
1. Introduction
“High Nutrient Low Chlorophyll” (HNLC) conditions in the ocean refer to relatively low biomass of phytoplank-
ton even with a plentiful supply of macronutrients (in particular, phosphate and nitrate). In the global ocean, there 
are three major high nutrient low chlorophyll (HNLC) regions, located in the subarctic North Pacific, the equa-
torial Pacific and the Southern Ocean. The three high nutrient low chlorophyll (HNLC) regions cover about 20% 
of the global ocean (Pitchford & Brindley, 1999). While the importance of the HNLCs is recognized for marine 
ecosystem and climate change, the cause of HNLCs has long been debated. Actively considered hypotheses 
include the scarcity of iron (Martin, 1990), top-down grazing control (Frost, 1991) and low light levels (Mitchell 
& Holmhansen, 1991). In particular, the hypothesis of iron limitation prompted a sequence of open ocean iron 
fertilization experiments in different HNLC regions (Boyd et al., 2007; Yoon et al., 2018).

Model experiments were conducted to investigate whether large-scale ocean iron fertilization (OIF) in the HNLC 
regions can be an effective means to sequester carbon from the atmosphere and slow down future climate warm-
ing (Joos, Siegenthaler, & Sarmiento, 1991; Sarmiento & Orr, 1991). In fact, such ocean iron fertilization (OIF) 
experiments did produce obvious biogeochemical responses such as increases in surface chlorophyll-a, draw-
down of surface nutrients and reduction of surface pCO2 (Boyd et al., 2007; Yoon et al., 2018). The increase 
of oceanic carbon uptake in model experiments with iron fertilization of hundreds of years was estimated to 
be 98–181 Pg C with models of different complexities (Joos, Sarmiento, & Siegenthaler, 1991; Kurz & Maier-
reimer, 1993; Peng & Broecker, 1991; Sarmiento & Orr, 1991). Relatively, the HNLC in the Southern Ocean 
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Plain Language Summary Iron fertilization is proposed as a useful geoengineering tool to mitigate 
climate warming by stimulating phytoplankton growth and enhancing carbon export to deep ocean. However, 
the fate of the absorbed carbon in high nutrient low chlorophyll (HNLC) regions remains unclear. Here we use 
a data-constrained biogeochemical inverse model to explore the long-term impact of maximal productivity in 
different HNLC regions on ocean biogeochemistry and atmospheric CO2. We performed a series of sensitivity 
tests that solved the new equilibrium states of key biogeochemical variables. Our results show that iron 
fertilization in all HNLC regions can reduce the atmosphere CO2 by a maximum of 18.7%, demonstrating 
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offset the efficacy of iron fertilization and have detrimental impact on the ocean ecosystem.
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is of particular importance because the Southern Ocean is characterized by deep water formation and carbon 
sink related to solubility change (Brown et  al.,  2019; Caldeira & Duffy,  2000; DeVries et  al.,  2017; Gruber 
et al., 2019; Landschutzer et al., 2014; Matear & Elliott, 2004; Rae et al., 2018). For example, iron supply in the 
Southern Ocean was shown as an important contributor to glacial-interglacial CO2 change (Gaspari et al., 2006; 
Kohfeld et al., 2005; Watson et al., 2000). However, the long-term impact of productivity change induced by 
iron fertilization in HNLCs on ocean carbon uptake still remains unclear because it takes several thousand years 
for the ocean-atmosphere system to reach a new equilibrium level of CO2. Thus, it is of critical importance to 
explore the equilibrium responses of the ocean to the changes of productivity in different HNLCs, caused by iron 
fertilization or other processes.

Past studies of iron fertilization experiments illustrated the great complexity of the ocean system (Blain 
et al., 2007; Street & Paytan, 2005; Strong et al., 2009). Attempts to engineer this system are likely to provoke 
complex, unpredictable responses. First, iron fertilization can increase productivity in an iron-fertilized area and 
reduce down-stream nutrients and phytoplankton biomass, leading to a spatial shift of biological productivity 
(Marinov et al., 2006; Moore et al., 2018; Primeau et al., 2013). Second, iron addition and subsequent phyto-
plankton blooms, associated with increased particulate organic matter export and remineralization, can reduce 
oxygen levels in subsurface waters (Keller et al., 2014; Oschlies et al., 2010). Therefore, there is a risk that the 
reduced oxygen level may result in increased production of nitrous oxide, a greenhouse gas far more powerful 
than CO2 (Forster et al., 2007). However, the ultimate impact of these complex processes remains unclear.

In this study, we explore the impact of increased productivity in HNLCs with an optimized biogeochemical 
inverse model. Main objectives include: (a) to explore the equilibrium responses of global nutrients to elevated 
productivity in HNLC regions, (b) to evaluate the change of oxygen minimum zones (OMZs) and its impact on 
climate and (c) to quantify the impact of elevated productivity in different HNLC regions on atmospheric CO2 in 
a coupled ocean-atmosphere system.

