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Abstract: Viruses, the most abundant microorganisms in the ocean, play important roles in marine
ecosystems, mainly by killing their hosts and contributing to nutrient recycling. However, in models
simulating ecosystems in real marine environments, the virus-mediated mortality (VMM) rates of
their hosts are implicitly represented by constant parameters, thus ignoring the dynamics caused by
interactions between viruses and hosts. Here, we construct a model explicitly representing marine
viruses and the VMM rates of major hosts, heterotrophic bacteria, and apply it to two sites in the
oligotrophic North Pacific and the more productive Arabian Sea. The impacts of the viral processes
were assessed by comparing model results with the viral processes enabled and disabled. For reliable
assessments, a data assimilation method was used to objectively optimize the model parameters in
each run. The model generated spatiotemporally variable VMM rates, generally decreasing in the
subsurface but increasing at the surface. Although the dynamics introduced by viruses could be
partly stabilized by the ecosystems, they still caused substantial changes to the bacterial abundance,
primary production and carbon export, with the changes greater at the more productive site. Our
modeling experiments reveal the importance of explicitly simulating dynamic viral processes in
marine ecological models.

Keywords: marine virus; heterotrophic bacteria; marine ecological model; data assimilation

1. Introduction

Marine viruses are the most abundant biological entities and the greatest reservoir of
genetic diversity in the world’s oceans [1–3]. They are estimated to, in every second, infect
1023 marine organisms, most of which are bacteria [4,5], and kill 10–40% of bacterioplankton
per day, a rate comparable to those grazed by zooplankton [2,6,7]. Viruses are, therefore, one
of the key players in marine ecosystems, particularly in the microbial loop [8–10]. One of
the important roles that viruses have in regulating the diversity of the bacterial community
is to kill the bacterial groups that are the most competitive in acquiring resources, a model
named “kill-the-winner” [11]. The viral lysis of the infected bacteria results in a release of
organic matter in both dissolved and particular forms, a large fraction of which is consumed
and respired by heterotrophic bacteria and phytoplankton and further recycled to inorganic
nutrients to support primary production [12,13]. This process also increases community
respiration and decreases the transfer of photosynthetically fixed carbon to higher trophic
levels [14].

Despite their importance, virus-related processes have not been represented and
simulated in most marine ecological models. With the increasing understanding of marine
viruses and their ecological roles, a limited number of trials modeling marine viral processes
have been conducted since the 1990s, describing viral infection, the latent period and
lysis [15–21]. A pioneering theoretical model involving marine viral processes separated
phytoplankton into a susceptible group and a virally infected group, in which the infection
rate depended on the contact rate between the two phytoplankton groups while the viruses
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themselves were not simulated [15]. Afterward, explicit representations of marine viruses
were added in several models [17,21–25], in which, however, viruses were, practically, only
diagnostic variables that were calculated from the abundance of their host bacteria by using
constant virus-to-host ratios.

More importantly, these models set constant virus-mediated mortality (VMM) rates of
bacteria. These models, therefore, were largely similar to previous non-virus models in simu-
lating the effects of viruses on other components of marine ecosystems, considering that most
non-virus models also assigned constant mortality rates to the simulated bacteria. The viral
infection rates of hosts, and subsequently the VMM rates, are highly variable [26–35] and can
be impacted by the abundance of viruses and hosts, the temperature and nutrients [36]. As a
first-order estimation, the rate of viral infection depends on the contact rate between the viruses
and hosts [37] and thus can be assumed to be proportional to the product of viral and host
abundances [38]. The parameterization of this assumption has been implemented in several
theoretical models, resulting in the dynamic simulation of the VMM [16,18,19,39–42]. It can be
interesting to test how an explicit representation of viral processes, in particular, the simulation
of spatiotemporally variable VMM rates, can change the performance of marine ecological
models driven by realistic dynamic conditions. Therefore, the importance and necessity of
explicit representations of viral processes in ecological models can be evaluated and compared
in ocean regions with different biogeochemical characteristics.

In this study, we modified an existing marine ecological model [43] by adding a viral
module in which viruses and their related processes were explicitly represented. The
realistic dynamic oceanic conditions in the model were simulated by a physical model
at specific locations. Our model in this study was not applied to the global ocean but to
two contrasting regional sites in the oligotrophic North Pacific subtropical gyre and in
the Arabian Sea, which was more productive. We evaluated the model performance by
comparing the simulated results of host abundance and mortality, primary production and
carbon export in model cases with and without the viral module. To avoid the influence of
artificially selected parameter values on the objective evaluation of the model performance,
a data-assimilation approach was used to optimize the model parameters in each case, to
minimize the differences between the observations and model outputs.

2. Materials and Methods
2.1. Study Sites

The model was applied to the site of the Hawaii Ocean Time-series (HOT) program
(Station ALOHA, 22.75◦ N, 158.00◦ W) (hereafter referred to as “HOT”) and an offshore
site S7 in the Arabian Sea (16.0◦ N, 62.0◦ E) (hereafter referred to as “AS”). The HOT site
was established in 1988 and is located within the southward backflow of the eastern North
Pacific Subtropical Gyre [44]. The site is generally depleted of nutrients. The seasonal
variability of primary production and other biogeochemical characteristics is relatively
weak at HOT. According to the data availability, we ran our model for 2002 at HOT. The
Arabian Sea is subject to seasonal monsoons, which result in different microbial dynamics
compared to HOT. The model was run for 1995 at AS due to data availability, and the
two N2-fixing groups were not simulated, considering that N2 fixation was presumably
relatively weak at this site [43]. The simulation and comparison at these two sites with
contrasting biogeochemical characteristics were undertaken to provide more information
on the performance of the viral module.

