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Shuh-Ji Kao2,3*

1Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Institute of
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The supply of nitrogen (N) from various external and internal sources into the

euphotic zone, e.g., atmospheric N deposition (AND), upwelling, lateral

intrusion, and remineralization, modulates the biogeochemical and climatic

roles of oligotrophic oceans and complicates N dynamics in the upper water

column (≤200 m). However, our ability to resolve the mechanisms controlling

upper-ocean N cycling is limited by the lack of high-resolution vertical

observations. Here, we analyzed concentrations and dual isotopes of nitrate

(NO3
–) in the upper 200 m of the oligotrophic South China Sea. By examining

dual isotopic signatures of NO3
– (d15NNO3 and d18ONO3) andmultiple associated

parameters vertically throughout the upper water column, we resolved the

dominant N sources and processes, including AND/N2-fixation, assimilative

fractionation, and nitrification, and quantitatively evaluated their contributions

in the vertical distribution of NO3
–, which can be separated into the Dd18ONO3-

positive (d18ONO3−obs−d18ONO3−200m>0) and Dd18ONO3-negative layers

(d18ONO3−obs−d18ONO3−200m<0) according to the deviation in d18ONO3 at a

given depth (d18ONO3-obs) from that at 200 m (d18ONO3-200m). In the

Dd18ONO3-positive layer, the NO3
– assimilated by phytoplankton was largely

sourced from nitrification (39 ± 11%) and AND/N2 fixation (17-28%), whereas

these two processes accounted for 17 ± 10% and 7 ± 6% of the total NO3
– pool

in the Dd18ONO3-negative layer. Considering a substantial contribution of the

regenerated (nitrification-sourced) NO3
– to the total NO3

– pool especially in

the Dd18ONO3-positive layer, caution should be taken that the new production

assessed by the rates of NO3
– uptake may be significantly overestimated in the

SCS. These findings not only highlight the importance of these biogeochemical

processes to NO3
– dynamics in the upper water column of marginal seas, but

also with important implications for the estimation of biological carbon pump

and/or the f-ratio.

KEYWORDS

nitrogen dynamcis, South China Sea (SCS), nitrification, external nitrogen source,
nitrogen isotope (d15

N), nitrogen uptake
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1 Introduction

Nitrogen (N) supply limits productivity in the ocean (Moore

et al., 2013), thereby connecting the N cycle with marine carbon

sequestration (Falkowski, 1997; Buchanan et al., 2021). In

oligotrophic regions, regenerated N is the main N source for

phytoplankton growth in surface waters (<100 m), since inputs

of subsurface (100-200 m) nitrate (NO3
–) supply are generally

limited by strong stratification (Yool et al., 2007; Van Oostende

et al., 2017). However, in marginal seas, while diapycnal fluxes of

N to the N-replete layer are sufficient to support the levels of

export production, additional external sources of N from

atmospheric N deposition/N2 fixation (AND/N2 fixation) can

stimulate phytoplankton growth in the N-depleted layer (Kao

et al., 2012; Du et al., 2017; Lu et al., 2019). In addition, lateral

transport also influences N dynamics in the euphotic zone, as

different water masses vary in their relative concentrations of N

compounds and microbial communities that alter N dynamics

physically and biologically (Du et al., 2013; Xu et al., 2018).

Therefore, the co-influence of various external N sources and

their differing magnitudes make N dynamics more complicated

in the upper ocean of marginal seas (Kao et al., 2012; Liu

et al., 2020).

The South China Sea (SCS) is one of the largest marginal seas

in the world, with an area of 3.5×106 km2. It is a typical stratified

and oligotrophic oceanic regime, showing extremely low N:P ratios

(0.4-4.4) in surface waters (<60 m), and thus low levels of biomass

primarily due to N limitation (Chen et al., 2004; Du et al., 2017).

Although many studies have found various N sources involved in

biological production within the upper ocean, such as diapycnal

transport, lateral transport, AND/N2 fixation (Kao et al., 2012; Du

et al., 2013; Yang et al., 2014; Du et al., 2017; Yang et al., 2017; Lu

et al., 2019), it remains unclear how these sources and subsequent

processes imprint on the N cycle of the upper water column of the

SCS. These processes contribute to the complexity of N dynamics

in the region over temporal and spatial scales. Seasonally, reactive

N deposition to the SCS varies from 48 ± 34 mmol N/m2/d in July

to 99 ± 78 mmol N/m2/d in September (Yang et al., 2014).

Regionally, the depth-integrated N2 fixation rates vary from 50 ±

10 mmol N/m2/d in the basin to 463 ± 260 mmol N/m2/d in the

Kuroshio-affected region (Lu et al., 2019). In oligotrophic water

column, the vertical diapycnal N flux is three orders of magnitude

larger in the nutrient-replete layer relative to the nutrient-depleted

layer (Du et al., 2017). This study aims to decipher the N dynamics

of multiple external sources and internal processes by using a NO3
–

dual isotopic approach (d15NNO3 and d18ONO3), which serves as an

integral tracer of the N pool in the upper water column of the SCS.

These results contribute to our understanding of N dynamics in

marginal seas, and benefit the development and parameterization

of N-driven physical-biogeochemical models.

The d15NNO3 and d18ONO3 provide useful constraints on its

source (Sigman et al., 2005; Rafter and Sigman, 2016; Yang et al.,
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2022) and can be used to explore relevant N cycling processes

(Emeis et al., 2010; Fawcett et al., 2015; Buchanan et al., 2021).

The first study to utilize a dual isotopic approach (d15N and

d13C) in the region focused on evaluating the role of N sources in

zooplankton nutrition in the Vietnamese upwelling area (Loick

et al., 2007). Additional work by Yang et al. (2017) examined N

cycling using d15N in NO3
– and particulate phases in the

northern SCS. However, these two isotope studies had

difficulty assessing the influence of nitrification (a common

process in the euphotic zone) due to the lack of d18ONO3

measurements. Recently, two studies have illustrated the

spatial variations of NO3
– sources and N cycling in the SCS

using both d15NNO3 and d18ONO3 (Chen et al., 2019; Yang et al.,

2022); however, they mainly focused on the whole water column,

with only 2-4 measurable isotope samples in the top 200 m.