2. Methods
2.1. Biogeochemical Models

The inverse biogeochemical model includes three modules: phosphorus, carbon and oxygen module. The mode-
ling method of the phosphorus module is the same as that in Wang et  al.  (2019). Briefly, we consider three 
pools of phosphorus: dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP) and particulate 
organic phosphorus (POP). The cycling of the three tracers is described using the following equations,

[

𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝐓𝐓

]

[DIP] = −𝛾𝛾[DIP] + 𝜅𝜅𝑑𝑑𝑑𝑑 [DOP] + 𝜅𝜅𝑔𝑔([DIP] − [DIP]𝑜𝑜𝑜𝑜𝑜𝑜 

[

𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝐓𝐓

]

[DOP] = 𝜎𝜎𝜎𝜎[DIP] + 𝜅𝜅𝑃𝑃 [POP] − 𝜅𝜅𝑑𝑑𝑃𝑃 [DOP] 

[

𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝐅𝐅POP

]

[POP] = (1 − 𝜎𝜎)𝛾𝛾[DIP] − 𝜅𝜅𝑃𝑃 [POP] (1)

where 𝐴𝐴 𝐓𝐓(𝐓𝐓 [C] ≡ ∇ ⋅

(

⃖⃖⃗𝑈𝑈 [𝐶𝐶] −𝐊𝐊∇ [C]

)

 is an advection and diffusion transport operator that is used to model 
advection and diffusion transport of dissolved tracers. T is constrained using multiple tracers including tempera-
ture, salinity, sea surface height, CFC-11, CFC-12,  3He,  14C, and so on (Tim DeVries & Holzer, 2019). Particulate 
organic phosphorus (POP) sinks and gradually dissolves in the water column, its vertical distribution is modeled 
according to a power law function (a.k.a. Martin curve function), which is discretized to a sinking flux divergence 
operator (FPOP). The exponent (b) is encoded in the F operator, and is optimized in the inversion. σ is a produc-
tion allocation parameter that decides the fraction of production goes to dissolved organic phosphorus (DOP) 
and particulate organic phosphorus (POP), and is also optimized in the inversion. POP dissolution (κP[POP]) 
leads to the production of dissolved organic phosphorus (DOP), whose remineralization (κdP[DOP]) leads to the 
production of dissolved inorganic phosphorus (DIP). κgis a geological restoring parameter that is used to restore 
model dissolved inorganic phosphorus (DIP) concentration to the observed mean DIP concentration (𝐴𝐴 [DIP]𝑜𝑜𝑜𝑜𝑜𝑜 ).

DIP assimilation rate (γ(r)) is modeled using satellite observed net primary production (NPP, SeaWiFS CbPM) 
and observed DIP concentration ([DIP]obs) according to Equation 2.
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where α and β are free parameters that are optimized in the inversion. rC:P is a carbon to phosphorus ratio that is 
used to convert net primary production (NPP) from carbon unit to phosphorus unit. r represents location index. 
net primary production (NPP0) and [DIP]0 are set to 1 mmol C m −3 s −1 and 1 mmol m −3, respectively, they are 
used to remove dimensions of NPP(r) and [DIP]obs. z0 is the euphotic zone depth in the model, which is the top 
two model layers (∼73 m).

The carbon model is more complicated compared to the phosphorus model, there are five explicit tracers: dissolved 
inorganic carbon (DIC), dissolved organic carbon (DOC), particulate organic carbon (POC), particulate inorganic 
carbon (PIC) as known as calcium carbonate, and total alkalinity (ALK). The governing equations are as follow,

[

𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝐓𝐓

]

[DIC] = (𝐼𝐼 + (1 − 𝜎𝜎)𝑟𝑟𝑅𝑅𝑅𝑅𝚪𝚪𝑟𝑟𝐶𝐶∶𝑃𝑃 + 𝜅𝜅dC[DOC] + 𝜅𝜅PIC[PIC] + 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠2𝑠𝑠𝑎𝑎𝑟𝑟 + 𝐹𝐹𝑣𝑣[𝐷𝐷𝐼𝐼𝐶𝐶]𝑔𝑔 

[

𝑑𝑑

𝑑𝑑𝑑𝑑
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]

[DOC] = 𝜎𝜎𝚪𝚪𝑟𝑟𝐶𝐶∶𝑃𝑃 + 𝜅𝜅𝑝𝑝[POC] − 𝜅𝜅𝑑𝑑𝐶𝐶 [DOC] 

[

𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝐅𝐅POC

]

[POC] = (1 − 𝜎𝜎)𝚪𝚪𝑟𝑟𝐶𝐶∶𝑃𝑃 − 𝜅𝜅𝑃𝑃 [POC] 