2.2. Standard Model

Our viral module was incorporated into an existing biogeochemical model [43], which
is hereafter referred to as the “standard model”. Briefly, the standard model simulated
stocks and flows of carbon (C), nitrogen (N) and phosphorus (P) in non-diazotrophic
phytoplankton (PHY), N2-fixing unicellular diazotroph (UN) and Trichodesmium spp. (TR),
heterotrophic bacteria (BA), protozoan zooplankton (PRT), metazoan zooplankton (MZ),
labile and semi-labile dissolved organic carbon (LDOC and SDOC), sinking detritus (DET),
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and inorganic nutrients including nitrate (NO3
−), ammonium (NH4

+) and phosphate
(PO4

3−) (Figure 1a). The production of refractory dissolved organic carbon (RDOC) and
grazing of metazoan zooplankton by higher trophic levels were implicitly represented as
model closure terms. In this study, we focused on the modeled carbon stocks and flows.
More details of the standard model are described in Appendix A.
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Figure 1. Model structure. (a) Diagram of the model structure showing stocks and flows of state
variables. Dashed borders for “higher levels” and “refractory DOC” indicate they were not modeled
explicitly in this study. Several state variables are grouped by dashed rectangles. A flow arrow
ending on a grouping rectangle means the flow applies to all the state variables inside the rectangle.
Unicellular diazotrophs and Trichodesmium are disabled at the AS (Arabian Sea) site. See main texts
for the acronyms. (b) Structure zoomed in to the viral module. The viral lysis of heterotrophic bacteria
leads to the release of labile and refractory DOC and viruses.

The model was a one-dimensional vertical model with multiple layers for the upper
ocean. For AS, the model had 20 layers, including 10 surface layers of 5 m each and 10 layers
of 10 m each below, covering the upper water column of 150 m. For HOT, an additional
five layers of 10 m were added at the bottom because of its deeper euphotic zone, therefore
covering the upper 200 m. The model was forced by photosynthetically active radiation
(PAR), temperature, mixed layer depth (MLD), vertical velocity and vertical diffusivity.
A 90-day spin-up run was conducted before the simulations of the study period to avoid
substantial influence from the initial conditions of the state variables.

The model parameters were objectively optimized to minimize the differences be-
tween model outputs and observations of multiple variables (Table 1) by utilizing a data-
assimilation method with a variational adjoint scheme [45]. The observational data for
Station ALOHA (Supplementary Table S2) were obtained at http://hahana.soest.hawaii.
edu/hot/hot-dogs/interface.html (accessed 30 June 2022), except for bacterial production
data, which were measured during HOT cruises [46]. The observational data for the AS site
(Supplementary Table S3) were obtained from the Joint Global Ocean Flux Study (JGOFS)
(see http://usjgofs.whoi.edu/jg/dir/jgofs/, accessed 30 June 2022).

The differences between observations (â) and model outputs (a) were evaluated using
a cost function (J):

J =
M

∑
m=1

1
Nm

Nm

∑
n=1

(
am,n − âm,n

σm

)2
(1)

where m and n represented the observational data types and data points, respectively, M
was the total number of the observational data types, Nm was the total number of the
observational data points of data type m, and σm was the target error for data type m,
which, in general, was the standard error of the observations for each data type. That is, a
model output am,n was considered to perfectly fit its corresponding observational datum
âm,n when their difference was no more than σm, although this could not be realized in most
cases. A lower cost function indicated a better match of the model to the observations. An
ideal model fit to a type of observation could have the corresponding component of the cost
function as less than 1. Initially, all the parameters were optimized from the initial guesses

http://hahana.soest.hawaii.edu/hot/hot-dogs/interface.html
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of values based on historical data. Those parameters with unrealistic optimized values were
reset to their initial values and removed from the optimization, while the realistic optimized
values were kept. This process was carried out iteratively until all the optimized parameter
values were realistic. The parameters with acceptable levels of uncertainty were marked as
“optimized”, while those with high uncertainty (but with realistic optimized values) were
marked as “adjusted”. More details of the optimization are described elsewhere [43].

Table 1. Comparison of the cost functions between the standard model and the viral model at the
HOT and AS sites. Cost functions substantially different between the two models are marked with
bold fonts. MZc: C biomass of metazoan zooplankton; PHYn: phytoplankton N biomass; CHL:
chlorophyll a; PP: primary production; BAc: C biomass of heterotrophic bacteria; BP: heterotrophic
bacterial production: sDOC, sDON, sDOP: semilabile dissolved carbon, nitrogen, phosphorus; POC,
PON, POP: particulate organic carbon, nitrogen, phosphorus; STc, STn, STp: C, N, P flux collected by
sediment traps.

NO3− PO43− MZc PHYn CHL PP BAc BP sDOC

HOT site
Standard model 1.2 0.4 1.2 1.4 9.1 24 11 2.3 1.8

Viral model 0.9 0.4 1.1 1.4 8.9 24 11 1.7 1.5
AS site

Standard model 6.8 1.7 1.4 38 4.4 10.6 5.5 7.3 3.1
Viral model 5.9 1.4 1.3 38 4.3 10.4 6.3 6.9 3.3

sDON sDOP POC PON POP STc STn STp Total

HOT site
Standard model 1.5 1.9 3 1.7 1.7 0.8 0.9 0.56 64.9

Viral model 1.4 1.8 3 1.7 1.6 0.8 0.9 0.56 62.7
AS site

Standard model 1.7 2.4 5.0 5.4 4.7 97.4
Viral model 1.5 2.4 5.0 4.9 4.3 95.7

2.3. Viral Module

The viral module constructed in the present study and incorporated into the standard
model included three processes (Figure 1b): (1) the mortality of heterotrophic bacteria
caused by viral lysis, which contributed to the production of viruses and LDOC and to
an implicit loss term to RDOC; (2) viruses released from lysed heterotrophic bacteria;
(3) the decay of viruses, which was assumed to contribute to the LDOC pool. Hence, the
module only represented the viral infection of heterotrophic bacteria but not autotrophic
phytoplankton, considering that the viral-induced mortality of heterotrophic bacteria
(simply termed “bacteria” hereafter) was the highest compared to other organisms in the
ocean [2,10]. The temporal change rate of the bacterial carbon biomass (CBA) was calculated
as follows:

dCBA
dt

= GROWC
BA − RESPC

BA − EXCRSDOC
BA − GRAZC

BA − MORTC
BA (2)

where the terms on the right-hand side were the gross growth (uptake of organic matter),
respiration, excretion of SDOC, grazing by protozoan zooplankton and mortality caused
by viral lysis of bacteria. The carbon-based mortality term MORTC

