral space according to the banded 
dispersion relation curves, and then their physical fields (𝐴𝐴 𝐴𝐴𝐿𝐿wave ) are recovered via inverse Fourier transform. For 
the extraction of high-mode IGWs, other dynamical constraints are required.

3.3. Extracting Mesoscale Motions

The mesoscale motions are marked in Figure 2. The oceanic mesoscale is regarded here as sub-inertial flows 
with horizontal scales above the first baroclinic deformation radius 𝐴𝐴 𝐴𝐴𝑑𝑑 . Once the low-mode IGWs �̂�wave are 
extracted from �̂�Full , the remainder, that is, �̂�Full − �̂�wave , is lowpass-filtered both in time and space to extract 
the mesoscale flow �̂Meso , where the cutoff period and wavelength are set to be 46.2 hr (i.e., the inertial period 
at the southern edge of the study region) and 50 km (roughly the minimal 𝐴𝐴 𝐴𝐴𝑑𝑑 of the study region), respectively.

3.4. Separating High-Mode IGWs and Submesoscale Motions

Once low-mode IGWs and the mesoscale  are extracted, the remaining SSH variability, namely 
�̂Remn = �̂�Full − �̂�wave − �̂Meso , is due to high-mode IGWs and submesoscale flows, and thus has both wavy and 
vortical features as indicated by the evident propagating features in the horizontal divergence field and the strong 
vorticity filaments in the relative vorticity field, respectively (Figure 4). It is still an unresolved issue to separate 
high-mode IGWs and submesoscale motions (McWilliams, 2016) partly due to the overlaps in time and space 
scales of these wavy and vortical motions. Obviously, the overlaps invalidate the utility of the dispersion relation 
or simple temporal-spatial filtering to carry out further decomposition solely based on SSH data. In the following, 
additional dynamical constraints are invoked to distinguish high-mode IGWs from submesoscale motions, both 
of which can only be roughly indicated in Figure 2.

The governing equations of large-scale currents, barotropic tides, low-mode IGWs and mesoscale flows are 
approximately known. They can be removed from the momentum equation for the full flow and the left terms 

Figure 4. The remaining signal, after low-mode internal gravity waves and mesoscale motions are extracted, for (a) sea surface height, (b) zonal velocity, (c) 
meridional velocity, (d) vertical velocity, (e) horizontal divergence scaled by the local Coriolis parameter f, and (f) relative vorticity scaled by the local Coriolis 
parameter f.
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should govern the evolution of the remaining motions. As an example, consider the zonal momentum equation 
of the full flow

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑣𝑣

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+𝑤𝑤

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑓𝑓0𝑣𝑣 = −

1

𝜌𝜌0

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝐴𝐴𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

 (1)

where 𝐴𝐴 𝒖𝒖 = (𝑢𝑢𝑢 𝑢𝑢𝑢𝑢𝑢) is the velocity associated with the full flow, 𝐴𝐴 𝐴𝐴0 is the Coriolis parameter, 𝐴𝐴 𝐴𝐴0 is the reference 
density and 𝐴𝐴 𝐴𝐴 is the pressure, 𝐴𝐴 𝐴𝐴𝑧𝑧 is the vertical viscosity coefficient. Rewrite 𝐴𝐴 𝒖𝒖 and 𝐴𝐴 𝐴𝐴 as follows

⎧

⎪

⎨

⎪

⎩

𝒖𝒖 = 𝒖𝒖Wave + 𝒖𝒖Geo + 𝒖𝒖Ekman + 𝒖𝒖Remn

𝑝𝑝 = 𝑝𝑝Wave + 𝑝𝑝Geo + 𝑝𝑝Ekman + 𝑝𝑝Remn

 (2)

where the subscript 𝐴𝐴 Wave denotes barotropic tides and low-mode IGWs, 𝐴𝐴 Geo stands for mesoscale flows plus the 
geostrophic component of large-scale currents, 𝐴𝐴 Ekman represents the Ekman component of large-scale currents. 
Recall that 𝐴𝐴 𝐴𝐴Ekman is zero and will be omitted hereafter. Approximately, with the assumption that waves and 
background flows have similar horizontal scales (Kunze,  1985), 𝐴𝐴 Wave is governed by linear wave dynamics 
which additionally includes the straining and Doppler shift (Kunze, 1985); assuming that other flow components 
do not significantly influence its evolution, 𝐴𝐴 Geo satisfies the QG dynamics which is commonly used to explore 
meso- and large-scale geostrophic circulations; 𝐴𝐴 Ekman is in the well-known Ekman balance which assumes that 
the self-interaction (i.e., 𝐴𝐴 𝐴𝐴Ekman

𝜕𝜕𝐴𝐴Ekman

𝜕𝜕𝜕𝜕
+ 𝑣𝑣Ekman

𝜕𝜕𝐴𝐴Ekman

𝜕𝜕𝜕𝜕
+𝑤𝑤Ekman

𝜕𝜕𝐴𝐴Ekman

𝜕𝜕𝜕𝜕
 ) and the cross-interaction with 𝐴𝐴 Geo (i.e., 

𝐴𝐴 𝐴𝐴Ekman
𝜕𝜕𝐴𝐴Geo

𝜕𝜕𝜕𝜕
+ 𝑣𝑣Ekman

𝜕𝜕𝐴𝐴Geo

𝜕𝜕𝜕𝜕
+𝑤𝑤Ekman

𝜕𝜕𝐴𝐴Geo

𝜕𝜕𝜕𝜕
+ 𝐴𝐴Geo

𝜕𝜕𝐴𝐴Ekman

𝜕𝜕𝜕𝜕
+ 𝑣𝑣Geo

𝜕𝜕𝐴𝐴Ekman

𝜕𝜕𝜕𝜕
+𝑤𝑤Geo

𝜕𝜕𝐴𝐴Ekman

𝜕𝜕𝜕𝜕
 ) are negligible, but additionally 

includes the time derivative term to take the slow temporal variation into consideration. Therefore, the following 
equations approximately hold