[
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𝑑𝑑𝑑𝑑
+ 𝐓𝐓

]

[O2] = 𝚪𝚪𝑟𝑟𝑂𝑂∶𝑃𝑃 −𝑅𝑅𝜅𝜅𝑑𝑑𝑑𝑑 [DOC]𝑟𝑟𝑂𝑂∶𝑑𝑑 − 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠2𝑠𝑠𝑎𝑎𝑟𝑟 

[ �
��

+ �
]

[ALK] = − 2(1 − �)������∶� + ��∶����∶� − ��∶���� [DOC]

+ 2�� [PIC] + ��

(

[ALK] − [ALK]
)

+ ��[ALK]�
 (3)

where FPOC and FPIC are sinking flux divergence operators for particulate organic carbon (POC) and particulate 
inorganic carbon (PIC), respectively. FPOC is coded the same way as FPOP with an independent exponent b value 
(Table 2). FPIC is coded to produce an exponential distribution curve for particulate inorganic carbon (PIC), the 
dissolution length scale (d) is optimized in the inversion. Dissolved inorganic carbon (DIC) assimilation rate 
is proportional to that of DIP (Γ≡γ[DIP]) with a ratio (rC:P) of carbon to phosphorus. Production allocation to 
particulate organic carbon (POC) and dissolved organic carbon (DOC) is determined using the same allocation 
factor as that in the phosphorus model (σ). The sea-to-air flux of CO2 is modeled according to the formulation 
used for phase 2 of the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP-2) (Najjar et al., 2007). 
PIC production rate is proportional to POC production rate with an adjustable parameter (rRR: rain ratio, Table 2).

According to Redfield ratio, a mole of organic matter formation consumes 106 mol dissolved inorganic carbon 
(DIC) and 16 mol of 𝐴𝐴 NO

−

3
 . The conversion of 16 mol of 𝐴𝐴 NO

−

3
 to organic nitrogen consumes 16 mol H +, thus 

increases total alkalinity by 16 mol (𝐴𝐴 𝐴𝐴N∶C𝚪𝚪𝐴𝐴C∶P ). Similarly, a mole of organic matter remineralization and nitrifi-
cation leads to a reduction of total alkalinity of 16 mol (rN:CκdC[DOC]). Dissolution of one mol PIC produces one 
mol 𝐴𝐴 CO

2−

3
 , thus leads to an increase of total alkalinity by two mol. PIC production functions in an opposite way. In 

addition, precipitation and evaporation can significantly impact surface ocean concentrations of DIC and alkalin-
ity. To compensate these effects, we apply a virtual flux for DIC and ALK (Fv[DIC]g and Fv[ALK]g, respectively, 
where [DIC]g and [ALK]g are surface ocean DIC and ALK mean concentration.) (Najjar et al., 2007).

Oxygen production is modeled to be proportional to DIP consumption with a ratio of oxygen to phosphorus (rO:P), 
oxygen consumption is modeled to be proportional to dissolved organic carbon (DOC) remineralization rate with 
a ratio of oxygen to carbon (rO:C).

[

𝑑𝑑

𝑑𝑑𝑑𝑑
+ 𝐓𝐓

]

[O2] = 𝚪𝚪𝑟𝑟𝑂𝑂∶𝑃𝑃 −𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑 [DOC]𝑟𝑟𝑂𝑂∶𝑑𝑑 − 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠2𝑠𝑠𝑎𝑎𝑟𝑟 (4)
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We use a hyperbolic function (R) to shut down oxygen consumption when oxygen level falls below a critical level, 
so that we prevent the model from producing negative oxygen concentrations

� = 0.5 + 0.5 tanh
[

([�2] − �����)∕[�2]0
]

, 

where Ocrit is a critical oxygen concentration (10 mmol/L) below which oxygen consumption gradually decreases, 
and [O2]0 is set to 1 mmol/L and is used to remove dimension. Sea-to-air flux is modeled according to Ref (Najjar 
et al., 2007).

We sequentially solve the phosphorus, carbon and oxygen equations (Equations 2–4) based on an initial guess 
of parameter combinations. The difference between model results and observations is minimized by optimizing 
the model parameters in a Bayesian model frame (Wang et al., 2019). The observational constraints used in the 
model are DIP, DIC, ALK, and dissolved oxygen, which are obtained from GLODAPv2 data set, and interpolated 
into our model grid.

In our model, we assume that POC/POP is routed to DOC/DOP before getting remineralized to DIC/DIP. This 
scheme can prevent unrealistic accumulation of POC/POP at the bottom of high productivity waters and/or shal-
low waters since no sediment burial is permitted in the model. In this way, the process of parameter optimization 
is more stable than allowing POC/POP remineralized directly to DIC/DIP. Since our optimization routine can 
find optimal parameter combination to fit the observations, the different schemes produce similar results. In 
our model, the remineralization of POC to DIC and POP to DIP is decoupled by the different values of kdc and 
kdp. Such decoupled remineralizations of POM and DOM were also documented in previous study (e.g., Kwon 
et al., 2022; Loh & Bauer, 2000).