Thus, it is difficult to make a comprehensive assessment of NO3
–

dynamics within the upper ocean. In this study, we performed

high-resolution vertical observation of the concentrations and

dual isotopic composition of NO3
–, in order to decipher the

critical elements influencing NO3
– dynamics in the upper water

column of the SCS including the relative importance of external

N sources and internal processes to NO3
– uptake and

assimilative fractionation.
2 Materials and methods

2.1 Study area

The circulation patterns in the SCS vary seasonally as a

function of the East Asia monsoon (Figure 1A). In winter, the

northeast monsoon pushes the SCS Warm Current

southwestward and drives a basin-wide cyclonic gyre (Hu

et al., 2000; Liu et al., 2016). In summer, the SCS Warm

Current shifts northeastward and the basin-wide cyclonic gyre

shifts eastward under the influence of southwesterly monsoon

(Liu et al., 2016). The surface water mass in the SCS changes

based on the extent of intrusion of the Kuroshio Current

through the Luzon Strait, which varies both throughout the

year and over decadal time scales (Hu et al., 2000; Yuan et al.,

2006; Nan et al., 2015). Previous studies showed lateral Kuroshio

intrusion influences not only the heat and salt of the SCS, but

also N and carbon biogeochemical cycles due to high dissolved

organic carbon and low nutrient concentrations in the Kuroshio

waters (Du et al., 2013; Nan et al., 2015; Wu et al., 2015).
2.2 Field sample collections

Water samples were collected in the SCS onboard the R/V

Dongfanghong II during March 2013, June 2014, May-June 2016,

and onboard the R/V TAN KAH KEE during June 2017
frontiersin.org
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(Figure 1A). Seawater was collected for analysis of the

concentrations and isotopic composition of NO3
− at 5-32

layers from the surface (5 m) to 200 m using 12 L Niskin

bottles attached to a Seabird SBE-911 plus CTD-rosette
Frontiers in Marine Science 03
sampling system. More details of the sampling layers/intervals

in each station can be found in the Supplementary Table 1 and

the datasets. Unfiltered seawater samples were collected in 125

mL acid-washed high-density polyethylene bottles that were
FIGURE 1

(A) Study area and sampling stations in the SCS. Surface circulation patterns are shown with arrows synthesized from previous studies (Yuan
et al., 2006; Nan et al., 2015; Liu et al., 2016): summertime surface currents (cyan), wintertime surface currents (white dashed), and the Kuroshio
Current (black). The color bar indicates water depth. (B) Potential temperature-salinity diagram for all stations. The red and black triangles
indicate typical SCS water and coastal water, respectively. The gray triangles represent the Kuroshio Current. (C–H) Depth and isopycnal profiles
for all samples with NO3

– concentrations ≥0.5 mmol/L: NO3
– concentrations (C), d15NNO3 (D), d18ONO3 (E), N* (F), D(15-18) (G), and N/P ratio (H).
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rinsed thoroughly with in situ seawater prior to filling. Water

samples were immediately frozen on board at –20 °C

until analysis.
2.3 Concentration and isotopic analysis
of nitrate

The concentrations of NO3
− and nitrite (NO2

−) were

measured using a Four-channel Continuous Flow Technicon

AA3 Auto-Analyzer (Bran-Luebbe), with detection limits of 0.07

mmol/L for NO3
− and 0.02 mmol/L for NO2

− (Dai et al., 2008; Du

et al., 2013).

The values of d15NNO3 and d18ONO3 (for samples with NO3
−

concentrations ≥ 0.5 mmol/L) were determined by the denitrifier

method (Sigman et al., 2001; Casciott et al., 2002). Briefly,

denitrifying bacteria lacking nitrous oxide (N2O) reductase

were used to quantitatively convert NO3
− in samples to N2O.

Subsequently, the isotopic compositions of N2O were measured

via GasBench II-IRMS (Thermo Scientific DELTA V advantage)

equipped with an on-line extraction and purification system.

Four internationally recognized NO3
− reference materials

(International Atomic Energy Agency (IAEA)-NO3
−: d15N =

4.7‰ and d18O = 25.6‰, U.S. Geological Survey (USGS)-34:

d15N = –1.8‰ and d18O = –27.9‰, USGS-35: d18O = 57.5‰

and USGS-32: d15N = 180‰) were used for d15N and d18O
calibration (Böhlke et al., 2003). One of the NO3

− reference

materials (IAEA-NO3
−) was run in parallel to monitor bacterial

conversion efficiency and mass spectrometer drift. In terms of

sample replicates, the analytical precision of d15NNO3 and

d18ONO3 measurements as better than ±0.2‰ and ±0.5‰,

respectively (Yan et al., 2017; Yan et al., 2019). To avoid the

influence of NO2
− on d15NNO3 and d18ONO3 values, all samples

were treated with sulfamic acid (Sigma, guaranteed reagent) to

remove pre-existing NO2
− following the procedure in Granger

and Sigman (2009).
3 Results

3.1 Hydrological characteristics

From Figure 1B, we can see all potential temperature-salinity

profiles merge at a salinity of 34.4 and temperature of 13 °C,

suggesting the same subsurface water (~200 m) source among

these stations. Generally, as the potential density anomaly

(sϴ=s−1000, unit: kg/m3) decreased toward the surface (~5

m), the potential temperature rose while the salinity first

increased and then decreased. However, distinct hydrological

differences were found between offshore SCS water measured at

the South-East Asian Time-series Study (SEATS) station, the

Kuroshio Current and coastal water (station X5, sϴ<25.5). At
the same isopycnal surface, the Kuroshio Current had the
Frontiers in Marine Science 04
highest potential temperature and salinity, followed by SEATS,

and the coastal water. The hydrological characteristics at most

stations were controlled by the isopycnal mixing between the

Kuroshio Current and the coastal water. Thus, due to greater

influence from Kuroshio intrusion near the Luzon Strait,

datapoints were more scattered and skewed toward the typical

Kuroshio characteristics in spring relative to those in summer.
3.2 Vertical distributions of nitrate and its
isotopic composition