BA was calculated by first
parameterizing the mortality in the unit of bacterial abundance:

MORTA
BA = rINFE,BA · AVA · ABA, (3)

in which AVA is viral abundance, ABA is bacterial abundance converted from the C biomass
using a commonly used conversion factor (qBA) of 10 fg C cell−1 [47] and rINFE,BA is the
viral infection rate on bacteria. As the viruses were explicitly and dynamically simulated,
the VMM rate (here equaling rINFE,BA · AVA) was then proportional to viral abundance
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and varied in space and time in our viral module. MORTA
BA was then converted back to

the unit of carbon biomass:

MORTC
BA = qBA · MORTA

BA (4)

In this scheme, the virus-mediated mortality rate of bacteria, i.e., the mortality divided
by biomass, therefore, was not constant but was proportional to viral abundance. Note that
although the parameter rINFE,BA was not optimizable in our data assimilation procedure, it
was tuned to ensure that the bacterial mortality rates in the model with the viral module,
after being averaged over the model domain, were close to the constant mortality rate used
in the standard model. More about this setup will be discussed later.

When bacteria were lysed, viruses were released at a certain burst size (bsBA), which
was the number of viruses released by each lysed bacterium:

GROWA
VA = bsBA · MORTA

BA (5)

A burst size (bsBA) of 23 was initially used at the AS site based on the mean value
measured in the nearby estuarine sites [32,48]. This value was close to the average burst
size of 24 in marine environments [49]. A smaller burse size of 15 was initially set at the
HOT site by considering that it is more oligotrophic than AS and viral replication in infected
bacteria can be limited by nutrients in oligotrophic open oceans [50]. Additionally, the
burst size of 15 used at HOT was within the range (12 to 20) found in the coastal North
Pacific [6,51]. It was slightly adjusted to 15.7 by the data assimilation at HOT, but could not
be adjusted by the data assimilation at AS.

The viruses decayed using the following scheme:

DECAYA
VA = dVA · AV

2, (6)

where dVA is a parameter for the decay. This scheme, which was also used in a previous
marine ecological model [25], introduced a density-dependent decay rate for viruses, with
the viral decay rate equaling dVA · AV and, therefore, increasing with viral abundance.
We used this scheme to implicitly represent how marine viruses were also removed by
grazing [52] or by aggregating into large particles [53], while the density of grazers and
large particles increased with viruses. The values of dVA (Table 2) were unknown and were
tuned in this study for reasonable viral abundance. The realized decay rates using the
selected values of dVA are evaluated in the Discussion. It is worth noting that non-density-
dependent viral decay, i.e., using a constant viral decay rate, is, however, a more commonly
used scheme in previous marine ecological models [40]. How the different schemes can
impact the model dynamics may need further investigation.

The time rate of viral biomass (CVA) was then:

dCVA
dt

= qVA ·
(

GROWA
VA − DEVAYA

VA

)
, (7)

where qVA is the carbon content per single virus of 0.05 fg C per viral particle based on
a previous empirical relationship between the carbon content (Chead, carbon atoms) and
radius (r, nm) in the viral head [12]:

Chead = 41(r − 2.5)3 + 130
(

7.5r2 − 18.75r + 15.63
)

(8)

By using 20–40 nm for the viral radius, a range of most viruses found in the Tara
Ocean Expedition [54], each viral particle content was 0.01–0.07 fg C.

In addition to the production of viruses, a small fraction of carbon from bacterial
mortality (MORTC

BA) also contributed to RDOC, and the rest contributed to LDOC.



Viruses 2022, 14, 1448 6 of 21

The parameters used in the viral module are listed in Table 2. The full list of model pa-
rameters, including their initial values and their optimized or adjusted values, if applicable,
can be found in Supplementary Table S1.

Table 2. Symbols, units and descriptions of viral module parameters.

Symbol Value at HOT Value at AS Unit Description

rINFE,BA 1.82 × 10−14 2.17 × 10−14 m3 particle−1 d−1 Viral infection rate on heterotrophic bacteria
bsBA 15.7 23 unitless Burst size
dVA 1.84 × 10−14 5.11 × 10−14 m3 particle−1 d−1 Parameter for viral decay
qVA 0.05 0.05 fg C particle−1 Carbon content per virus
qBA 10 10 fg C cell−1 Carbon content per heterotrophic bacterial cell

In this study, uncertainties of 1 standard deviation were reported with corresponding
averages, unless mentioned otherwise.

To prevent visual distortion of the data and exclusion of readers with color vision
deficiency, scientific color maps were used in several figures [55].

3. Results
3.1. Model Performance

The incorporation of our viral module into the standard model slightly increased the
model fit to the assimilated observations, resulting in lowered cost functions (Equation (3)),
i.e., the model fitting better to observations, for more than half of the types of observations
at both HOT and AS (Table 1). An exception was at AS, where the model with the viral
module (termed “viral model” for simplification hereafter) had a slightly worse fit to the
biomass of bacteria (Table 1). Overall, the changes in the cost function were relatively small,
revealing that the viral module only slightly improved the model performance in terms of
fitting observations. This was not surprising because, as described above, we tuned the
model so that the incorporation of the viral module did not substantially change the overall
level of bacterial mortality.