2.2. Model Validation

In the model, we optimized a suite of biogeochemical parameters and attempted to generate state-of-the-art 
biogeochemical estimates. The equilibrated tracers are highly consistent with observations (e.g., DIP, DIC, ALK, 
O2) (Figure 1). In addition, spatial pattern of the distribution of surface phosphate shows close agreement with 
the WOA2013 data regarding spatial patterns (Figure 2).

2.3. Sensitivity Tests

In the sensitivity tests, we perturb the optimal model by adjusting production in HNLCs. We increase DIP/DIC 
uptake rate so that nutrients in the surface ocean can be quickly drawn down in HNLCs. Because the phosphorus 
model is linear and there are no interactions with the atmosphere, we thus solve the steady state solution after 
perturbation using direct matrix inversion. For the carbon module, we add a one-box atmospheric layer on top of 
our ocean model and assume that the carbon is conserved in the system. Therefore, the overall uptake of CO2 by 
the ocean leads to a decrease of CO2 in the atmosphere. To find the steady-state solution, we do a transient run 
on the coupled atmosphere and ocean model with a time step of 1/20 years. We integrated the perturbed model 
until it reached a new equilibrium state. The timescale depends on the specific perturbation in the HNLC regions 
(Figure 3). It takes 3,100, 2,400, and 2,100 years to reach a new equilibrium state for the SOxN, NPxN and EPxN, 
respectively. The strong exchange of carbon between atmosphere and ocean occurs in the first 500–1,000 years. 
For the oxygen model, we use steady-state solutions after perturbation from phosphorus and carbon models as 
inputs and solve the oxygen model using Newton's method.

3. Results
A series of sensitivity experiments are performed by increasing the productivity in these HNLC regions whose 
boundaries are delineated in Figure 2. In this study, we do not attempt to explore the exact limiting factors of 
productivity in the HNLCs. Instead, we focus primarily on the consequences of elevated productivity in these 
sensitivity runs. The productivity is increased by adjusting a parameter (α) in the biological uptake term of Equa-
tion 2. We perform a series of sensitivity experiments by increasing the nutrient uptake rate to different levels 
in Equation 2. When the biological uptake rate is elevated to a level strong enough that biological pump can 
quickly draw down the nutrient of upper ocean, we refer to the final experiments in the Southern Ocean, subarctic 
North Pacific and equatorial Pacific Ocean as SO × N, NP × N and EP × N, respectively (Table 1). The N here 
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indicates that biological uptake rate is N times larger than in the control run. 
For the current model setup and optimized parameters, N is about 50. We 
also conduct an experiment with the productivity increased simultaneously 
in all three HNLCs, which is referred to as ALL × N.

3.1. Increased Productivity in the Southern Ocean

The SO × N experiment assumes highly efficient nutrient removal by the 
ecosystem in the Southern Ocean. Thus, the elevated biological uptake of 
DIP in the surface layer produces a strong negative DIP perturbation rela-
tive to the control run (Figures 4a and 4d). Elevated production also causes 
massive transport of nutrients into deep layers of the Southern Ocean, where 
the waters with more respired nutrients are advected northward in the bottom 
ocean and can arrive at 60°N. At the same time, decreased DIP concentra-
tions are revealed in the surface and intermediate depths north of 40°S. Less 
nutrient in the surface waters would decrease photosynthesis and reduce 
regenerated DIP below the surface, which intensifies the negative anomaly 
in the intermediate waters. The loss of nutrients in these waters compen-
sates the nutrient gain in the Southern Ocean and global deep ocean. Similar 

nutrient redistribution was reported in previous studies (Joos, Siegenthaler, & Sarmiento, 1991; Laufkotter & 
Gruber, 2018; Marinov et al., 2006; Moore et al., 2018; Sarmiento & Orr, 1991) when the productivity in the 
Southern Ocean was increased. These studies used relatively short-term model simulations (100–300 years), at 
the end of which the model is still strongly evolving (Figure 3). Therefore, our results provide conclusive evidence 
of the impact of the Southern Ocean nutrient removal on the shift of global nutrient distribution.