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

��Wave

��
+ �GE

��Wave

��
+ �GE

��Wave

��
+�GE

��Wave

��
+�Wave

��GE
��

+ �Wave
��GE
��

+�Wave
��GE
��

+�Wave
��Wave

��
+ �Wave

��Wave

��
+�Wave

��Wave

��
− �0�Wave = − 1

�0
��Wave

��
��Geo
��

+ �Geo
��Geo
��

+ �Geo
��Geo
��

+�Geo
��Geo
��

− �0�Geo = − 1
�0

��Geo
��

��Ekman

��
− �0�Ekman =

�
��

(

��
��Ekman

��

)

≈ �
��

(

��
��
��

)

 (3)

where 𝐴𝐴 GE denotes 𝐴𝐴 Geo + Ekman , 𝐴𝐴 𝐴𝐴Wave
𝜕𝜕𝐴𝐴GE

𝜕𝜕𝜕𝜕
+ 𝑣𝑣Wave

𝜕𝜕𝐴𝐴GE

𝜕𝜕𝜕𝜕
+𝑤𝑤Wave

𝜕𝜕𝐴𝐴GE

𝜕𝜕𝜕𝜕
 denotes the straining and 

𝐴𝐴 𝐴𝐴GE
𝜕𝜕𝐴𝐴Wave

𝜕𝜕𝜕𝜕
+ 𝑣𝑣GE

𝜕𝜕𝐴𝐴Wave

𝜕𝜕𝜕𝜕
+𝑤𝑤GE

𝜕𝜕𝐴𝐴Wave

𝜕𝜕𝜕𝜕
 denotes the Doppler shift. Here the assumption that 𝐴𝐴 Ekman contributes domi-

nantly to the viscous term is reasonably made. Subtracting the equation set 3 from Equation 1 gives

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+ 𝜕𝜕Remn

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+ 𝑣𝑣Remn

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+𝑤𝑤Remn

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕

+𝜕𝜕Wave

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+ 𝑣𝑣Wave

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+𝑤𝑤Wave

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕

+𝜕𝜕Remn

𝜕𝜕𝜕𝜕Wave

𝜕𝜕𝜕𝜕
+ 𝑣𝑣Remn

𝜕𝜕𝜕𝜕Wave

𝜕𝜕𝜕𝜕
+𝑤𝑤Remn

𝜕𝜕𝜕𝜕Wave

𝜕𝜕𝜕𝜕

+𝜕𝜕GE
𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+ 𝑣𝑣GE

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+𝑤𝑤GE

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕

+𝜕𝜕Remn

𝜕𝜕𝜕𝜕GE

𝜕𝜕𝜕𝜕
+ 𝑣𝑣Remn

𝜕𝜕𝜕𝜕GE

𝜕𝜕𝜕𝜕
+𝑤𝑤Remn

𝜕𝜕𝜕𝜕GE

𝜕𝜕𝜕𝜕
− 𝑓𝑓0𝑣𝑣Remn = −

1

𝜌𝜌0

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕

 (4)

The interaction terms in Equation 4 can be respectively scaled as

𝑈𝑈Remn𝑈𝑈Remn

𝐿𝐿Remn

,
𝑈𝑈Wave𝑈𝑈Remn

𝐿𝐿Remn

,
𝑈𝑈Wave𝑈𝑈Remn

𝐿𝐿Wave

,
𝑈𝑈GE𝑈𝑈Remn

𝐿𝐿Remn

,
𝑈𝑈GE𝑈𝑈Remn

𝐿𝐿GE
 (5)

As shown qualitatively in Figure  2 and quantitatively in Table  1, 𝐴𝐴 Remn generally has smaller horizontal 
scales, namely 𝐴𝐴 𝐴𝐴Remn < 𝐴𝐴Wave, 𝐴𝐴Remn < 𝐴𝐴GE ; 𝐴𝐴 GE generally has the largest magnitude and 𝐴𝐴 Remn is weakest, so 
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𝐴𝐴 𝐴𝐴Remn < 𝐴𝐴Wave < 𝐴𝐴GE . Thus, the most significant term in Equation 5 is 𝐴𝐴
𝑈𝑈GE𝑈𝑈Remn

𝐿𝐿Remn

 . Correspondingly, Equation 4 can 
be approximated by

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+ 𝜕𝜕GE

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+ 𝑣𝑣GE

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+𝑤𝑤GE

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
− 𝑓𝑓0𝑣𝑣Remn = −

1

𝜌𝜌0

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
 (6)

Therefore, the advection by the background flow, namely the Doppler shift 𝐴𝐴 𝐴𝐴GE
𝜕𝜕𝐴𝐴Remn

𝜕𝜕𝜕𝜕
+ 𝑣𝑣GE

𝜕𝜕𝐴𝐴Remn

𝜕𝜕𝜕𝜕
+𝑤𝑤GE

𝜕𝜕𝐴𝐴Remn

𝜕𝜕𝜕𝜕
 , 

exerts the strongest influence on the evolution of the remaining motions; other interaction terms are generally 
secondary. Note that this scenario is distinct from that discussed by Kunze (1985) where near-inertial and nonu-
niform geostrophic flows had similar horizontal scales and therefore both the Doppler shift and straining were 
important.