3.2. Average Model Results

The modeled standing stocks and flows averaged over the model’s entire temporospa-
tial domain can be found in Figure A1. Here, we focus on the average model results
related to the processes of viruses and their hosts, bacteria (Figure 2). The model showed
that 11.8% of bacteria per day were lysed by viruses at HOT, while a comparable fraction
(13.1% d−1) was grazed by protozoan zooplankton (Figure 2a), which was consistent with
previous studies suggesting that viruses and grazing contribute about equally to the loss
of bacteria [38,56]. At AS, the productivity was higher and organisms were more active
(Figure A1), which led to higher removal rates of bacteria than those at HOT, including
21.3% d−1 lysed by viruses and 18.7% d−1 grazed by protozoan zooplankton (Figure 2b).
At both sites, approximately 90% of the lysed biomass of bacteria was transformed to labile
DOC, which, therefore, can be quickly recycled, while the rest became viral biomass or
refractory DOC (Figure 2). The production of viruses was balanced by their decay over the
model domain.

In the standard model in which a constant mortality rate was applied to bacteria to
implicitly represent viral lysis, lysis and grazing removed 10.3% d−1 and 13.0% d−1 of
bacterial biomass at HOT and 20.2% d−1 and 22.7% d−1 at AS, respectively (Figure 2). These
fractions were at the same levels as those obtained in the viral model at each site, which, as
described in Materials and Methods, was realized by tuning the model parameters.
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Figure 2. Average model results related to viral processes. (a) The results for the HOT site, and (b) the
results for the Arabian Sea site. Each pair of numbers shows the results of the model with the viral
module (upper red numbers) and the standard model without it (lower blue numbers). The values
in boxes are standing stocks, and those on arrows are flows. BA: heterotrophic bacteria; LDOC and
RDOC: labile and refractory DOC; PRT: protozoan zooplankton. Units: mmol C m−3 for standing
stocks and mmol C m−3·d−1 for flows.

3.3. Spatiotemporally Variable Simulation of Viruses and Their Induced Bacterial Mortality

At HOT, the modeled viral abundance varied from 3 × 106–9 × 106 mL−1 (Figure 3a),
which was within the range of the observed viral abundance in the open ocean [1] and was
also comparable to previous measurements at HOT [57]. The viral abundance in the surface
layer (defined as the upper 100 m in the present study) at HOT was several times higher
than that in the subsurface layer (defined as below 100 m in the present study) (Figure 3a),
which was consistent with previous analyses of the vertical distribution of viruses in the
North Pacific [1], reflecting decreasing productivity from the surface to the deep ocean.
The modeled viral abundance at the surface was the highest in summer, while the depth
that high viral abundance reached was also shallower in summer because of stronger
stratification (Figure 3a). There was no clear seasonal variability in viral abundance in the
subsurface layer (Figure 3a).

At AS, the modeled viral abundance in the surface layer (Figure 3b) was substan-
tially higher (5 × 106–24 × 106 mL−1) than at HOT and had stronger temporal variations,
particularly several sequential short-term events with quickly elevated and reduced viral
abundance during days 80–100 and days 260–300. In the subsurface layer, the viral abun-
dance at AS was comparable to, sometimes even lower than, that at HOT (Figure 3a,b). In
contrast to HOT, there were two seasons with relatively high viral abundance at AS in that
year, including that from spring to early summer and that in early winter, probably because
of the seasonable monsoons that occurred in this region.

The bacterial mortality rates caused by infection of viruses, i.e., the VMM rates, in
the viral models showed substantial dynamics both in space and time, ranging mostly in
0.05–0.15 d−1 and 0.05–0.30 d−1 at HOT and AS, respectively (Figure 3c,d). In our viral
module, the VMM rate, as described above, was proportional to the viral abundance in
our viral module. In comparison, in our standard model, as well as in most other marine
ecological models, the VMM rates were set as constant by model parameters.

At HOT, the viral module increased the VMM rates relative to 0.103 d−1 used in
the standard model by up to 25% on average in the surface layer, but decreased them by
approximately 20–40% in the subsurface layer (Figure 3e,g). This was understandable
because the viral abundance was higher at the surface than in the subsurface (Figure 3a).
The VMM rates in the surface layer showed a clear seasonal cycle, high in summer and
low in winter, but no clear patterns in the subsurface layer (Figure 3g), which was also
consistent with the pattern of modeled viral abundance.

At AS, the viral model produced a more dynamic field of VMM rates than at HOT
(Figure 3d), which could be up to 150% higher or 70% lower than the constant rate
(0.202 d−1) used in the standard model (Figure 3f). Temporally, the viral module could
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greatly change the average VMM rates in the surface layer, from −35% to up to +80%,
compared to the constant rate in the standard model (Figure 3g). For comparison, in the
subsurface layer, the VMM rates in the viral module were relatively stable over time, at
~50–60% lower than the constant rate of the standard model (Figure 3g).

Viruses 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 

d−1) used in the standard model (Figure 3f). Temporally, the viral module could greatly 

change the average VMM rates in the surface layer, from −35% to up to +80%, compared 

to the constant rate in the standard model (Figure 3g). For comparison, in the subsurface 

layer, the VMM rates in the viral module were relatively stable over time, at ~50–60% 

lower than the constant rate of the standard model (Figure 3g). 

 
Figure 3. Results of modeled viral abundance and its mediated bacterial mortality. The modeled viral
abundance (a,b), the virus-mediated mortality (VMM) rates of heterotrophic bacteria (c,d), the relative
changes of the VMM rates in the viral model compared to those in the standard model over the model
domain (e,f) and in surface (red lines) (upper 100 m) and subsurface (blue lines) (below 100 m) layers
(g,h) are shown for the HOT (a,c,e,g) and Arabian Sea (b,d,f,h) sites. Note that in (f), the range of the color
bar is limited to ±50% for clearer comparison, although some data are out of this range.