Highly elevated production in the Southern Ocean redistributes the nutrients in the ocean (Figures 4b and 4e). The 
DIP inventory shows a widespread cumulation of nutrients in the Southern Ocean, a large fraction of the Indian 
Ocean, and nearly the whole Pacific Ocean in the north hemisphere (Figure 4e). The loss of nutrients occurs in 
the whole Atlantic Ocean and the southeast Pacific Ocean. The distribution of the DIP inventory perturbation 
exhibits the connections between different ocean basins to the Southern Ocean. In addition, the redistribution of 
nutrients changes the efficiency of global biological pump. Following Ito and Follows (2005), we quantify the 
efficiency of soft tissue pump (P* in their study) by using the ratio between global mean regenerated phosphate 
and global mean phosphate. Regenerated phosphate, Preg, is here defined as the phosphate that results from the 
remineralization of organic matter that is produced biologically at the surface and then carried into the interior in 
dissolved organic form by water parcels and by sinking particulate organic matter. By definition, Preg is given by 
Preg = AOU/Ro2:P, where AOU is apparent oxygen utilization. In the global ocean, P* was increased from 0.37 to 
0.51 (Table 1), clearly indicating more nutrients transported to the deep ocean by the export and remineralization 
of organic material.

Global zonal average DIC displays similar patten on the latitude-depth section (Figure 4c). Negative DIC pertur-
bation is found in the upper layer of the Southern Ocean as compared to the control run. This helps to reduce 
pCO2 in the Southern Ocean and enhance oceanic uptake of atmospheric CO2. Deep ocean waters exhibit large 
positive DIC perturbation due to an enhanced biological pump. Note that these deep waters with excessive DIC 
could make up for the disequilibrium caused by the elevated productivity when they had contacted with the 
surface waters in the Southern Ocean on a time scale of a few millennia with changing circulation. The DIC 
inventory perturbation (Figure 4f) shows similar pattern to that of the DIP. DIC inventory is increased in regions 
where positive DIP perturbations are found. In the Atlantic Ocean, we find very minor change in DIC inventory 
despite the reduction of nutrients. This may be attributed to the fact that the surface nutrient concentrations of 
these areas are already low. In total, the ocean carbon uptake is increased by 96 Pg C, which is equivalent to a 
reduction of 45.1 ppm in atmospheric CO2 concentration (Table 1).

The pattern of global zonal mean oxygen mirrors that of the DIP on the latitude-depth section (Figure 4c). Oxygen 
in the intermediate waters of 150–600  m is increased due in part, to the advection down from high latitude 
surface waters where it is produced by photosynthesis and in part to the reduced intermediate water regeneration 
noted in the DIP distribution. The relative role of advection and reduced regeneration of DIP was quantified in 
Fu et al. (2018), which showed that the impact of advection is relatively small for the increased oxygen. Most 

Experiments

P* (soft 
tissue 
pump 

efficiency)

Atmospheric 
CO2 

drawdown 
(ppm)/

(Percent)
Global mean 
oxygen (μM)

Volume 
of oxygen 

minimum zones 
(<30 μM) 
(10 7 km 3)

Ctrl 0.37 (0.36) 0.0 171.2 (169.8) 2.7 (3.0)

SO×N 0.51 45.1 (16.2%) 135.1 11.8

EP×N 0.38 3.4 (1.2%) 168.9 3.4

NP×N 0.39 6.7 (2.4%) 167.1 4.4

ALL×N 0.54 52.3 (18.7) 125.5 16.9

Note. For the control run, values obtained from the WOA13 data are indicated 
in parenthesis.

Table 1 
The Change of Atmospheric CO2 (ppm), Global Mean Oxygen (μM), Volume 
of Oxygen Minimum Zones (107 km 3), and the Efficiency of Soft Tissue 
Pump in the Control and Sensitivity Runs
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deep water is deoxygenated except north high latitudes (>60°N), reflect-
ing increased accumulation of respired carbon. Deep-water deoxygenation 
expands the hypoxic waters in the deep Pacific Ocean. Global mean oxygen 
concentration is decreased by 15% (26.1  μM) relative to the control run 
(Table 1). Oxygen inventory is decreased in most of the global ocean except 
high-latitude North Atlantic and the Arctic Ocean (Figure 4g). In the South-
ern Ocean and North Pacific, the oxygen inventory is significantly decreased 
by 300 mol/m 2. Meanwhile, the simulated global volume of hypoxic waters 
is more than 4 times larger than the control run, suggesting a more severe 
environment for marine animals (Table 1).

3.2. Increased Productivity in the Equatorial/North Pacific

When productivity is elevated in the eastern equatorial Pacific, the depth-lat-
itude section presents positive DIP perturbations within the 300–2,000  m 
depth range between 30°S–30°N (Figure  5a) while surface DIP is drawn 
down (Figure 5d). In contrast to the case of the Southern Ocean, negative 
perturbations are found in most of the deep ocean (below 2,000  m). For 
the North Pacific case (Figure 6a), maximum positive perturbations occur 
from 200 to 1,000 m and centered at 45°N. The positive perturbation (DIP 
increases) extends from 200 m to the bottom and southward at 1,000 m to 
30°S, probably related to the North Pacific Intermediate Water (Sarmiento 
et al., 2004). Surface DIP is decreased mostly in the North Pacific and eastern 
equatorial Pacific (Figure 6d). As for DIP inventory (Figure 5e), large posi-
tive perturbations are confined to the eastern Pacific in the EP × N run. The 
magnitude of perturbations diminishes from the eastern to central Pacific. 
The positive changes are accompanied by negative perturbations occurring 
in the north Indian Ocean and tropical Atlantic Ocean (Figure 5e). For the 
NP × N run, positive perturbations are stronger than the EP × N, extending 
from North Pacific to 30°S while the rest of ocean shows negative perturba-
tions (Figure 6e).