The vertical profiles showed NO3
– concentrations increased

with increasing water depth (Figure 1C), with values ranging

from 5.2 to 21.9 mmol/L. The lowest values (~0.1 mmol/L) were

found mostly at depths of <50 m, while the highest values

appeared at 200 m. Thus, the vertical gradients of NO3
–

differed among stations. For example, at stations TS2, B5 and

BC1 near the Luzon Strait, which were more influenced by

Kuroshio intrusion, NO3
– concentrations were lower and varied

within a narrow range of 0.1-8.0 mmol/L. However, at the

southernmost station C1 where upwelling appeared, the NO3
–

concentration showed a steep gradient, changing from 0.2 mmol/

L at 50 m depth to a maximum of 21.9 mmol/L at 200 m. Clearly,

the vertical distributions of NO3
– concentrations exhibited

distinct north-to-south differences. By defining the nitracline

depth as that where NO3
– concentrations reached 2.0 mmol/L

(Wilson and Coles, 2005), we found it ranged between 24-154 m,

with a mean value of 77 ± 30 m (n=22, Table 1). The nitracline

depths at stations near the Luzon Strait were the deepest due to

the influence of warm, nutrient-depleted waters from

Kuroshio intrusion.

The d15NNO3 values showed strong gradients above the

nitracline (<125 m), but weaker gradients below the nitracline

(Figure 1D). They generally fell within a narrow range of 3.4-

5.7‰ below the nitracline; however, they became enriched

upward toward the surface (6.4-13.3‰, ~20 m), accompanied

by lower NO3
– concentrations. For example, at station A11,

d15NNO3 reached a maximum of 13.3‰ at 70 m. However, the

site with the shallowest nitracline (station D1) had a weaker

d15NNO3 gradient varying between 4.9-7.0‰ (Table 1). In

addition, the d15NNO3 values at several stations (A2, Q1, B5

and C1) showed minima (2.1‰, 3.5‰, 3.3‰, and 4.9‰,

respectively) at 75-125 m depths.

The d18ONO3 values were relatively constant below the

nitracline but increased sharply from depths of 100-125 m

toward ~20 m (Figure 1E), and d18ONO3 variability (5.2-

22.5‰) was larger than that of d15NNO3 above the nitracline.

The maximum values of d18ONO3 above the nitracline differed

among stations. At stations NS1 and C1, d18ONO3 reached

maximum values of 19.0‰ and 22.6‰, respectively, around a

depth of 75 m. However, d18ONO3 maxima were observed at

shallower depths (24-55 m) at stations D1 and B5, reaching only
frontiersin.org
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TABLE 1 The isotope effect of NO3
– assimilation estimated from the Rayleigh Model and the Open system Model at appropriate stations.

Station Rayleigh Model Open system Model 18e:15e
Nitracline
depth (m) Note

Isotope
effect (15e)

R2

(15e)
Isotope

effect (18e)
R2

(18e)
Isotope

effect (15e)
R2

(15e)
Isotope

effect (18e)
R2

(18e)

TS2 1.4 ± 0.2‰ 0.95 4.7 ± 0.7‰ 0.95 2.8 ± 0.4‰ 0.93 8.9 ± 2.0‰ 0.86
3.4 154 Rayleigh

Model

NS1 3.7 ± 0.6‰ 0.96 12.0 ± 4.0‰ 0.81 6.2 ± 1.6‰ 0.89 19.5 ± 8.8‰ 0.71
3.2 74 Rayleigh

Model

J1 1.8 ± 0.5‰ 0.79 3.7 ± 0.7‰ 0.90 3.3 ± 1.8‰ 0.53 7.4 ± 2.9‰ 0.69
2.0 95 Rayleigh

Model

X5 3.0 ± 0.3‰ 0.97 6.2 ± 0.9‰ 0.94 6.0 ± 1.7‰ 0.81 12.1 ± 3.9‰ 0.76
2.0 62 Rayleigh

Model

D1 1.3 ± 0.2‰ 0.95 2.5 ± 0.3‰ 0.96 2.4 ± 0.5‰ 0.85 4.6 ± 0.7‰ 0.92
1.9 24 Rayleigh

Model

A11 3.7 ± 1.3‰ 0.89 5.5 ± 1.6‰ 0.92 8.3 ± 6.7‰ 0.61 12.8 ± 9.1‰ 0.66
1.5 73 Rayleigh

Model

2016SEATS 2.5 ± 0.3‰ 0.98 4.6 ± 0.4‰ 0.99 6.1 ± 0.5‰ 0.99 10.8 ± 2.3‰ 0.92
1.8 83 Rayleigh

Model

K3 n/a n/a 1.7 ± 1.0‰ 0.77 n/a n/a 2.3 ± 1.6‰ 0.68
n/a 53 Rayleigh

Model

Q1 2.4 ± 0.5‰ 0.92 3.2 ± 0.7‰ 0.92 5.5 ± 1.8‰ 0.82 7.6 ± 2.0‰ 0.88
1.3 52 Rayleigh

Model

Q3 4.3 ± 0.5‰ 0.96 6.2 ± 0.5‰ 0.98 9.9 ± 2.0‰ 0.82 14.7 ± 3.1‰ 0.88
1.4 51 Rayleigh

Model

F1 n/a n/a 1.7 ± 0.8‰ 0.81 n/a n/a 2.8 ± 2.0‰ 0.65
n/a 66 Rayleigh

Model

D6 2.0 ± 0.3‰ 0.95 3.1 ± 0.4‰ 0.97 5.3 ± 2.1‰ 0.77 8.4 ± 3.0‰ 0.80
1.6 83 Rayleigh

Model

B1 2.3 ± 0.4‰ 0.93 4.1 ± 0.9‰ 0.91 5.4 ± 2.7‰ 0.68 9.6 ± 5.2 0.63
1.8 92 Rayleigh

Model

C1 3.1 ± 0.4‰ 0.97 7.0 ± 1.2‰ 0.97 7.1 ± 2.4‰ 0.82 16.0 ± 6.0‰ 0.78
2.3 78 Rayleigh

Model

A2 5.6 ± 3.3‰ 0.74 8.9 ± 4.5‰ 0.80 8.8 ± 7.3‰ 0.59 14.1 ± 10.3‰ 0.65
1.6 86 Rayleigh