With the assumption that 𝐴𝐴 (𝑢𝑢GE, 𝑣𝑣GE, 𝑤𝑤GE) is spatially uniform and temporally constant, the linearized vorticity 
equation governing the remaining flow follows from the simplified momentum equation (e.g., Equation 6)

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+ 𝑢𝑢GE

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+ 𝑣𝑣GE

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+𝑤𝑤GE

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+ 𝑓𝑓0𝜒𝜒Remn = 0 (7)

where 𝐴𝐴 𝐴𝐴Remn and 𝐴𝐴 𝐴𝐴Remn are the relative vorticity and horizontal divergence of the remaining flow, respectively. 
Conventionally the vertical advection is ignored, giving

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+ 𝑢𝑢GE

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+ 𝑣𝑣GE

𝜕𝜕𝜕𝜕Remn

𝜕𝜕𝜕𝜕
+ 𝑓𝑓0𝜒𝜒Remn = 0 (8)

The Fourier transform of Equation 8 is

���̂Remn + ���GE�̂Remn + ���GE�̂Remn + �0�̂Remn = �Ω�̂Remn + �0�̂Remn = 0 (9)

where 𝐴𝐴 𝐴𝐴  is the imaginary unit and 𝐴𝐴 Ω = 𝜔𝜔 + 𝑘𝑘𝑘𝑘GE + 𝑙𝑙𝑙𝑙GE denotes the intrinsic frequency. Similar to the classic 
normal-mode decomposition of the linearized primitive equations (Leith, 1980; Lien & Müller, 1992; P. Mülle
r,  1984,  1988), the wavy mode is defined to have intrinsic frequencies above the inertial frequency, namely 

𝐴𝐴 |Ω| > |𝑓𝑓0| , whereas the vortical mode to have zero (lowest order) or much lower (higher-order correction) intrin-
sic frequencies, namely 𝐴𝐴 |Ω| ≪ |𝑓𝑓0| . Consequently, two important facts follow in spectral space from Equation 9: 
(a) the modulus of the horizontal divergence is larger than that of the relative vorticity for the wavy mode; (b) 
the modulus of the horizontal divergence is much smaller than that of the relative vorticity for the vortical mode.

Considering that each point in spectral space (i.e., 𝐴𝐴 (𝑘𝑘𝑘 𝑘𝑘𝑘 𝑘𝑘) ) is contributed by a linear combination of the wavy 
and vortical modes (e.g., Bartello,  1995), the modulus of the horizontal divergence |�̂Remn| is expected to be 

larger (much smaller) than that of the relative vorticity |�̂Remn| wherever the wavy (vortical) mode dominates. We 
currently cannot well tackle the complicated scenario where wavy and vortical modes are comparable in spectral 
magnitude. Therefore, high-mode IGWs and submesoscale flows, together comprising the remaining flows, can 
be defined as follows

⎧

⎪

⎨

⎪

⎩

�̂�wave(�, �, �) = �̂Remn,when
(

|�̂Remn| < |�̂Remn| and |Ω| > |�0|

)

at (�, �, �)

�̂�wave(�, �, �) = �̂Remn,when
(

|�̂Remn| < |�̂Remn| and |Ω| > |�0|

)

at (�, �, �)
 (10)

Table 1 
Horizontal Centroid Wavelengths (km) of Different Variables Associated With Low-Mode IGWs, Mesoscale Motions and 
Remaining Motions

𝐴𝐴 𝜼𝜼 𝐴𝐴 𝑼𝑼 𝐴𝐴 𝑽𝑽  𝐴𝐴 𝑾𝑾  𝐴𝐴 𝝌𝝌 𝐴𝐴 𝜻𝜻  

Low-mode IGWs 77.7 71.0 91.3 25.6 22.2 51.7

Mesoscale motions 236.8 156.4 144.8 145.2 66.7 80.0

Remaining motions 33.7 32.3 37.8 11.2 12.7 17.4

Note. Centroid wavelengths are the reciprocals of centroid wavenumbers which are in turn calculated as follows: 𝐴𝐴
∬ 𝐾𝐾⋅𝐴𝐴(𝐾𝐾𝐾𝐾𝐾) 𝑑𝑑𝐾𝐾𝑑𝑑𝐾𝐾

∬ 𝐴𝐴(𝐾𝐾𝐾𝐾𝐾)𝑑𝑑𝐾𝐾 𝑑𝑑𝐾𝐾
 , 

where 𝐴𝐴 𝐴𝐴 =
√

𝑘𝑘2 + 𝑙𝑙2 and 𝐴𝐴 𝐴𝐴 represents the frequency-wavenumber spectra of any physical variable (e.g., U).
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⎧

⎪

⎨

⎪

⎩

�̂Submeso(�, �, �) = �̂Remn,when
(

|�̂Remn| > |�̂Remn| or |Ω| < |�0|

)

at (�, �, �)

�̂Submeso(�, �, �) = �̂Remn,when
(

|�̂Remn| > |�̂Remn| or |Ω| < |�0|

)

at (�, �, �)
 (11)

where �̂�wave (�̂�wave ) and �̂Submeso (�̂Submeso ) are the relative vorticity (horizontal divergence) of high-mode IGWs 
and submesoscale flows, respectively. Hereafter, we simply ignore the constraints imposed by the intrinsic 
frequency 𝐴𝐴 Ω which is not known a priori.