DIC perturbations present similar patterns to the DIP (Figures 5c and 5f; Figures 6c and 6f) with positive signals 
coinciding with those of the DIP. Globally, the increases of P* in both runs indicate enhanced efficiency of soft 
tissue pump. The increase of ocean carbon inventory is equivalent to a CO2 drawdown of 3.4 and 6.7 ppm from 
the atmosphere in the EP × N and NP × N run, respectively. The change of ocean carbon uptake in these runs 
are much smaller than the SO × N. Equatorial Pacific waters are isolated from the vast bulk of the ocean due 
to their low density. As a result, the impact of elevated productivity is primarily confined to the local regions 
where the productivity is increased. The impact in the North Pacific is relatively larger compared to the equato-
rial band, presumably because the North Pacific exchanges with a larger volume of water contained in the main 
thermocline.

In both EP × N and NP × N runs, global mean oxygen concentration is decreased slightly by 2.3 and 4.1 μM, 
respectively In the EP x N run, the decrease of oxygen inventory in the eastern Pacific is compensated by other 
regions (Figure 5g). In the NP x N run, similarly, the decrease of oxygen inventory occurs mostly in the North 
Pacific while oxygen inventory is increased in other regions (Figure 6g). More hypoxic waters are developed in 
the NP × N run than the EP × N run especially in the mid-latitude central North Pacific. As a result, a larger 
oxygen minimum zone (OMZ) is seen, whose volume is increased by 26% and 63% in the EP × N and NP × N 
run, respectively. Our results demonstrate that a globally more efficient biological pump would result in ocean 
deoxygenation.

If we increase the productivity in all three HNLC regions, the efficiency of soft tissue pump is increased by 46% 
(0.54), leading to a drawdown of atmospheric CO2 of 52.3 ppm. The global mean dissolved oxygen is decreased 
by 27%–125.5 μM, accompanied by an expanded oxygen minimum zone (OMZ) volume that is 6 times larger 
than in the control run (Table 1).

Parameters Optimal value ± 1σ Units

σ 𝐴𝐴 0.23+0.02
−0.02

Unitless

κdP 𝐴𝐴 2.17+0.09
−0.08

× 10
−8 s −1

bP 𝐴𝐴 1.15+0.003
−0.003

Unitless

α 𝐴𝐴 5.43+0.16
−0.14

× 10
−8 s −1

β 𝐴𝐴 0.21+1.80
−0.19

× 10
−4 Unitless

bC 𝐴𝐴 1.18+0.002
−0.002

× 10
−1 Unitless

d 𝐴𝐴 4057.34+20.59
−20.49

m

κdC 𝐴𝐴 5.78+0.21
−0.21

× 10
−8 s −1

rRR 𝐴𝐴 2.67+0.01
−0.01

× 10
−2 Unitless

cc 𝐴𝐴 1.81
+𝐼𝐼𝐼𝐼𝐼𝐼

−1.81
× 10

−9 L μM −1

dd 𝐴𝐴 6.24+0.03
−0.03

× 10
−3 Unitless

rO:C 𝐴𝐴 1.24+0.01
−0.01

Unitless

rO:P 𝐴𝐴 182.70+1.53
−1.52

Unitless

κp 3.86 × 10 −7 s −1

Note. bP and bC are Martin curve exponents for particulate organic phosphorus 
and particulate organic carbon (POC), respectively. α and β are defined in 
Equation 2. d is particulate inorganic carbon (PIC) dissolution length scale. 
rRR is PIC to POC production ratio. cc and dd  are two parameters that define 
P:C (or C:P) assimilation rate (rC:P  =  1/(cc[DIP]  +  dd)). rO:C and rO:P are 
oxygen to carbon ratio and oxygen to phosphorus ratio, respectively.

Table 2 
Optimal Model Parameters With Their Uncertainties (±σ). σ is Production 
Allocation Parameter, κdP and κdC Are Dissolved Organic Phosphorus and 
Dissolved Organic Carbon Remineralization Rate Constants, Respectively
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4. Conclusion and Discussion
Increases of productivity in the HNLC regions by iron fertilization is thought 
to be a geoengineering approach to reduce atmosphere CO2 concentration. 
While more carbon is absorbed into the ocean, it takes several thousand years 
before a new equilibrium atmosphere CO2 level is achieved. The long-time 
scale makes it difficult to determine the fate of the absorbed carbon and eval-
uate its final impact on climate. To explore the impact of the fertilization 
experiments, we use an optimized biogeochemical inverse model to investi-
gate the equilibrium responses of global ocean to increased productivity in 
three major HNLC regions. We set the atmospheric CO2 to a preindustrial 
level of 278  ppm and assume total carbon conservation in the ocean and 
atmosphere.