Model

B2 2.7 ± 0.4‰ 0.96 n/a n/a 3.9 ± 1.0‰ 0.90 n/a n/a
n/a 89 Rayleigh

Model

Mean 2.8 ± 1.2‰ 5.0 ± 2.8‰
2.0 ±
0.6

76 ± 28

B5 1.1 ± 0.2‰ 0.91 2.0 ± 0.5‰ 0.87 2.4 ± 0.2‰ 0.99 4.4 ± 0.4‰ 0.99
1.8 55 Open

System
Model

C5 5.3 ± 4.3‰ 0.61 n/a n/a 4.3 ± 2.9‰ 0.69 n/a n/a
n/a <70 Open

System
Model

K8 n/a n/a 1.7 ± 0.1‰ 0.98 n/a n/a 2.6 ± 0.1‰ 0.99
n/a 55 Open

System
Model

(Continued)
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5.8‰ and 5.2‰, respectively. Spatially, d18ONO3 values in the

southern stations (SS1, B1, B2, A2 and C1) were mostly higher

than that at stations further north, especially at depths from 90-

150 m. Notably, the vertical distribution patterns of d18ONO3 did

not with synchronous change of d15NNO3. The d18ONO3 values

had an overall range of 0.9-22.6‰, which was twice the range of

d15NNO3 (2.1-13.3‰). Moreover, the minimum d18ONO3 values

did not occur in the subsurface waters (75-125 m) at stations A2,

Q1 and B5.
4 Discussion

4.1 Significance of external N inputs
revealed by N* and D(15-18)

In the subsurface near the nitracline where regeneration

occurs intensively, NO3
– was depleted in d15N, with lower

d15NNO3 (2.1-4.9‰) found at stations 2014SEATS, SS1, B5,

Q1, J1, and C1 relative to other stations (Figure 1D). Such a

negative shift in d15NNO3 near the nitracline suggests an external

input of isotopically light N likely derived from AND/N2

fixation. Here, a quasi-conservative tracer N* (N*=[NO3
–]–

16×[PO4
3–]) (Gruber and Sarmiento, 1997; Deutsch et al.,

2001), is used as an indicator to reflect external N inputs (i.e.

AND/N2 fixation) since the non-Redfieldian addition of external

N can increase seawater N* (Sigman et al., 2005; Yoshikawa

et al., 2015). Although N* is negative throughout the upper

200 m water column (Figure 1F), an upward increase in N* is

evident from 1000 m toward the surface (<100 m)

(Supplementary Figure 1A), providing evidence of the effects
Frontiers in Marine Science 06
of external N inputs supplying excess N in the subsurface waters

between 100-200 m (Kim et al., 2014; Yang et al., 2022).

The cumulative signal of AND/N2 fixation on the subsurface

NO3
– pool (100-200 m) can also be elucidated by using a

complementary tracer, D(15–18) (=d15NNO3 – d18ONO3)

(Rafter et al., 2013; Yoshikawa et al., 2018). Our results show

that D(15–18) values vary widely between –11.6‰ and 3.5‰,

with larger variations above the nitracline (–0.9 ± 3.3‰, n=41)

than below the nitracline (1.1 ± 1.7‰, n=142) (Figure 1G).

These D(15–18) values are also consistent with previous reports

from the SCS (–0.5~4.0‰; Yang et al., 2022) and the western

subtropical gyre of North Pacific (0.9 ± 1.3‰; Yoshikawa et al.,

2018). Overall, D(15–18) values remain nearly constant below

the nitracline but decreased upward to ~20 m (Figure 1G and

Supplementary Figure 1B). The decreasing trend is well

explained by the accumulation of AND/N2 fixation (Tuerena

et al., 2021; Yang et al., 2022) since both featured negative d15N
values mostly falling between –10‰ and 0‰ (Knapp et al., 2008;

Yang et al., 2014; Shi et al., 2021). Isotopically light d15NNO3

relative to d18ONO3, which is influenced by d18O in H2O and O2

via nitrification, may thus cause a negative shift in D(15–18).
Several independent lines of evidences have been reported to

support the significance of external N inputs around the study

area, with total AND rates of 50-90 mmol N/m2/yr (Yang et al.,

2014; Shi et al., 2021) and depth-integrated N2 fixation rates of

18.2-169.0 mmol N/m2/yr in the SCS (Lu et al., 2019).

Accordingly, both AND and N2 fixation potentially contribute

to the negative shift in D(15–18) with the same order of

magnitude. Alternatively, the negative shift in D(15–18) can

also result from internal processes, such as the coupling of

incomplete NO3
– assimilation and remineralization of newly
TABLE 1 Continued

Station Rayleigh Model Open system Model 18e:15e
Nitracline
depth (m) Note

Isotope
effect (15e)

R2

(15e)
Isotope

effect (18e)
R2

(18e)
Isotope

effect (15e)
R2

(15e)
Isotope

effect (18e)
R2

(18e)

SS1 1.8 ± 0.3‰ 0.93 4.2 ± 0.7‰ 0.93 3.6 ± 0.4‰ 0.96 8.6 ± 0.9‰ 0.97
2.4 104 Open

System
Model

2017SEATS 1.1 ± 0.1‰ 0.99 3.7 ± 0.4‰ 0.99 2.3 ± 0.1‰ 1.00 7.4 ± 0.6‰ 0.99
3.2 80 Open

System
Model

Mean 3.2 ± 1.0‰ 5.8 ± 2.7‰
2.5 ±
0.7

73 ± 20

BC1 n/a n/a 1.3 ± 0.2‰ 0.99 n/a n/a 2.6 ± 0.3‰ 0.99 n/a 143 Mixing

2014SEATS 3.2 ± 1.1‰ 0.64 6.7 ± 0.9‰ 0.92 8.9 ± 2.3‰ 0.74 17.5 ± 2.6‰ 0.90 2.0 49 Mixing

Mean 4.7 ± 2.9‰ 8.9 ± 2.3‰ 96 ± 66

The “R2” is the coefficient of determination for the slopes derived from various models. The “n/a” indicates stations where the coefficient of determination is poor (<0.50) or the number
of measurements is insufficient (<3) to yield a fractionation trend. The last column lists whether the isotope effect is best fit using the Rayleigh Model or Open system Model or Mixing.
For those stations where isotope effect cannot be accurately quantified (R2<0.80), the models are marked in italics in the last column.
fro
ntiersin.org

https://doi.org/10.3389/fmars.2022.1104135
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yan et al. 10.3389/fmars.2022.1104135
fixed organic N and subsequent nitrification (Yoshikawa et al.,