Once the horizontal divergence and relative vorticity of high-mode IGWs (submesoscale flows) are known, the 
corresponding horizontal velocities can be inverted by solving the Poisson equations, just as in the classic Helm-
holtz decomposition. In practice, inverting the Poisson equations to obtain horizontal velocities in the present 
setting is equivalent to solving

⎧

⎪

⎨

⎪

⎩

�̂�wave(�, �, �) = �̂Remn,when
(

|�̂Remn| < |�̂Remn|

)

at (�, �, �)

�̂Submeso(�, �, �) = �̂Remn,when
(

|�̂Remn| > |�̂Remn|

)

at (�, �, �)
 (12)

where 𝐴𝐴 𝒖𝒖Remn , 𝐴𝐴 𝒖𝒖𝐻𝐻wave , and 𝐴𝐴 𝒖𝒖Submeso are horizontal velocities of the remaining flows, high-mode IGWs, and submesos-
cale flows, respectively. This equivalence eliminates the necessity of solving the Poisson equation. More impor-
tantly, it allows us to readily decompose other variables like SSH of remaining flows in a similar manner

⎧

⎪

⎨

⎪

⎩

�̂�wave(�, �, �) = �̂Remn,when
(

|�̂Remn| < |�̂Remn|

)

at (�, �, �)

�̂Submeso(�, �, �) = �̂Remn,when
(

|�̂Remn| > |�̂Remn|

)

at (�, �, �)
 (13)

where �̂�wave and �̂Submeso are SSH of high-mode IGWs and submesoscale flows, respectively.

The decomposition based on Equations 12 and 13 is already acceptable except that frequency spectra of submesoscale 
flows artificially present peaks exactly at the four main tidal frequencies (K1, O1, M2, S2) (see Figure S2 in Supporting 
Information S1) due to the fact that our decomposition does not well tackle the scenario where the wavy and vortical 
modes have comparable spectral magnitudes. To remedy this, we modify Equations 12 and 13 to the following ones

⎧

⎪

⎨

⎪

⎩

�̂�wave(�, �, �) = �̂Remn,when
(

|�̂Remn| < |�̂Remn| or (� = �tide)
)

at (�, �, �)

�̂�wave(�, �, �) = �̂Remn,when
(

|�̂Remn| < |�̂Remn| or (� = �tide)
)

at (�, �, �)
 (14)

⎧

⎪

⎨

⎪

⎩

�̂Submeso(�, �, �) = �̂Remn,when
(

|�̂Remn| > |�̂Remn| and (� ≠ �tide)
)

at (�, �, �)

�̂Submeso(�, �, �) = �̂Remn,when
(

|�̂Remn| > |�̂Remn| and (� ≠ �tide)
)

at (�, �, �)
 (15)

where 𝐴𝐴 𝐴𝐴tide are the frequencies of the four main tidal constituents, namely, K1, O1, M2, S2. Hereafter, Equations 14 
and 15 are used to decompose the remaining flows.

In conclusion, based on the dynamical nature of each type of oceanic motions, we manage to decompose the full 
flow into large-scale currents, barotropic tides, low-mode IGWs, mesoscale flows, submesoscale flows, and high-
mode IGWs. In the next section, we will analyze the decomposed flow components in detail, aiming to evaluate 
their dynamical consistency.

4. Results
4.1. Low-Mode IGWs

Low-mode IGWs are defined to be mode-1 and mode-2 IGWs which are extracted according to their dispersion 
relations. Figure 5 is a snapshot of the extracted low-mode IGWs shown in terms of various dynamical variables. 
The southwestward-propagating wave pattern can be easily identified in all the variables, in agreement with 
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altimeter-based observations (Zaron, 2019; Zhao, 2014). Visually, the dominant spatial scale of the relative vortic-
ity is smaller than that of SSH and horizontal velocities. This is confirmed by the distinct centroid wavelengths 
(51.7 vs. 71.0–91.3 km) in Table 1, where the centroid wavelength is taken as the mean wavelength weighted by 
the wavenumber spectral density. This is because spatial derivatives of horizontal velocities have larger contribu-
tions from high-wavenumber features, as is common for most multiscale flows like two-dimensional turbulence. 
Interestingly, the horizontal divergence is dominated by even finer scales (22.2 km), which can be explained by 
considering the linearized equation for the relative vorticity,

𝜕𝜕𝜕𝜕𝐿𝐿wave

𝜕𝜕𝜕𝜕
= −𝑓𝑓0𝜒𝜒𝐿𝐿wave (16a)

where 𝐴𝐴 𝐴𝐴𝐿𝐿wave and 𝐴𝐴 𝐴𝐴𝐿𝐿wave are the horizontal divergence and relative vorticity of low-mode IGWs, respectively. The 
Fourier transform of Equation 16a gives

�̂�wave = −
���̂�wave

�0
 (16b)

It is clear from Equation  16b that the horizontal divergence is more contributed by high-frequency signals 
compared with the relative vorticity, which in turn results in finer spatial scales according to the following disper-
sion relation

𝜔𝜔2 = 𝑓𝑓0
2 + 𝑐𝑐2𝑛𝑛

(

𝑘𝑘2 + 𝑙𝑙2
)

 (17)

where 𝐴𝐴 𝐴𝐴𝑛𝑛 (the eigenvalue) is the phase speed of the n-th baroclinic mode of gravity waves (e.g., Majda, 2003; 
Pedlosky, 2003). Note also that the continuity equation relates the horizontal divergence to the vertical velocity. 
As such, by taking vertical integration of the continuity equation followed by the conventional variable separation 
for linear IGWs, the surface vertical velocity due to low-mode IGWs can be calculated as follows

��wave(�, �, �, �)

= ��wave(�, �,−�, �) −
�

∫
−�

��wave(�, �, �, �)��

= ��wave(�, �,−�, �) − �ℎ(�, �, �)
�

∫
−�

��(�)��

 (18)

Figure 5. Same as Figure 4 but for low-mode internal gravity waves.
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where 𝐴𝐴 𝐴𝐴𝐿𝐿wave(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) and 𝐴𝐴 𝐴𝐴𝐿𝐿wave(𝑥𝑥𝑥 𝑥𝑥𝑥−𝐻𝐻𝑥 𝐻𝐻) are the vertical velocity of low-mode IGWs at the sea surface 𝐴𝐴 𝐴𝐴 = 𝜂𝜂 
and at the bottom 𝐴𝐴 𝐴𝐴 = −𝐻𝐻 , respectively, and 𝐴𝐴 𝐴𝐴𝐿𝐿wave is the product of the horizontally varying part 𝐴𝐴 𝐴𝐴ℎ(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) and the 
vertically varying part 𝐴𝐴 𝐴𝐴𝑣𝑣(𝑧𝑧) . Given 𝐴𝐴 𝐴𝐴𝐿𝐿wave(𝑥𝑥𝑥 𝑥𝑥𝑥−𝐻𝐻𝑥 𝐻𝐻) , the horizontal scale of the vertical velocity is completely 
determined by the horizontally varying part of the horizontal divergence. This explains why the spatial patterns 
(including scales) of the vertical velocity and horizontal divergence generally resemble each other for IGWs.