Viruses 2022, 14, 1448 9 of 21

3.4. Cascading Effects of the Viral Module

The viral module can have cascading effects through modeled trophic levels. The
most direct impact of the dynamic VMM rates was apparently on the modeled bacterial
abundance. Bacteria are an important player in recycling nutrients in marine ecosystems
and they were too in our model [43,58]. When the implementation of the viral module
caused dynamics in bacterial mortality and abundance, it also changed the recycling
efficiency of nutrients. Consequently, our modeled primary production changed with the
modified rates of nutrient recycling by the viral module, which, in turn, could impact the
carbon export to the deeper ocean.

First, we analyzed the modeled bacterial abundance (Figure 4a,b). This generally had
a similar pattern to the modeled viral abundance at both sites, indicating close interactions
between bacteria and viruses through the production of viruses from bacteria and the
lysis of bacteria by viruses. However, the virus-to-bacterium ratio (VBR) showed some
variations. Overall, the VBR at HOT was higher than that at AS (Figure 4c,d). At HOT, the
VBR increased with depth (Figure 4c), which was consistent with typical observations in
oligotrophic oceans [59,60]. In comparison, the VBR at AS generally lacked vertical dynam-
ics, except during those short-term events described above when VBR, viral abundance
and bacterial abundance all changed quickly but in opposite directions (Figure 4d). These
short-term events clearly showed that VBR was reduced when both bacterial and viral
abundance increased, and vice versa, which was consistent with the pattern found in a
meta-analysis of historical data [61].

We then analyzed the changes in bacterial abundance caused by the viral module. At
HOT, compared to the standard model, the viral module changed the bacterial abundance
by −5% to +190% (Figure 4e). In the surface layer, the viral module only reduced the
average bacterial abundance by 3.1% ± 0.9% (Figure 4g), which was much weaker than the
16% ± 6% increase in the bacterial mortality rate (Figure 3g). This was because the increased
VMM rate (by 0.019 ± 0.007 d−1) was largely compensated for by both the elevated net
assimilation (gross growth minus respiration) rate of bacteria (by 0.012 ± 0.004 d−1) and
the decreased grazing rate on bacteria (by 0.007 ± 0.003 d−1), resulting in a much weaker
change in the net growth rate of bacteria (Figure 5a). The elevated bacterial growth rate
in the viral model was mainly because the higher production of labile dissolved organic
matter (DOM) from the bacteria, due to their higher mortality rate, in turn, supported the
growth of bacteria themselves (Figure 2a). In other words, the viral module caused a faster
recycling of organic matter in the microbial loop in the surface layer, which could partly
compensate for the higher VMM rates of bacteria. Meanwhile, the decreased grazing rate
on bacteria resulted from the reduced bacterial abundance based on the scheme used in our
model, in which the grazing rate was dependent on the densities of prey and predator [43].
Similarly, in the subsurface layer, the benefit that the bacteria obtained from the reduced
VMM mortality rate (by 0.034 ± 0.007 d−1) was largely offset by the reduced bacterial
net assimilation (by 0.032 ± 0.006 d−1), while the changes in grazing (0.002 ± 0.003 d−1)
were much weaker than other factors because of the already low grazing rate in this layer
(Figure 5c).

At AS, the viral module changed the bacterial abundance in the range of −40% to
+2000%, i.e., more greatly than at HOT (Figure 4e,f), which was expected considering that
the seasonal monsoons in the Arabian Sea generated stronger variability in environmental
conditions and modeled VMM rates (Figure 3). Similar to HOT, the changes in VMM
rates at AS could be partly offset by the changes in the bacterial net assimilation rate
and the grazing rate on bacteria, while the temporal variability was greater at AS than at
HOT, resulting in much fewer changes in growth rates (Figure 5b,d). This suggested that
the internal interactions of different players in the ecosystem could largely stabilize the
dynamic VMM rates introduced by the viral module. However, even a small change in the
net growth rate could accumulate and result in much larger changes in bacterial abundance
(Figure 4e–h).
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Figure 4. Modeled heterotrophic bacterial abundance. The modeled heterotrophic bacterial abun-
dance (a,b) and the modeled virus-to-bacteria ratio (c,d) are shown. The relative changes in modeled
bacterial abundance in the viral model compared to those in the standard model are also shown over
the model domain (e,f) and in surface (red lines) (upper 100 m) and subsurface (blue lines) (below
100 m) layers (g,h). (a,c,e,g) HOT site; (b,d,f,h) Arabian Sea site. Note the different scales between
(e) and (f) and between (g) and (h).