2018; Yang et al., 2022). Therefore, external N inputs from

AND/N2 fixation resulted in the upward increases in N* and

decreases in D(15–18), confirming the significance of AND/N2

fixation on modulating N dynamics in the upper water column

of the SCS.
4.2 Nitrate isotopes reveal dominant N
cycling processes

4.2.1 Nitrate assimilation and its
isotope fractionation

NO3
– assimilation is an important N cycling process in the

euphotic zone, especially near the chlorophyll maximum (Rafter

and Sigman, 2016; Wan et al., 2018; Tuerena et al., 2021). In our

study area, NO3
– uptake was evidenced by upward NO3

–

depletion and the synchronous elevation in d15NNO3 and
Frontiers in Marine Science 07
d18ONO3 in the top 100 m (Figures 1C–1E) caused by the

preferential uptake of 14N and 16O in the NO3
– pool by

phytoplankton (Granger et al., 2004; Sigman and Fripiat,

2018). This isotope shift was also supported by the highest

NO3
– uptake rates (56.8-132.7 nmol N/L/d) near nitracline at

stations D1, 2014SEATS and NS1 (Wan et al., 2018, Tables 1, 2).

The upward pattern of decreasing N/P ratios toward the surface

(~20 m) further confirms NO3
– assimilation by photosynthesis

with removal of N and P at the Redfield ratio resulting in a

decrease in the residual N/P ratios when N* was negative

(Figures 1F, H, Supplementary Figure 1A) (Deutsch and

Weber, 2012). Therefore, NO3
– uptake was the dominant

process modifying the vertical variations of d15NNO3 and

d18ONO3 in the euphotic zone (Rafter and Sigman, 2016; Peng

et al., 2018).

To evaluate the fractionation factor of NO3
– assimilation, we

plotted d15NNO3 or d18ONO3 against the natural logarithm of

NO3
– concentrations (Figures 2A, B). The isotope effect of NO3

–

TABLE 2 Summary of nitrification rates, NO3
– uptake rates, the contributions of nitrification to NO3

– uptake (Fnit/Fupt), and the contributions of
external N inputs to NO3

– uptake (Fatm-fix/Fupt) in the Dd18ONO3-positive layer.

Station Depth
(m)

Nitrate
(mmol/

L)
d15Nobs

(‰)
d18Oobs

(‰)
d15Nsub

(‰)
d18Osub

(‰)

Nitrification
rate (nmol N/

L/d)

Nitrate uptake
rate (nmol N/L/

d)

FNit/
Fupt
(%)

Fatm
+fix/
Fupt
(%)

NS1

79 3.7 9.1 19.0 4.6 2.5 2.58 56.78 5 >100

84 4.4 7.1 7.1 4.6 2.5 5.46 11.21 49 /

90 8.4 4.6 3.2 4.6 2.5 3.43 13.74 25 /

Depth-integrated mean value 34 /

2014SEATS

44 0.7 10.7 17.5 4.9 2.4 9.15 44.00 21 >100

51 2.2 12.0 13.2 4.9 2.4 11.28 90.91 12 43

54 3.3 8.8 9.6 4.9 2.4 22.22 50.55 44 9

59 3.8 6.1 6.1 4.9 2.4 9.08 21.09 43 /

69 4.5 4.7 4.2 4.9 2.4 9.74 29.82 33 1

79 5.5 4.5 3.7 4.9 2.4 5.36 5.45 98 /

89 6.9 4.8 2.8 4.9 2.4 7.19 9.45 76 /

100 8.5 4.8 2.7 4.9 2.4 3.14 / / /

Depth-integrated mean value 53 28

D1

24 2.0 7.0 5.8 5.0 2.5 3.24 132.73 2 18

29 2.9 6.2 5.6 5.0 2.5 7.65 54.18 14 16

40 5.1 5.4 3.4 5.0 2.5 14.32 50.91 28 /

49 5.7 5.2 3.2 5.0 2.5 11.28 28.36 40 /

59 7.6 5.2 2.8 5.0 2.5 15.85 25.45 62 /

Depth-integrated mean value 32 17

The nitrification rates and NO3
– uptake rates were derived from Wan et al. (2018). d15Nobs and d18Oobs are the measured d15NNO3 and d18ONO3, d15Nsub and d18Osub are the observed

isotope values of subsurface waters (101 m at station NS1, 109 m at station 2014SEATS, 68 m at station D1).
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assimilation generally follows Eq. (1) according to the Rayleigh

model (closed-system) and follows Eq. (2) using an open-system

model (Umezawa et al., 2014; Sigman and Fripiat, 2018).

d15NNO3 = initiald15NNO3 − ϵ� ln fð Þ ; (1)

d15NNO3 = initiald15NNO3 + ϵ� 1 − fð Þ ; (2)

where f is the residual fraction of NO3
– in the water column

from the initial NO3
– concentration, and ϵ is the isotope effect

(in ‰ units) for NO3
– assimilation.

Our results show that samples enriched in d15NNO3 and

d18ONO3 can be better explained by the combination of the

Rayleigh model and the Open system model than solely by the

Rayleigh model or the Open system model (Figures 2A, B). An

isotope effect of 1.0-6.0‰ produced by the Rayleigh model can
Frontiers in Marine Science 08
explain the majority of the increase in d15NNO3 and d18ONO3. Yet,

for those stations near the Luzon Strait, the Open system model

better predicts isotope behavior. Although the above estimated

ranges were close to the typical isotope fractionation induced by

phytoplankton in culture (1.4-21.0‰) (Waser et al., 1998;

Needoba et al., 2003; Granger et al., 2004) and field studies (4-

11.9‰) (DiFiore et al., 2010; Rohde et al., 2015; Rafter and

Sigman, 2016), they exhibit large variations that are associated

with ambient environmental conditions (e.g., light intensity) and

phytoplankton species composition (Needoba and Harrison,

2004; DiFiore et al., 2010; Rohde et al., 2015). Below we

estimate the isotope effect specifically for each station since they

may have experienced different hydrological conditions and/or

different plankton community structures (Rafter & Sigman, 2016).