We now examine the dynamical consistency among physical variables for low-mode IGWs quantitatively. The 
interaction terms (e.g., advection by the background flow) in the momentum equation surely affect the dynamics 
of low-mode IGWs, but remain difficult to quantify. Zaron (2019) parameterized such effects by a linear damping 
term, but choosing an appropriate damping time scale is not trivial. As a compromise, we assume no damping, 
which is equivalent to considering the linearized dynamics of IGWs. Separation of variables reduces the line-
arized primitive equations to infinite shallow water systems (i.e., infinite number of vertical normal modes) with 
differing equivalent depths (Majda, 2003; Pedlosky, 2003). Using SSH for the first two modes of IGWs, surface 
horizontal velocities can be derived straightforwardly according to the following polarization relations (e.g., 
Gill, 1982)

⎧

⎪

⎨

⎪

⎩

�̂�wave =
�(��� − ��)
�2 − �0

2
�̂�wave

�̂�wave = −
�(��� + ��)
�2 − �0

2
�̂�wave

 (19)

where 
(

�̂�wave, �̂�wave
)

 is the surface velocities of low-mode IGWs and g is the acceleration due to gravity. Figure 6 
shows the zonal velocities derived from the decomposed SSH for low-mode IGWs, together with the correspond-
ing correlation and root mean square (RMS) errors between the derived velocities and the directly decomposed 
ones. Overall, these independent estimates show remarkable consistency in terms of the velocity magnitude and 
pattern. Almost all of the region has RMS errors smaller than 0.04 (0.06) m/s for mode-1 (mode-2) IGWs, which 
are negligible in comparison with the typical magnitude of directly decomposed velocities. This high consistency 
also holds for the spatial pattern and temporal evolution as indicated by the extremely high correlations over the 
entire domain for the simulation period. Visible discrepancies only occur near the edges of the study region due 
to the windowing effect and around the island probably due to the interpolation/extrapolation or abrupt changes 
in background dynamical conditions (e.g., stratification) when approaching the island. Analysis of the meridional 
velocity gives very similar results and is thus not presented.

4.2. Mesoscale Flows

As already mentioned, mesoscale flows refer to flows with horizontal scales larger than the first baroclinic defor-
mation radius and frequencies lower than the inertial frequency. The decomposed mesoscale flows at the surface 
are shown in Figure 7. As anticipated, SSH is dominated by relatively large-scale structures with a centroid 
wavelength of 236.8 km. The dominating scales of zonal (156.4 km) and meridional (144.8 km) velocities are 
smaller than that of SSH due to the spatial derivatives through geostrophic balance. For mesoscale flows, a 
similar relation like Equation 16 does not exist and the scales of relative vorticity and horizontal divergence 
(80.0 vs. 66.7 km) seem to be quite similar. Both are smaller than the scale of horizontal velocities due to the 
highpass-filtering nature of spatial differentiation, as explained above. In striking contrast to the low-mode IGWs, 
the mesoscale vertical velocity has almost the same dominating spatial scale (145.2 km) as horizontal velocities, 
as a result of the balanced dynamics. Essentially, mesoscale flows can be described by the QG theory. Then, for 
mesoscale flows, Equation 18 is reduced to the relation between the vertical velocity and ageostrophic (rather 
than geostrophic) horizontal velocities and does not provide an obvious explanation for the observed scale simi-
larity of the vertical and geostrophic horizontal velocities. Instead, the relevant equation is now due to the kine-
matic boundary condition of the QG flow at the surface,

�̂Meso = ���̂Meso (20)

where �̂Meso and �̂Meso are surface vertical velocity and SSH of mesoscale flows, respectively. Similar to the 
physical reasoning for low-mode IGWs discussed above, the mesoscale vertical velocity contains more signifi-
cant high-frequency variabilities than mesoscale SSH. According to the frequency-wavenumber spectra of SSH 
shown in Figure 2, high-frequency mesoscale signals tend to have high wavenumbers (e.g., Arbic et al., 2014; 
Liang, 2016; Torres et al., 2018). Therefore, the time derivative of SSH in Equation 20 can roughly be equivalently 
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converted to the space derivative of SSH. As a result, the mesoscale vertical velocity is characterized by smaller 
dominant horizontal scales than SSH and coincides with the horizontal scales of horizontal velocities which are 
in turn derived from SSH via the geostrophic balance. The obvious separation in the dominating scale of vertical 
velocity between low-mode IGWs and mesoscale motions (25.6 vs. 145.2 km) provides the dynamical basis for 
the flow decomposition via spatial filtering adopted by Sugimoto and Plougonven (2016).