The relative changes in primary production at HOT were very small (<±5%), while
those at AS were much stronger (up to 200%) (Figure 6a–d). This was because the recycling
of nutrients by bacteria was more active at AS due to its much higher bacterial production
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than at HOT [43] (Supplementary Tables S2 and S3). Another reason was that, as discussed
above, the viral module also impacted AS more strongly than HOT on bacterial mortality
and abundance (Figures 3 and 4). The higher relative changes in primary production in the
subsurface than in the surface layers at AS (Figure 6b,d) were also consistent with the verti-
cal variation in the viral impacts on bacterial mortality and abundance (Figures 3f and 4f).
Interestingly, the decreased bacterial mortality in the subsurface layer when implementing
the viral module (Figure 3e,f) can differently lead to decreased and increased primary pro-
duction at HOT and AS, respectively (Figure 6a–d). The directly released labile DOM from
dead bacteria can be remineralized by other bacteria to nutrients, contributing positively to
primary production. Meanwhile, the reduced bacterial abundance may slow the remineral-
ization efficiency of organic matter produced by other organisms in the ecosystems. Our
model results then tentatively revealed complicated cascading consequences in ecosystems
with different biogeochemical characteristics. As a consequence of the changed primary
production, the viral module did not substantially impact the carbon export at the bottom
of the model domain at HOT (<±1%), while at AS, the module changed the carbon export
by up to nearly 40% (Figure 6e,f).
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Figure 5. The impact of the viral module on the modeled heterotrophic bacterial growth rate. The
results are the changes in the heterotrophic bacterial net growth rate attributed to net assimilation
(gross growth minus respiration), mortality and zooplankton grazing in the surface (upper 100 m)
(a,b) and subsurface (below 100 m) layers (c,d). (a,c) HOT site; (b,d) Arabian Sea site.
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Figure 6. The impact of the viral module on the modeled primary production and carbon export. The
relative changes in primary production in the model with the viral module compared to those in the
standard model are shown (a,b) over the full model domain and (c,d) the averages in surface (red
lines) (upper 100 m) and subsurface (blue lines) (below 100 m) layers. The relative changes in carbon
export at the bottom of the model domain (e,f) are also shown. (a,c,e) HOT site; (b,d,f) Arabian Sea
site. Note the different scales between the two sites.

4. Discussion

In this study, we constructed a module with explicit representations of marine viral
processes and combined the module with a marine ecological model. The model considered
the infection of marine viruses on their major hosts, bacteria, assuming that the VMM of
bacteria and the production of viruses were determined by the contact rates between viruses
and bacteria. In addition to an explicit simulation of viral abundance, the most significant
difference between our constructed viral module and other marine ecological models was
the spatiotemporally variable VMM. The model was then applied to two open-ocean sites
with contrasting biogeochemical and ecological properties in the North Pacific Subtropical
Gyre and the Arabian Sea using a one-dimensional vertical framework covering the eu-
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photic zone. Previous ecological models involving marine viruses were either theoretical
studies not simulating specific ocean regions driven by realistic dynamic conditions [40–42],
or did not simulate spatiotemporally variable VMM rates of microorganisms [25]. The
present study, to our knowledge, was the first effort to implement spatiotemporally variable
VMM rates in marine ecological models driven by realistic dynamic conditions.

The performance of the viral module was assessed by comparing the results of the
model cases with and without the viral module. To achieve a more objective and reliable
assessment, two efforts were made. First, the two model cases were optimized to best fit
the observations using a data-assimilation approach, resulting in different sets of parameter
values that were adjusted objectively in each model case. In such a way, biases that can be
introduced by using the same set of parameter values under different model structures, if
data assimilation is not conducted, can be largely avoided. Second, because the viral module
generated spatiotemporally variable VMM rates of bacteria, the model parameter for viral
infection was tuned to ensure that the average VMM rate was close to the constant rate
used in the standard model. Therefore, with overall similar VMM levels in the two model
cases, systematic differences caused by VMM can be largely avoided and our assessment
can then focus on spatiotemporally variable anomalies in model results generated by the
viral module. Although the implementation of the viral module only slightly increased the
model performance in fitting the discrete observations, one of the main benefits of the viral
module was to produce high-frequency dynamic results, particularly in highly productive
ocean regions. High-frequency sampling could be a useful way to better evaluate the
performance of explicit representations of marine viruses.

Since the typical VBR is assumed to be 10 [7,61], we can replace the density of viruses
with 10 times the density of bacteria (i.e., AVA = 10ABA) at all times. In this way, we
can bypass Equation (7) and plug that term directly in Equation (3) to generate a density-
dependent term that mimics the “kill-the-winner” mechanism. This is a method that can
be easily implemented in marine biogeochemical models without considerably modifying
the model, providing the potential to improve the model performance on bacteria. The
approach, for example, has been used in global-scale marine ecological modeling [62].
However, a meta-analysis of historical data showed a wide range of VBR in the ocean and
suggested that VBR generally decreases with increasing bacterial abundance [61]. Our
modeled VBR was consistent with this pattern, showing the lower VBR at AS, where
productivity was higher, than at the more oligotrophic HOT, as well as the increasing VBR
with depth, particularly at HOT (Figure 4c,d). In other words, compared to just using a
bacterial density-dependent term for VMM in which constant VBR is implicitly assumed,
an explicit representation of viral processes in models driven by dynamic conditions, such
as those created in this study, decouples viral abundance from bacterial abundance, and
therefore, generates spatiotemporally variable VBR. This is another reason why the explicit
representation of viral processes in marine ecological models could be used to further
improve the model performance on VBR, and therefore, on bacterial mortality in realistic
dynamic conditions.

In our viral module, the contact rate between viruses and their major hosts, het-
erotrophic bacteria, determined the infection and subsequent mortality of the hosts. The
model generated a dynamic mortality rate of heterotrophic bacteria over space and time,
increasing the mortality when the bacteria were more abundant, such as in surface layers
and highly productive seasons/sites, while reducing the mortality in subsurface layers or
when productivity was low. Therefore, when bacterial abundance in our model increased
with elevated supplies of organic matter under higher productivity, more viruses were
produced, and the bacterial mortality rate also increased. Our viral module thus tended to
suppress the variability of bacterial abundance to some degree (Figure 4a,b), a mechanism
consistent with the “kill-the-winner” hypothesis on the roles of marine viruses [11]. In
comparison, a model using a constant bacterial mortality rate could not test this hypothesis.
The explicit representation of viral processes tends to weaken the spatiotemporal variability
of heterotrophic bacteria in the model. Although the variations in heterotrophic bacterial
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mortality rates in the model can be partly compensated for by the changes in bacterial
net assimilation and their removal by zooplankton, they still cause substantial changes in
heterotrophic bacterial abundance, primary production and carbon export.