Here, the isotope effect was estimated for stations with

obvious NO3
– drawdown and sufficient measurements (≥3) to
B

C D

A

FIGURE 2

Values of d15NNO3 (A) and d18ONO3 (B) versus the natural logarithm of [NO3
–] for all stations. These data overlay models of NO3

– uptake based
on the average NO3

– concentration and isotope at a depth of 200 m (black square, [NO3
–]=14.8 ± 4.0 mmol/L, d15NNO3 = 5.4 ± 0.9‰, d18ONO3

= 3.5 ± 1.4‰, n=23). The straight dashed lines represent the Rayleigh model while the concave-down lines represent the Open system model.
The black arrows represent the dilution effect of Kuroshio intrusion with low concentrations of NO3

–. The gray vertical lines denote the
nitracline of 2.0 mmol/L. (C) The relationship between 18ϵ:15ϵ ratios and the nitracline depth. (D) Scatter plot of d18ONO3 versus d15NNO3 for all
stations. The solid line is the best fitting curve for all datapoints. The gray dashed line represents a 1:1 NO3

– isotope assimilation trend.
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yield a fractionation trend. These calculations assumed that

subsurface (~200 m) NO3
– is the only NO3

– source available

for phytoplankton assimilation. The isotope effect yielded by the

slope of the regression for the individual station is estimated

(Table 1). Average isotope effects of 2.8 ± 1.2‰ (n=14) for 15ϵ
and 5.0 ± 2.8‰ (n=15) for 18ϵ were obtained from 16 of the 23

stations using the Rayleigh model. The isotope effect was close to

the mean isotope effect based on the Open system model (7 of

the 23 stations), which yielded 3.2 ± 1.0‰ (n=4) for 15ϵ and 5.8

± 2.7‰ (n=4) for 18ϵ. These values fall well within the overall

isotope effect estimates of 1.0-6.0‰ in Figures 2A, B and 2.2-

6.2‰ derived from culture studies (Needoba et al., 2003).

Noteworthy is the N and O isotope effect at stations near the

Luzon Strait that yielded lower values of 1.1-3.1‰ and 1.3-4.7‰

(Table 1), respectively. This may be a consequence of NO3
–

depleted water supplied to the surface (<100 m) from Kuroshio

Current. When NO3
–depleted Kuroshio Current waters mixes

with NO3
–replete SCS waters, it reduces NO3

– concentration of

the remaining N pool (Du et al., 2013) without changing its

isotopic composition (Deutsch et al., 2004). Similarly, the

relatively low isotopic values (d15NNO3<5.4‰, d18ONO3<3.5‰)

that failed to yield a fractionation trend can also be explained by

the dilution effect from the Kuroshio Current.

4.2.2 Nitrification
The ratio of O:N isotope effects (18ϵ:15ϵ) was 2.0 ± 0.6 (n=13)

derived from the Rayleigh model and 2.5 ± 0.7 (n=3) from the

Open systemmodel (Table 1), showing disproportionate change in
15ϵ and 18ϵ. Such a high 18ϵ:15ϵ ratio differs from many field and

culture studies that found a nearly equivalent isotope effect in N

and O (Granger et al., 2008; Rohde et al., 2015; Rafter and Sigman,

2016). The input of newly fixed N from N2 fixation can lower 15ϵ
by introducing isotopically light N into the NO3

– pool, which may

partially explain the lower 15ϵ relative to 18ϵ. Nevertheless, similarly

high 18ϵ:15ϵ ratios have been reported for marine diatom

Thalassiosira weissflogii (18ϵ:15ϵ=1.4), and as high as 2.0 for

cultured heterotrophic a-proteobacterial strains (Granger et al.,

2010; Karsh et al., 2014). Additionally, our findings compare well

with the slope of 1.8 ± 0.1 (R2 = 0.72, p=0.01) derived from the

scatter plot of d18ONO3 versus d15NNO3 (Figure 2C). Such a positive

shift in d18ONO3 relative to d15NNO3 can result from nitrification in

recycled NO3
– (Wankel et al., 2009), is consistent with the reported

nitrification rates in the study area (Wan et al., 2018; Xu et al.,

2018). Moreover, such positive deviations are more evident at

stations where the nitracline was deeper (Table 1), as indicated by

the positive correlation between 18ϵ:15ϵ ratios and nitracline depth

(Figure 2D). This supports the idea that nitrification contributed to

the high 18ϵ:15ϵ ratios since the influence of nitrification increased

with increasing water depth and the lessening of photoinhibition

for nitrifiers (Wan et al., 2018). However, nitrification still cannot

explain the majority of the highest d15NNO3 and d18ONO3 values

measured (Figure 2C), revealing that NO3
– assimilation was the
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main process regulating N cycling in the upper ocean, followed by

nitrification. Therefore, the isotope effect in this study was a

conservative estimate since the influence of nitrification and N2

fixation cannot be separated from NO3
– uptake.
4.3 Relative importance of nitrification
and external N inputs

The above discussion implies the importance of external N

inputs from AND/N2 fixation on the N pool in the upper ocean.

Meanwhile, the relative importance of external N inputs and internal

processes, which could be imprinted on NO3
– isotope values, may

differ vertically throughout the water column. However, the relative

importance of these inputs is difficult to assess accurately without

high-resolution sampling. Below we separated the water column of

each station (those with high-resolution vertical sampling during

2014 and 2017 cruises) into a d18ONO3-based two-layer structure,

according to the deviation in d18ONO3 at a given depth (d18ONO3-obs)

from that at 200 m (d18ONO3-200m). Samples with a negative

deviation (d18ONO3-obs< d18ONO3-200m) were assigned to the

Dd18ONO3-negative layer; otherwise, they were categorized as part

of the Dd18ONO3-positive layer (d18ONO3-obs > d18ONO3-200m). Then

the relative importance of various processes contributing to the

isotope shifts in the Dd18ONO3-positive and Dd18ONO3-negative

layers of those stations was assessed quantitatively.