As a quantitative examination, surface horizontal velocities associated with mesoscale flows are derived from 
SSH according to the geostrophic balance,

⎧

⎪

⎨

⎪

⎩

�̂Meso = −
���
�0

�̂Meso

�̂Meso =
���
�0

�̂Meso

 (21)

where 
(

�̂Meso, �̂Meso
)

 is the mesoscale velocity at the surface. Figure 8 displays the snapshot of the derived hori-
zontal velocities which qualitatively resemble that of directly decomposed ones in Figure 7. Quantitatively, the 
derived horizontal velocities well capture both the spatial pattern and temporal evolution of the decomposed 
mesoscale flows, indicated by the high correlation over nearly the whole domain except for the peripheries due 

Figure 6. Surface zonal velocity derived from the decomposed sea surface height for low-mode internal gravity waves (IGWs) (a–c), the pointwise correlations over 
the simulation period between derived and directly decomposed velocities of low-mode IGWs (d–f) and the root mean square error over the simulation period between 
the derived and the directly decomposed (g–i). The left (a, d, and g), middle (b, e, and h), and right (c, f, and i) columns show mode-1 IGWs, mode-2 IGWs and their 
sum, respectively.
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to the windowing effect of the Fourier transform and a zonally elongated stripe between 15° and 16°N for zonal 
velocity due to the presence of the island (Figure 8). The RMS errors for zonal (meridional) velocity are smaller 
than 0.08 (0.04) m/s in most parts of the study region excluding the effects of the island and windowing, which is 
satisfactorily low compared with the typical magnitude (∼0.2 m/s) of directly decomposed mesoscale velocities.

In our study region, SSH and horizontal velocities associated with low-mode IGWs are nearly two times larger 
in magnitude than their respective counterparts associated with mesoscale flows. This is because this region is 

Figure 7. Same as Figure 4 but for mesoscale motions.

Figure 8. Surface zonal velocity and meridional velocity derived from the decomposed sea surface height for mesoscale motions (a, d), the pointwise correlations 
over the simulation period between derived and directly decomposed mesoscale velocities (b, e) and the root mean square error over the simulation period between the 
derived and the directly decomposed (c, f).
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characterized by relatively weak mesoscale flows (Cheng & Qi, 2010) and strong internal tides (Zhao, 2014). 
Moreover, compared to low-mode IGWs, the vertical velocity and horizontal divergence of mesoscale flows are 
two and one orders of magnitude weaker, respectively.

4.3. Submesoscale Flows and High-Mode IGWs

Submesoscale flows are defined to be vortical motions with horizontal scales smaller than the first baroclinic 
deformation radius. High-mode IGWs are defined as IGWs excluding the first and second modes. Figure 9 shows 
a snapshot of SSH, zonal and meridional velocities for the decomposed submesoscale flows and high-mode 
IGWs while the corresponding relative vorticity and horizontal divergence are displayed in Figure 10. Obvi-
ously, the wavy feature of high-mode IGWs variables resembles that of low-mode IGWs. Submesoscale SSH 
and horizontal velocities are characterized by filaments and eddies, which are more readily identifiable from 
the relative vorticity (highlighted by green and black boxes, respectively). Importantly, the submesoscale hori-
zontal divergence is also significant, especially along filaments. The horizontal kinetic energy spectra at the 
surface (Figure 11) demonstrate that submesoscale flows are predominant in terms of energy level at sub-inertial 
frequencies whereas high-mode IGWs are mostly predominant at super-inertial frequencies. Around the iner-
tial frequency, their energy levels are generally comparable. We consider our separation of the submesoscale 
flows  from high-mode IGWs as satisfactory given the challenging nature of such a separation.

In summary, after removing large-scale currents and barotropic tides, we have managed to decompose the flows 
into low-mode IGWs, mesoscale flows, high-mode IGWs, and submesoscale flows and have shown that the 
decomposed components reveal expected dynamical characteristics.

5. Discussion
We have demonstrated that the full flow field can be decomposed by virtue of their respective dynamics. For 
completeness of analysis, some additional aspects are discussed below.

5.1. Ray Tracing

We extract low-mode IGWs following a band enveloping each dispersion relation curve, as depicted in Figure 2. 
The mechanism for the wavenumber-wise spreading of spectral energies along a specific frequency requires a 

Figure 9. A snapshot of (a, d) sea surface height, (b, e) zonal velocity, and (c, f) meridional velocity due to the (a–c) decomposed submesoscale motions and (d–f) 
high-mode internal gravity waves.
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physical interpretation. To this end, the two-dimensional ray-tracing method is used to examine the effect of the 
large-scale currents and horizontally varying background stratification. Suppose that the background stratifica-
tion and large-scale currents do not vary with time, it follows that wave frequencies remain constant if traced 
with the group velocity. Then the wavenumber vector 𝐴𝐴 𝒌𝒌 = (𝑘𝑘𝑘 𝑘𝑘) and the position evolution of the corresponding 
raypath 𝐴𝐴 𝒙𝒙 = (𝑥𝑥𝑥 𝑥𝑥) are governed by (e.g., Bühler, 2009),

⎧

⎪

⎨

⎪

⎩

𝑑𝑑𝒙𝒙

𝑑𝑑𝑑𝑑
=

𝜕𝜕Ω

𝜕𝜕𝒌𝒌
𝑑𝑑𝒌𝒌

𝑑𝑑𝑑𝑑
= −

𝜕𝜕Ω

𝜕𝜕𝒙𝒙

 (22)

where 𝐴𝐴 Ω = 𝑼𝑼 (𝒙𝒙) ⋅ 𝒌𝒌 + 𝜔𝜔(𝒌𝒌(𝒙𝒙, 𝑡𝑡),𝒙𝒙) is the intrinsic frequency, 𝐴𝐴 𝑼𝑼 (𝒙𝒙) is the 
temporal mean of the full flow (u, v) and 𝐴𝐴 𝐴𝐴 = ±

√

𝑓𝑓0
2
+ 𝑐𝑐𝑛𝑛2𝐾𝐾2 is the absolute 

frequency with 𝐴𝐴 𝐴𝐴𝑛𝑛 (𝐴𝐴 𝐴𝐴1 shown in Figure 1a and 𝐴𝐴 𝐴𝐴2 in Figure 1b) denoting the 
same as in Equation 17.