We increased the productivity and hence micronutrient uptake rate by 50 
times in the HNLC regions to explore the maximum potential of ocean iron 
fertilization (OIF) in mitigating climate warming. The 50 times is higher 
than the productivity change in the actual OIFs conducted since 1990s (Yoon 
et  al.,  2018). In the read-world OIFs, the productivity was increased by 2 
times to more than 10 times after iron addition, suggesting highly uncertain 
outcomes. In the OIFs in the Southern Ocean, 10 times increase in productiv-
ity can draw down up to 30% of surface DIP. Larger increases in the produc-
tivity are expected to produce a stronger DIP drawdown. Therefore, 50 times 
increase in uptake rate seems reasonable for a relatively complete drawdown 
of surface DIP in this study.

Figure 1. Tracer-tracer comparisons between our optimal model results and observations downloaded from GLODAPv2 
website (https://www.glodap.info). The red dash line in each figure shows 1:1 line, and the colormap indicates distribution of 
percentile.

Figure 2. Surface dissolved inorganic phosphorus (mmol/m 3) of (a) WOA18 
data and (b) OCIM. The boundary of three major high nutrient low chlorophyll 
regions was delineated with a black line.

weilei wang

weilei wang
read-world -> real-world
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In the Southern Ocean HNLC, increased productivity removes nutrients from surface waters. The deep circum-
polar waters are enriched in nutrients by regeneration of organic matter, which results in an overall downward 
shift of nutrients and carbon from surface and intermediate to circumpolar and deep waters. The efficiency of 
soft tissue pump is increased by 38%, which overcompensates the reduction of low-latitude new production. 
Total oceanic carbon uptake is increased by 96 Pg C (45.1 ppm CO2 from atmosphere). The increases of carbon 
are mostly stored in the Southern Ocean, Indian and Pacific Ocean of the north hemisphere. Increased produc-
tivity in the equatorial and North Pacific HNLCs also shifts more nutrients and carbon downward from surface 
and intermediate to deep waters. However, the impact is more restricted to the regions close to the perturbation 
regions. The efficiency of soft tissue pump is increased by 3% and 5.4%, resulting in carbon uptake of 3.4 Pg C 
and 6.7 Pg C, respectively.

Increased productivity in the Southern Ocean, equatorial Pacific and North Pacific HNLC decreases global mean 
dissolved oxygen by 21%, 1.3% and 3.0%, respectively. The oxygen content shifts upward in the water column, 
approximately mirroring the downward shift of nutrients. More hypoxic waters are developed in the global ocean. 
In particular, the high productivity in the Southern Ocean produces an oxygen minimum zone (OMZ) volume 
that is 4 times larger than the control run. The OMZ volume is increased by 26% and 63% in the Equatorial and 
North pacific case, respectively.

The expanded oxygen minimum zones (OMZs) suggests increased emissions of climate-relevant gases such as 
N2O (Martinez-Rey et al., 2015). N2O has a relatively long lifetime in the atmosphere (∼110 years) and a global 
warming potential about 310 times greater than CO2 (Forster et al., 2007). Therefore, the expansion of oxygen 
minimum zones (OMZs) is expected to, in the long run, contribute to an increase in the greenhouse effect (Fuhr-
man & Capone, 1991). For example, the increases of productivity in all the HNLC regions results in an OMZ 
volume that is 6 times larger than the control run. We relate the increase in the N2O production to the modeled 
increase in export production according to Fuhrman and Capone (1991). In the ALLxN run, export production 
is increased by a mean of 120%. Multiplying the current emissions of N2O by the increase in export production 
yields an increased emission of N2O of 4.4 Tg N yr −1. This simple estimate is about 35% of the total N2O emis-
sions from global land ecosystems, which was estimated to be 12.52 ± 0.74 Tg N/yr during 1981–2010 (Tian 
et al., 2017). The change in N2O emission can be converted to an equivalent amount of CO2 emission by multiply-
ing a factor of 310 and by the carbon content of CO2 (12/44) to yield 0.37 Pg C/yr. The estimated N2O emission 
has important implication for climate warming. Current ocean anthropogenic carbon uptake is 2.5 ± 0.6 Pg C/
yr based on the 2019 assessment of the Global Carbon Project. If we assume that the large-scale OIF as in the 
AllxN occurs in the real ocean, the increase of N2O can offset the impact of CO2 drawdown on climate warming 
by a maximum of 19%.