4.3.1 The Dd18ONO3-positive layer
In the Dd18ONO3-positive layer where NO3

– uptake

dominated, the contribution of nitrification to NO3
– uptake

(Fnit/Fupt) was calculated directly from the reported nitrification

to NO3
– uptake rates at stations NS1, 2014SEATS and D1 (Wan

et al., 2018). The results show that nitrification accounted for 2-

98% of the NO3
– uptake and its contribution increased with water

depth in this layer (Table 2). To eliminate the influence of different

sampling resolutions, Fnit/Fupt was first linearly interpolated at 1 m

intervals, and then the mean depth-integrated value was

calculated. Results show that the depth-integrated Fnit/Fupt was

34%, 53% and 32% for stations NS1, 2014SEATS and D1,

respectively, with a mean of 39 ± 11% (n=3), confirming the

importance of nitrification in supporting phytoplankton growth

(Wan et al., 2018). Noteworthy, new production assessed by the

NO3
– uptake rates may be overestimated in this layer due to a

substantial proportion of the NO3
– assimilated by phytoplankton

was produced from nitrification. The cumulative NO3
– from

nitrification should be considered as regenerated N rather new

N (Dugdale and Goering, 1967). This finding has important

implications for biological carbon pump and carbon cycling in

the vast marginal seas.

To estimate the relative importance of AND/N2 fixation to

NO3
– uptake (Fatm+fix/Fupt), a simplified one-dimensional model

based on a N isotope mass balance (Bourbonnais et al., 2009)
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was applied (Supplementary Figure 2). Details of the calculations

are provided in the Supplementary Text 1. Results show that

Fatm+fix/Fupt was up to 100% at 79 m for station NS1 and at 44 m

for station 2014SEATS (Table 2), suggesting the predominant

role of external N inputs in supporting marine productivity at

low-N depths. This is also consistent with the fact that extremely

low diapycnal NO3
–
fluxes in the nutrient-depleted layer are

observed in the SCS (Du et al., 2017). Combined with the very

low Fnit/Fupt at these depths, our results also indicate that

external N inputs from AND/N2 fixation are rapidly

consumed by phytoplankton without being remineralized.

However, Fatm+fix/Fupt decreased rapidly with depth at stations

2014SEATS and D1, along with the increasing contribution of

nitrification. The mean depth-integrated of Fatm+fix/Fupt was 28%

and 17% at these two stations, respectively, which is lower than

the proportion of nitrification (39 ± 11%). This suggests that

nitrification and external N inputs make a significant

contribution to NO3
– uptake (~50%) in the upper water

column (Bourbonnais et al., 2009; Yang et al., 2022).

4.3.2 The Dd18ONO3-negative layer
In the Dd18ONO3-negative layer, where NO3

– uptake was

limited by light and nitrification became more important, we

estimated the proportion of regenerated NO3
– (freg/tot) following

the method mentioned by Granger et al. (2013) and Tuerena

et al. (2021). Details of calculations are provided in the

Supplementary Text 2. Results showed that freg/tot ranged from

0-86% in the Dd18ONO3-negative layer (Table 3), with large

vertical and spatial variability. The highest depth-integrated

mean proportion of 34% was observed at station C1 while the

lowest fractions of 2-4% occurred at stations 2014SEATS and B1.

Overall, the depth-integrated freg/tot was 17 ± 10% (n=10),

revealing that on average ~17% of the NO3
– pool was

regenerated from nitrification in the Dd18ONO3-negative layer.

This is consistent with many other field studies (15-27%,Wankel

et al., 2007; Tuerena et al., 2021) and model results (~50%, Yool

et al., 2007), indicating that nitrification plays a substantial role

in the NO3
– pool and its d15NNO3 and d18ONO3 signatures, as

well as in oceanic productivity. Additionally, freg/tot in the

Dd18ONO3-negative layer varies greatly vertically, generally

increasing then decreasing with depth, and peaking at 123 ±

21 m (n=9) (Table 3). This is consistent with reported

nitrification rates that peaked at around 50-100 m (Wan et al.,

2018; Xu et al., 2018), further confirming the significance of

nitrification in regulating the size of the NO3
– pool and its

dynamics in the Dd18ONO3-negative layer, where low light

intensity and abundant NO3
– enhanced the success of nitrifiers

(Wan et al., 2018; Marconia et al., 2019).

To assess the relative contributions of external N inputs to

the NO3
– pool (fatm-fix/tot), a two-end-member mass and isotope

balance was used following Yang et al. (2022). Details of the

calculation are provided in the Supplementary Text 3. A
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vertically decreasing trend in fatm-fix/tot was observed at most

stations (Table 3), consistent with observations in the Atlantic

Ocean (Knapp et al., 2008). fatm-fix/tot also varied spatially, with

higher proportions (8-33%) at southern stations (C1, A2) near

the Nansha Island than northern stations (1-16%), implying a

greater accumulation of external N in the south. The deeper

nitracline in the southern SCS may hinder upwelling of

subsurface (~200 m) NO3
–, and thus favor the growth of

diazotrophs, which would lead to higher fatm-fix/tot. The depth-

integrated mean value of fatm-fix/tot was 7 ± 6% (1-22%, n=10) in

the Dd18ONO3-negative layer, slightly lower than in the

Dd18ONO3-positive layer (17-28%) but comparable to the

previously reported proportion of 1-22% (Wong et al., 2007;

Lu et al., 2019; Yang et al., 2022). Taken together, the above

results imply the importance of AND/N2 fixation to the total

NO3
– pool in the upper ocean, although their average

contribution is lower than that supplied by nitrification

(Knapp et al., 2008; Bourbonnais et al., 2009; Tang et al., 2019).