The removal of viruses by their decay can also contribute to the dynamics of viral abun-
dance, potentially decoupling the bacterial and viral abundances. Using the current scheme
and parameters of our viral module, the model simulated viral decay rates of 13.7% ± 0.7% d−1

and 8.3% ± 0.7% d−1 in the surface and subsurface layers at HOT, respectively, while the rates
were 40.6% ± 7.8% d−1 and 20.1% ± 2.9% d−1 at AS. These decay rates at AS were generally
comparable to the observations of 39.4% ± 5.0% d−1 measured in the western Pacific Ocean [63],
43.9% ± 10.2% d−1 in the Central Adriatic Sea [34], 25.4% ± 8.4% d−1 in the North Sea [64]
and 70.8% ± 30.1% d−1 in the South China Sea [31]. The low viral decay rates in extremely
oligotrophic open oceans such as HOT can be expected because of their low productivity, but
there have been no measurements reported in this kind of ocean environment.

Our viral scheme was an initial step in implementing explicit and dynamic simulations
of viruses and their interactions with their hosts in the ocean. The scheme only considered
the contact rate between viruses and bacteria and assumed that the infection rate by viruses
was proportional to the contact rate. The theoretical contact rate between spherical viruses
and bacteria is [41,65]:

Cs = 2π · dBA · DVA · AVA · ABA, (9)

where dBA is the bacterial diameter and DVA is the viral diffusivity. Only some of the contact
events between viruses and bacteria can seemingly result in successful infections. Therefore,
a comparison between Equations (3) and (9) indicates that the infection parameter rINFE,BA
must be lower than a contact-based upper bound of 2π · dBA · DVA, which, by using a dBA
of 0.6–1.0 µm and DVA of 3–15 µm2 s−1 [65], ranges from 1 × 10−12–8 × 10−12 m3 d−1. By
fitting average VMM rates, as noted above, the values of rINFE,BA used in our model at
HOT and AS (1.82 × 10−14 m3 d−1 and 2.17 × 10−14 m3 d−1, respectively; Table 2) were two
orders of magnitude lower than the contact-based upper bound. In other words, our model
estimates that after a virus contacts a bacterium, the possibility of a successful infection is
in the order of 1%.

However, this possibility can vary substantially as a successful viral infection also
depends on other factors. Ultraviolet radiation can decrease viral infectivity by degrading
viral proteins [66]. The frequency of infected host cells was negatively correlated with
salinity along the coast of Senegal, where the range of salinities (10–360) was wide [67].
Additionally, our model does not represent the more recently proposed “piggyback-the-
winner” model, in which temperate viruses can switch from lytic infection to lysogenic
infection, and therefore, coexist and replicate with their hosts, particularly when the host
bacteria become more abundant [68,69]. Our simplified contact-rate-based model then may
overestimate the VMM rates, particularly at a high bacterial abundance.

Furthermore, the host physiology can also impact the production rate of viral particles
by changing the latent time and the burst size of viruses. A larger burst size was generally
associated with a longer latent time [70], and the viral burst size was found to depend on
the bacterial growth rate [71]. The length of latent time was also found to be positively
correlated with the degree of P limitation [72]. The importance of the host physiology for
viral processes has further been revealed by several modeling studies [73,74].

The decay of viruses in the ocean can also substantially impact their abundance [75]
and consequently the rate of infection on hosts. The decay rate of viruses in our module
only depended on viral abundance, but it can also be greatly elevated by ultraviolet light
radiation [63,66,76–78], by attaching to particles [36,76], and by increasing temperature [63,76].

Last, our model only represented the viral infection of heterotrophic bacteria because
of their relatively high virus-mediated mortality compared to that of phytoplankton in
the ocean [2,10]. Yet, viral infection can also be important to impact the abundance and
biogeography of phytoplankton [79–81].

The representation of the above processes and factors in models will need considerable
work in the future, and their importance for model performance could also be evaluated.
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Nevertheless, even by using this simplified scheme to represent processes involving marine
viruses, our study demonstrated that it already, depending on environmental conditions,
generates substantial model dynamics, not only in the hosts but also in other functions of
the ecosystems, including primary production and carbon export.

5. Conclusions

This study was the first effort to explicitly simulate marine viruses and their related
processes in marine ecological models driven by realistic biogeochemical conditions that
varied in space and time. The explicit representation of viruses and their related processes
generated substantial dynamics in model variables when the model was run in dynamic
marine conditions. One of the most significant impacts of the viral module was the
decreasing VMM rates with depth, leading to a higher bacterial abundance in the deeper
waters in the model. Thus, the model with explicit viral processes would allow a stronger
remineralization of organic matter in the subsurface. Our modeled results also showed that
the viral module, by regulating the nutrient remineralizer, bacteria, can have cascading
effects on other components of the simulated ecosystems, such as the primary production
and the carbon export. Overall, our study suggests that the explicit representation of viral
processes in ecological models, in particular, the dynamic simulation of virus-mediated
mortality, is more important in high-productivity oceans where nutrient recycling by
bacteria is more active, and in subsurface layers where virus-to-bacterium ratios are high.
It is worth including more viral processes and hosts in future modeling studies to improve
the model performance and better assess the roles of viruses in marine ecosystems.
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Appendix A