Considering the dominant wavy pattern propagating from the northeast, as 
mentioned in Section 4.1, we initiate 10 rays around the northeastern corner. 
For each ray, three frequencies (K1, M2, 0.4 cph) of mode-1 and mode-2 
IGWs are traced for 1 day. The evolution of ray paths is overlaid on SSH of 
the decomposed low-mode IGWs (Figure 12). It is clear that the refracted 
rays agree with the propagation of SSH, consistent with the controlling effect 
of the background flow and stratification on the propagation of low-mode 
IGWs. Meanwhile, wavenumbers change continuously at traced frequencies 
(white dots shown in Figure 2) due to the presence of background flows and 

Figure 10. The relative vorticity (a, b) scaled by the local Coriolis parameter f and horizontal divergence (c, d) scaled by the local Coriolis parameter due to 
submesoscale motions (a, c) and high-mode internal gravity waves (b, d). The green and black boxes in panel (a) highlight submesoscale filaments and eddies, 
respectively.

Figure 11. The horizontal kinetic energy frequency spectra associated with 
submesoscale motions (blue curve) and high-mode internal gravity waves 
(red curve) at the sea surface. The wavenumber spectra are obtained through 
frequency-wise integration of corresponding frequency-wavenumber spectra 
like Figure 2.
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the horizontally inhomogeneous stratification. This, to some extent, justifies our selection of the enveloping 
bands along the dispersion relation curves to represent low-mode IGWs. Note that M. Müller et al. (2015) and 
Savage, Arbic, Alford, et al. (2017) plotted bounding dispersion relation curves for IGWs according to the maxi-
mal and minimal 𝐴𝐴 𝐴𝐴𝑛𝑛 along the northern and southern edges of their study regions. The results of our ray-tracing 
experiments provide a physical explanation for their selection of bounding curves. We would like to emphasize 
additionally, however, that their bounding curves did not consider the effect of the background flow.

5.2. Influence of Aliasing

The horizontal grid spacing, time-marching step and outputting time interval of the LLC4320 simulation are 
∼2 km, 25 s and 1 hr, respectively. As shown by C. Wang et al. (2022), the grid spacing is the limiting factor in 
resolving IGWs according to the dispersion relation of mode-1 IGWs. Thus, the fastest IGWs possibly resolved 
by the LLC4320 simulation have a period of 24 min with a wavelength of ∼4 km. With the model simulation 
stored hourly, IGWs with a period greater than 24 min and less than the Nyquist period of 2 hr are inevitably 
aliased. The aliasing is clearly present in Figure 2 where spectral energies of low-mode IGWs fold back after 
reaching the highest frequency (i.e., 0.5 cph). Such aliasing, which has been pointed out by Savage, Arbic, Alford, 
et al. (2017) and Qiu et al. (2019) and quantified by C. Wang et al. (2022), poses great difficulties to the separa-
tion of high-mode IGWs from submesoscale motions.

When a signal with a certain period is inadequately sampled, the spectral energy peak survives but is aliased to 
a lower frequency. To be precise, aliasing mainly changes the location of a signal in frequency space and gener-
ally leaves such physical properties as the relative magnitude of the horizontal divergence and relative vorticity 
unchanged. Thus, it seems natural that our approach of distinguishing high-mode IGWs from submesoscale 
motions would handle the effect of aliasing. This is indeed confirmed by the results of the decomposition. As 
shown by SSH frequency-wavenumber spectra (Figure 13), the aliased IGWs (i.e., the spectral energy folding) 
are well recovered as high-mode IGWs (Figure 13a). Although some are unfortunately attributed to submesoscale 
motions (Figure 13b), most aliased IGWs are satisfactorily extracted (Figure 13c). Similar results are revealed 
by the horizontal kinetic energy frequency-wavenumber spectra (not shown). It can thus be concluded that the 
proposed decomposition can naturally take the effect of aliasing into consideration.

5.3. Comparison With Lagrangian Filtering

Analysis in Section 4 demonstrates that the decomposed variables are dynamically consistent in both qualitative 
and quantitative sense. It would be more informative to compare our decomposition methodology with Lagrangian 
filtering which has recently gained much popularity in the decomposition of oceanic flows. The recently released 

Figure 12. Sea surface height of the decomposed low-mode internal gravity waves (IGWs) overlaid with ray paths. Solid 
curves indicate ray paths of mode-1 IGWs while dashed curves show those of mode-2 IGWs. Black, magenta, and green 
curves indicate ray paths with frequencies of K1, M2, and 0.4 cph, respectively.
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Python package for Lagrangian filtering (Shakespeare et al., 2021) is used with the parameters set as follows: the 
particle-tracking window is 𝐴𝐴 ± 3  days; the time step for particle tracking is 25 s, which is exactly the time-marching 
step of the LLC4320 simulation; a fourth-order Butterworth filter, which is the default setting, is applied; the 
cutoff frequency is the inertial frequency at 10°N which is smaller than the minimum latitude (i.e., 15°N) of the 
study region and with this choice of the cutoff frequency we seek to extract IGWs as completely as possible. 
For Lagrangian filtering, wave variables are the outputs of the Python package and the difference between the 

Figure 13. The frequency-wavenumber spectral density of sea surface height associated with (a) high-mode internal gravity 
waves and (b) submesoscale motions and the spectral density ratio (c) of (a, b).
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full-flow and wave variables gives non-wave variables. For our decomposition methodology, the decomposed 
barotropic tides, low-mode IGWs, and high-mode IGWs are summed to get wave variables; summing large-scale 
currents, mesoscale flows and submesoscale motions gives non-wave variables. Obviously, non-wave variables 
obtained from Lagrangian filtering contain obvious propagating internal tides (Figures 14a–14c), which are not 
identifiable in non-wave variables from our decomposition (Figures 14d–14f). Given that wave and non-wave 
variables sum to the full by definition, at least for the case considered here, Lagrangian filtering seems to recover 
less accurate waves (Figure 15).