By deducting the total NO3
– contribution of nitrification (17

± 10%) and external N inputs (7 ± 6%), we can obtain the

average contribution of upwelled NO3
– to the total NO3

– pool as

76 ± 12% in the Dd18ONO3-negative layer. Therefore, d15NNO3

and d18ONO3 signature in the Dd18ONO3-negative layer were

similar to that at 200 m (Figures 1D, 1E), but also under the co-

influence of nitrification and external N inputs. This finding

suggests the complicated of N dynamics in the upper ocean of

marginal seas with variable contributions from various N

sources and processes.
5 Conclusions

All information collected regarding NO3
– dynamics, external

sources and processes in the upper water column of the SCS was

assembled into a conceptual diagram (Figure 3). Vertically,

NO3
– concentrations increased with depth while its d15NNO3

and d18ONO3 covaried becoming higher towards the surface

(<20 m) due to phytoplankton assimilation. The isotope effect

during NO3
– uptake was 2.8 ± 1.2‰ (n=14) for N and 5.0 ±

2.8‰ (n=15) for O, deduced from the Rayleigh model, with a

ratio of 2.0 ± 0.6 (O/N, n=13). This high O/N ratio was

attributable to nitrification and/or N2 fixation. At the depth of

~100 m at some stations, a negative shift in d15NNO3 deviated

significantly from the vertical pattern of d18ONO3, suggesting an

addition of isotopically light N. The relative contributions of

external N sources and internal processes was assessed by taking

advantage of high-resolution observations, revealing clear

vertical variations in their contributions in the d18ONO3-based

two-layer structure. In the Dd18ONO3-positive layer, the NO3
–

assimilated by phytoplankton were largely sourced from

nitrification (39 ± 11%) and AND/N2 fixation (17-28%). In the

Dd18ONO3-negative layer, the proportions of regenerated NO3
–
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TABLE 3 Summary of the proportions of regenerated NO3
– (freg/tot) and external N inputs from AND/N2 fixation (fatm-fix) in the Dd18ONO3-negative layer.

Station Depth (m) Nitrate (mmol/L) d15Nobs (‰) d18Oobs (‰) freg/tot (%) fatm+fix/tot (%) d18Oexp (‰)

NS1

101 10.7 4.6 2.5 17 11 2.7

132 12.9 4.9 2.5 16 6 2.7

151 13.8 5.1 2.5 18 4 2.7

181 13.4 5.4 2.8 0 0 2.8

Depth-integrated mean value 14 5

J1

119 5.2 4.5 2.9 24 11 3.3

130 6.9 4.7 2.9 28 8 3.3

140 7.9 4.9 2.8 31 6 3.4

150 8.3 5.1 3.6 / 4 3.4

159 9.1 5.1 3.3 9 3 3.4

179 11.0 5.3 3.6 / 1 3.4

199 12.1 5.4 3.5 0 0 3.4

Depth-integrated mean value 14 4

X5

90 9.2 4.8 2.4 36 9 2.9

100 10.4 4.9 2.3 40 8 2.9

107 10.2 4.8 2.4 36 8 2.9

120 9.9 5.0 2.4 37 6 3.0

131 11.8 5.5 3.7 / 0 3.0

140 13.4 5.5 3.1 / 0 3.0

150 13.8 5.2 2.8 15 4 3.0

169 14.5 5.3 3.4 / 2 3.0

202 15.2 5.5 3.0 0 0 3.0

Depth-integrated mean value 21 3

2014SEATS

109 11.6 4.9 2.4 2 7 2.4

119 11.8 5.1 2.5 / 5 2.4

127 13.7 5.4 2.4 2 1 2.5

139 15.1 5.5 2.7 / / /

147 15.7 5.6 2.4 2 / /

158 15.6 5.6 2.5 0 / /

168 15.8 5.6 2.4 3 / /

180 17.2 5.4 2.5 0 0 2.5

Depth-integrated mean value 2 1

D1

68 8.3 5.0 2.5 23 9 2.7

79 9.4 4.9 2.5 21 10 2.7

100 10.4 5.0 2.5 21 9 2.7

119 12.3 5.0 2.3 37 9 2.7

160 15.6 5.6 2.9 / 2 2.8

(Continued)
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TABLE 3 Continued

Station Depth (m) Nitrate (mmol/L) d15Nobs (‰) d18Oobs (‰) freg/tot (%) fatm+fix/tot (%) d18Oexp (‰)

180 19.0 5.7 2.7 10 0 2.8

200 19.6 5.7 2.8 0 0 2.8

Depth-integrated mean value 21 6

SS1

125 7.5 4.6 4.3 2 8 4.2

130 9.0 4.4 4.2 4 10 4.1

150 12.9 4.3 2.1 74 11 4.1

160 13.1 4.5 3.6 26 9 4.1

170 13.6 4.6 3.9 14 7 4.2

190 14.3 5.0 4.1 10 2 4.3

200 14.9 5.1 4.4 0 0 4.4

Depth-integrated mean value 24 7

2017 SEATS

90 7.5 5.4 4.3 17 9 4.7

95 6.6 5.5 4.3 18 8 4.7

100 7.4 5.3 1.8 86 11 4.6

110 9.0 5.3 3.2 49 11 4.6

120 9.6 5.5 4.8 4 9 4.7

130 9.6 5.5 4.5 13 8 4.7

140 10.8 5.6 4.7 8 7 4.7

150 11.3 5.8 4.6 9 5 4.8

175 13.6 4.8 5.6 / 16 4.5

200 15.3 6.2 4.9 0 0 4.9

Depth-integrated mean value 16 9

B1

108 4.6 5.3 5.1 4 2 5.1

125 10.4 4.9 4.9 7 0 5.2

150 10.7 5.1 5.2 0 / /

Depth-integrated mean value 4 1

C1

100 11.3 5.6 6.1 28 27 6.3

125 11.7 4.9 4.0 59 33 5.9

150 12.7 5.3 4.5 51 30 6.1

175 14.3 7.1 6.9 16 12 7.2

200 21.9 8.5 7.9 0 0 7.9

Depth-integrated mean value 35 22

A2

100 8.0 2.1 1.8 79 33 3.0

125 12.2 3.5 3.2 15 12 3.3

150 13.5 3.7 3.4 4 8 3.4

200 17.2 4.2 3.5 0 0 3.5

Depth-integrated mean value 16 10

d15Nobs and d18Oobs are the measured d15NNO3 and d18ONO3, while d18Oexp represents the expected d18ONO3 calculating from mass balance (Supplementary Text 3).
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and external N inputs to the total NO3
– pool were 17 ± 10% and

7 ± 6% (n=10), respectively. These findings suggests that in

addition to upwelled NO3
– from subsurface waters (~200 m),

nitrification and external N sources (AND/N2 fixation) also play

an important role in modulating the NO3
– pool, affecting its

isotopic signatures and cycling dynamics in the upper water

column of the SCS.
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