Figure 3. The timescale for the atmosphere CO2 to reach a new equilibrium after the productivity is increased in the 
Southern Ocean, North Pacific and eastern equatorial Pacific.

weilei wang

weilei wang
results -> result



Journal of Geophysical Research: Biogeosciences

FU AND WANG

10.1029/2021JG006636

9 of 13

The question of whether artificial OIF is a viable carbon removal strategy is still under debate (Boyd et al., 2007; 
Emerson, 2019; Lauderdale et al., 2020; Smetacek & Naqvi, 2008; Yoon et al., 2018). Major concerns include the 
decline of oxygen inventory, the production of N2O emissions and detrimental environment impact. Regarding 
ocean carbon sequestration, our results show a maximum reduction of 18.7% of the preindustrial atmospheric 
CO2 concentration (278  ppm) with 50 times increase in productivity in all three major HNLCs. This seems 
promising to mitigate climate warming, but it should be noted that the 50 times increases of productivity is likely 
too high in the real ocean (Yoon et al., 2018) and might not be achieved for large-scale IOFs. In addition, the 
efficacy of OIF will be offset by continuous anthropogenic CO2 emissions, which is driving up ocean surface 

Figure 4. Depth-latitude sections of global zonal mean difference between the SO × N and control run are shown for (a) Dissolved inorganic phosphorus (DIP) 
(mmol/m 3), (b) Dissolved inorganic carbon (DIC) (mmol/m 3) and (c) dissolved oxygen (mmol/m 3). The difference of surface DIP is shown in (d) and the differences of 
column inventory are shown for (e) DIP and (f) DIC and (g) dissolved oxygen.
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Figure 5. Depth-latitude sections of global zonal mean difference between the EP × N and control run are shown for (a) Dissolved inorganic phosphorus (DIP) 
(mmol/m 3), (b) Dissolved inorganic carbon (DIC) (mmol/m 3) and (c) dissolved oxygen (mmol/m 3). The difference of surface DIP is shown in (d) and the differences of 
column inventory are shown for (e) DIP and (f) DIC and (g) dissolved oxygen.
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temperatures and causing ocean acidification (Caldeira & Wickett, 2003). Both ocean warming and acidification 
can diminish the capacity of ocean carbon uptake. Previous study also demonstrated that changes in calcium 
carbon production with macronutrient fertilization could significantly reduce carbon sequestration efficiency. 
When calcium carbonate production increases at the same rate as export production, the carbon sequestration 
efficiency is reduced by 25% (Matear & Elliott, 2004). Therefore, a drawdown of atmosphere CO2 will be less 
than 18.7% for future warming scenarios. Even if we ignore other climate related gases such as N2O, which can 

Figure 6. Similar to Figure 5 but for the NP × N.



Journal of Geophysical Research: Biogeosciences

FU AND WANG

10.1029/2021JG006636

12 of 13

modify the efficacy of carbon sequestration by 19%, it seems difficult for the Fe fertilization strategy to achieve 
the model outcome in real ocean.

A drawback of the biogeochemical inverse model in this study is that the model considers some simplified bioge-
ochemical processes. For example, we assume that POC/POP is routed to DOC/DOP before getting remineralized 
to DIC/DIP. In the real ocean, however, a proportion of POC/POP is directly remineralized to DIC/DIP. To test 
how our assumption of POC/POC routed to DOC/DOP can affect our results, we ran another model in which 
POC/POP was directly remineralized to DIC/DIP. The process of optimizing parameters became unstable, and we 
needed to fix the fraction (σ) of production routed to dissolved and particulate form. Nevertheless, we were able 
to obtain very similar DIP, DIC, ALK, and oxygen distributions to the original model setup. Global mean oxygen 
concentration is 170.1 mmol/m 3 as compared to 171.2 mmol/m 3 reported in original control run. A similar SOxN 
run also produced very similar results to those in Figure 3 (figure not shown). Therefore, our model setup is 
appropriate to investigate the responses to perturbations in different HNLCs.

We are aware that the productivity change in HNLCs also depends on other factors, such as meso-zooplank-
ton grazing rates, light and initial silicate concentrations (Yoon et al., 2018). We here focus on the long-term 
impact of increased productivity on ocean carbon sequestration and the change of oxygen inventory. Our results 
confirm that more organic matter is eventually transported out of surface ocean and stored in the deep ocean after 
∼1,000 years. A decrease of 18.7% CO2 in the atmosphere implies that OIF is a useful a geoengineering tool to 
slow down climate warming. However, the significant development of hypoxia poses serious threat to marine 
environment. Some important issues need to be further explored, like the efficacy of OIF with increasing anthro-
pogenic CO2 and climate warming and the quantification of negative effects of OIF such as declines in oxygen 
content and production of climate-relevant gases.
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