Given the success revealed by previous studies (e.g., Bachman et al., 2020; Shakespeare et al., 2021) in using 
Lagrangian filtering, more careful and systematic comparisons between the proposed methodology and Lagran-
gian filtering should be conducted in the future. However, it should be obvious at this stage that the dynamics-based 
flow decomposition approach developed in this study is valid and useful.

5.4. Application of the Methodology to Other Regions

To examine its applicability to oceanic regions with different dynamical regimes, we perform the same decom-
position for.

•  three other regions in the SCS with distinctly differing tidal and mesoscale energy;
•  one region in the North Pacific Subtropical Countercurrent area with high mesoscale energy and relatively 

low tidal energy;
•  and one region in the Kuroshio Extension area with strong mesoscale activity and weak tides.

The key steps of the proposed methodology are to (a) extract low-mode IGWs and (b) separate high-mode IGWs 
from submesoscale flows. Since it is very difficult to unambiguously assess the isolated high-mode IGWs which 
are especially coupled with and modulated by submesoscale flows, we only show the extraction of low-mode 
IGWs in those regions. Figure 16 presents the correlation between the derived and directly decomposed velocities 
for low-mode IGWs over the entire simulation period. It is clear that extremely high correlation arises in all the 
regions, confirming the applicability and generality of the proposed methodology. Previous studies suggested that 
in the open ocean, the interior mesoscale flows can be faithfully reconstructed (Isern-Fontanet et al., 2006, 2008; 
LaCasce, 2012; LaCasce & Mahadevan, 2006; Lacasce & Wang, 2015; Lapeyre & Klein, 2006; Liu et al., 2019; 
Qiu et  al.,  2016; J. Wang et  al.,  2013); subsurface velocities of IGWs can be well estimated using vertical 

Figure 14. Non-wave (a, d) sea surface height, (b, e) zonal velocity, and (c, f) meridional velocity decomposed using (a–c) Lagrangian filtering and the (d–f) proposed 
decomposition methodology.
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normal-mode structures (Ray & Cartwright, 2001; Zhao, 2017; Zhao et al., 2016). We actually find that the verti-
cal reconstruction of IGWs is more straightforward and accurate than that of mesoscale motions because SSH of 
IGWs from different vertical modes can be directly separated from the first step of the decomposition (i.e., the 

IGWs-isolating step) without additional assumptions as introduced in interior 
mesoscale flow reconstruction. Therefore, it is anticipated that the dynamical 
flow decomposition based on SSH and the subsequent dynamical inference 
of interior flow structures can be applied to the world ocean. As such, 4D 
process-associated flow fields are recovered using solely SSH data.

6. Summary
In this study, we have developed methodology for decomposing multiscale 
oceanic motions by virtue of their dynamical characteristics. The methodol-
ogy is illustrated in the central basin of the SCS with numerically simulated 
flows from a tide-resolving and submesoscale-admitting MITgcm simula-
tion. It is shown that the simulated large-scale currents, barotropic tides, 
low-mode IGWs, mesoscale flows, submesoscale flows, and high-mode 
IGWs can be isolated in a dynamically consistent manner and in a way seem-
ing at least as good as Lagrangian filtering. In particular, the separation of 
submesoscale flows from high-mode IGWs effectively addresses the effect 
of aliasing and may apply to spontaneously generated IGWs which do not 
usually feel oceanic vertical boundaries and thus have complicated disper-
sion relations. This specific attempt may help reveal the compelling mystery 
of submesoscale-IGWs coupling (McWilliams, 2016). The proposed meth-
odology also works well in other regions of the SCS and the open ocean, 
indicating the applicability of these methods in the global ocean. We expect 
that applications of the proposed decomposition methodology would further 
advance dynamical understanding of multiscale interactions of oceanic flows. 
For example, the energy transfers among different oceanic motions could be 
quantified quite straightforwardly from the decomposed flow components. 
These are objectives to be explored in ongoing and future studies.

Figure 15. Wave (a, d) sea surface height, (b, e) zonal velocity, and (c, f) meridional velocity decomposed using (a–c) Lagrangian filtering and the (d–f) proposed 
decomposition methodology.

Figure 16. Pointwise correlations over the simulation period between the 
derived (from the decomposed sea surface height) and (a) directly decomposed 
zonal and (b) meridional velocity for low-mode internal gravity waves.
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We finally offer two caveats related to the proposed methodology. First of all, the proposed methodology relies 
on the homogeneity assumption inherent to the Fourier transform. The common trick to alleviate this issue is to 
partition the large study region into many small (∼5° × 5°) boxes and perform the Fourier transform on one box 
each time (Qiu et al., 2018; Torres et al., 2018; Zaron, 2019; Zhao et al., 2019). This trick, more widely used in 
frequency spectral analysis of time-series data which are cut into several overlapping segments, can somewhat 
result in a balance between the assumption of homogeneity and the complexity of real flows. Moreover, Equa-
tion 9 would fail in the equatorial regions where the dynamical contrasts between submesoscale motions and 
high-mode IGWs require further explorations.

Data Availability Statement
The MATLAB code to perform the proposed decomposition is freely available at https://doi.org/10.5281/
zenodo.7620637 (C. Wang et  al.,  2023). The ETOPO1 bathymetry data can be downloaded from https://doi.
org/10.7289/V5C8276M (Amante & Eakins, 2009). The World Ocean Atlas (WOA2018) can be accessed from 
https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (Boyer et  al.,  2018). The LLC4320 simulation 
output is available at https://data.nas.nasa.gov/ecco/data.php?dir=/eccodata/llc_4320 (Menemenlis, 2021).
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