Here, we describe the key processes of the standard model used in our study.
The standard model simulates the dynamics of carbon (C), nitrogen (N) and phospho-

rus (P) with variable stoichiometry in the modeled compartments (Figure 1).
Organic matter is initially synthesized to the modeled ecosystem by non-N2-fixing

phytoplankton (PHY) and two N2-fixing phytoplankton, Trichodesmium (TR) and unicellular
diazotrophs (UN). The rates of this gross growth of phytoplankton generally increase with
light intensity, but can be partially inhibited when the light intensity is too high. The
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gross growth rates of phytoplankton groups are also controlled by their intracellular N
and P quota. PHY takes up nitrate and ammonium from seawater for its intracellular N
requirement and phosphate for its P requirement, the rates of which increase and saturate
with the increasing concentrations of these nutrients (using a Michaelis–Menten equation).
In particular, a preference for uptake is given to ammonium over nitrate. Therefore, when
the nutrient concentrations are high, PHY can have a higher intracellular N or P quota and
its gross growth is less limited. Meanwhile, the model sets maximal intracellular C:N and
C:P ratios for phytoplankton, and gradually reduces the nutrient uptake rates when the
intracellular C:N or C:P ratio increases to a value higher than the Redfield ratio (106:16
for C:N, 106:1 for C:P). The gross growth and nutrient uptake dynamics of the N2-fixing
TR and UN groups are largely controlled by the same processes as those of PHY, except
that they have a slightly higher maximal intracellular N quota and can fix N2 when nitrate
and ammonium uptake cannot satisfy their requirements. Organic C needs to be respired
to support high energy consumption by N2 fixation. TR and UN have lower maximal
growth rates than PHY, so their advantage of fixing N2 in an N-depleted environment can
be balanced by the advantage of PHY in that it can grow faster when N is replete. UN
has different light-controlling parameter values in its gross growth, allowing it to grow in
deeper, lower-lit environments than those needed by TR.

The organic matter synthesized by the phytoplankton groups is then excreted as
labile and semi-labile dissolved organic matter (LDOM and SDOM), which forms sinking
detritus (DET) by aggregation, respires or is grazed by zooplankton. Phytoplankton groups
release 5% of their biomass per day as LDOM at the same elemental ratio as their cells, and
also release 5% of their gross growth as carbohydrate (75% of LDOC and 25% of SDOC).
When the phytoplankton groups have a higher intracellular C:N or C:P than the Redfield
ratio, they release SDOM, which has higher C:N or C:P ratios than those in their cells.
This carbohydrate and SDOM release enables the phytoplankton groups to adjust their
stoichiometry to approach the Redfield ratio. Phytoplankton groups form sinking DET
using a density-dependent approach, i.e., the rate of DET production increases with the
density of phytoplankton. The respiration of organic carbon in phytoplankton includes a
basal respiration that equals a small fraction of the biomass per day and an active respiration
that is a certain fraction of the gross growth. PHY and UN are grazed by small zooplankton
(PRT), while TR is grazed by large zooplankton (MZ).

In addition to PHY and UN, PRT also graze heterotrophic bacteria (BA). In addition
to TR, MZ also graze PRT. Density-dependent grazing functions are used. The organic
matter that PRT and MZ obtain from grazing is respired, excreted as LDOM or SDOM or
forms sinking DET. The respiration of organic carbon by PRT and MZ also includes basal
and active respiration. PRT and MZ release a portion of their grazed organic matter as
DOM, both from sloppy feeding and from excretion, assuming 75% of DOM excreted is
LDOM and the rest is SDOM. Similar to phytoplankton groups, PRT and MZ also release
SDOM if C is in excess in their biomass. Additionally, they regenerate ammonium (part
of which can be converted to nitrate) or phosphate if N or P is in excess, respectively, and
therefore, act to remineralize organic matter. PRT and MZ also convert a fixed portion
of their grazed organic matter to sinking DET at higher C:N and C:P ratios than those of
their biomass, supporting our assumption that zooplankton tend to assimilate high-quality
foods with lower C:N and C:P ratios. MZ is also removed by implicitly represented higher
trophic levels.

A constant vertical sinking speed is assigned to sinking DET. In the model, DET
dissolves and transforms to SDOM at a certain rate when it sinks.

Heterotrophic bacteria (BA) take up LDOM and SDOM. The organic matter that they
obtained undergoes losses due to respiration, grazing by PRT, and mortality. The model
assumes that the available labile DOC and a limited portion of SDOC are allowed for
bacterial utilization. Similar to PHY, the bacterial C growth rate is limited by their cellular
N and P quota. Bacteria are modeled to either take up or release ammonium and phosphate
to maintain their stable elemental composition. Bacteria can take up nitrate only when



Viruses 2022, 14, 1448 17 of 21

other N sources are insufficient. Bacteria may also excrete SDOC if intracellular carbon is
in excess. The respiration of bacterial carbon in the model also includes basal and active
respiration. As described in the main text, the mortality of bacteria is at a constant rate
and contributes mainly to the LDOM pool, and a small portion of loss to the implicitly
represented refractory DOM pool.

The model runs in dynamic physical environments, including temperature, light and
physical transfer. The rates of several key model processes increase exponentially with
temperature by approximately 60% for each temperature increase of 10 ◦C. The temperature-
dependent processes include the growth rates of phytoplankton (PHY), Trichodesmium spp.
(TR), unicellular N2-fixing cyanobacteria (UN), bacteria (BA) and zooplankton (Protozoan
(PRT) and Metazoan (MZ)) and basal respiration rates of BA, PRT and MZ. The intensity
of light attenuates with depth when it penetrates through the water column, with the
attenuation effects of water and chlorophyll considered. The materials and organisms are
vertically transferred through advection and eddy diffusion. The vertical velocity used for
advection is estimated from observations of the vertical isopycnal displacement. In the
mixed layer, all the materials and organisms are completely mixed. Below the mixed layer
depth, the diffusivity coefficient used for eddy diffusion decreases with depth, resulting in
weakening eddy diffusion with depth.

The initial conditions, estimated by linearly interpolating observations over time, are
set at 90 days before the simulation. The model first runs for 90 days as a spin-up period
before the simulation so that the influence of the initial conditions can be largely avoided
in the simulation.

At the bottom of the model, nitrate, phosphate and semi-labile DOM exchanges occur
with their linearly interpolated observed concentrations immediately below the model. The
exchange of other materials and organisms is ignored, assuming negligible gradients at the
bottom of the model.

Further technical details of the standard model can be found in a previous study [43].
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