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Phytoplankton are exposed to different concentrations of nutrients in different waters
along with changing light levels during diurnal and seasonal cycles. We grew the
coccolithophorid Gephyrocapsa oceanica semi-continuously at different nitrate levels
under indoor low and outdoor high light conditions, and found that reduced nitrate
availability significantly increased its production of particulate inorganic carbon (PIC),
with its growth being reduced. High light treatment suppressed the growth of nitrate-
limited cells and their efficiency of N assimilation by up to 63% compared to low light
treatment. The combination of high light and nitrate limitation increased contents of
PIC per cell due to sustained photochemical energy transfer, resulting in faster sinking
rates by up to 82% in comparison with nitrate-repleted cells. Additionally, the sinking
rates were positively correlated with ratios of PIC to particulate organic carbon (POC).
These results imply that coccolithophores distributed in oligotrophic waters could be
more effective as the ballast in aggregates, facilitating particulate organic carbon flux to
deeper waters.

Keywords: calcification, coccolithophore, growth, light, nitrate-limitation, photosynthesis, sinking rate

INTRODUCTION

Particulate organic carbon (POC) produced by phytoplankton and their grazers is sunk out the
euphotic layer with particles and partly sequestered in the sediments, efficiently facilitating the
absorption of atmospheric CO2 by the oceans (Falkowski et al., 1998; Boyd and Trull, 2007).
Recent findings highlight the ballast effect in particles sinking, e.g., opal and CaCO3 produced by
diatoms and coccolithophores can accelerate the sinking rate by increasing the specific gravity of
particles during the sinking process (Armstrong et al., 2002; Klaas and Archer, 2002). For instance,
when copepods were fed on coccolithophores or high-silica diatoms, the fecal pellets sank much
faster than when they were fed on dinoflagellates or low-silica diatoms (Ploug et al., 2008; Liu
and Wu, 2016). In addition, evidence on sediment traps has discovered that most POC fluxes are
strongly correlated with amounts of CaCO3 (Klaas and Archer, 2002; Lam et al., 2011). As the main
calcifying phytoplankton, coccolithophores have contributed to 20–80% of biogenic carbonate
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exported from the photic zone (Ziveri et al., 2007). Since
the production of particulate inorganic carbon (PIC) by
coccolithophores is susceptible to changes in pH, temperature,
and nutrients (Feng et al., 2017; Zhang and Gao, 2021), the
ballast effect is likely to be sensitive to ocean climate changes.
It is known that the calcification of coccolithophores decreases
under influence of ocean acidification, leading to a reduction
of the CaCO3 precipitation (Riebesell et al., 2000; Raven and
Crawfurd, 2012), which decreased the sinking rates of particles
(Riebesell et al., 2016).

Nitrogen (N) is one of the major limiting nutrients in
contemporary pelagic oceans (Moore et al., 2013). Such limitation
is suggested to be exacerbated with progressive stratification of
the upper mixed layer caused by ocean warming since the upward
transport of nutrients from deeper layers is hindered (Boyd et al.,
2008). It is well-known that N-limitation restricts phytoplankton
photosynthesis and growth (Behrenfeld et al., 2006) and pressures
phytoplankton cells to be more susceptive to other environmental
stresses (Beardall et al., 2014; Eberlein et al., 2016; Marañón
et al., 2018). In coccolithophores grown under constant light
conditions, some studies showed that N deficiency decreased
POC but increased PIC production (Kaffes et al., 2010; Zhang
and Gao, 2021), but other works indicated that it decreased or
resulted in insignificant changes in PIC content per cell (Langer
et al., 2012; Feng et al., 2017). Such discrepancy demands further
studies to explore the relationship of their physiology and sinking
rates with environmental changes.

It has been documented that phytoplankton species
grown under natural fluctuating sunlight exhibited different
physiological traits compared to their growth under artificial
constant light (Litchman et al., 2004; Floder and Burns, 2005; Jin
et al., 2013). Consequently, influences of nutrients limitation on
the cells may differ between indoor low constant and outdoor
high fluctuating light conditions. Therefore, we hypothesize
that coccolithophores exhibit different photo-physiological
responses under constant and fluctuating light conditions to
nitrate limitation, influencing the PIC production and sinking
rates of the cells. To test this, we grew Gephyrocapsa oceanica,
one of the major coccolith-carbonate flux contributors in
the sediment-trap survey (Ziveri et al., 2007), under a range
of nitrate concentrations and different light conditions to
determine how its growth would be affected by the interaction of
nitrate availability and light. Furthermore, by directly measuring
the sinking rates of the cells grown under different nitrate
conditions, we established a relationship between PIC/POC
and sinking rates.

MATERIALS AND METHODS

The coccolithophore G. oceanica (NIES-1318) was isolated from
the East China Sea. Two types of experiments were carried out
using PC bottles, and all cultures were in triplicate. Cells were
grown semi-continuously by diluting the cultures every 24 or
48 h to maintain their exponential growth phase (Gao, 2021). The
culture media were based on sterile seawater enriched with Aquil
nutrients (Sunda et al., 2005) except that nitrate was supplied
differently to obtain different concentrations.

The Indoor Cultures
Cells were grown in a plant growth chamber (Ruihua, Wuhan,
China) at the photon flux densities [photosynthetically active
radiation (PAR)] of 260 (HL), 115 (ML), or 50 µmol photons
m−2 s−1 (LL), respectively, supplied by cool-white fluorescent
tubes with a 12 light:12 dark cycle at 20◦C. They were cultured
under five levels of nitrate concentrations with initial values of
6, 12, 25, 50, and 100 µM in artificial seawater and diluted
before the dark period every day down to 4.5 × 104 cells mL−1.
This experiment was designed to (1) investigate the responses
of G. oceanica to different levels of light and nitrate, (2)
determine the specific nitrate concentrations for the following
outdoor experiment, and (3) investigate the sinking rates of
the cells grown with different nitrate availabilities (6, 12, 25,
and 50 µ M).

The Outdoor Cultures Under Incident
Sunlight
We conducted the outdoor experiment for 16 days from 18th
December 2018 to 2nd January 2019. Cultures in PC bottles
were incubated in a water bath under natural sunlight at 20◦C,
with temperature controlled by a cooling circulator (CAP-3000,
Rikakikai, Japan). Two nitrate treatments (10 and 50 µM) with
the addition of nitrate in the natural seawater (4.8 µM nitrate)
were set up according to the previous indoor culture test. Cells
were pre-cultured under corresponding nitrate concentrations
for 3 days in the plant growth chamber (115 µmol photons
m−2 s−1, 20◦C) before being transferred to and grown outdoor.
Subsequently, they were acclimated to the solar PAR gradually
according to Guan and Gao (2010). Briefly, the culture bottles
were covered with three layers of neutral density screens for
2 days, then two layers for 4 days, and the bottles were
subsequently exposed to full solar radiation. Since the PC bottles
do not allow UV radiation (UVR) to penetrate and allow about
89% PAR to go through, the cells were exposed to about 89%
incident sunlight. For the first 4 days, the cultures were diluted
every 48 h. After that, dilutions were carried out every 24 h
at about 17:30 with the renewed cell concentrations of about
4.5 × 104 cells mL−1.

Measurements of Cell Size, Growth Rate,
and Chlorophyll a
Cell size and concentrations were measured by using a Coulter
Particle Count and Size Analyser (Z2, Beckman Coulter,
Indianapolis, IN, United States). The growth rate (µ) was
determined as follows: µ = (lnC2 –lnC1)/(T2 –T1), where
C2 and C1 represent the cell concentrations at T2 and T1
time, respectively. For Chlorophyll a (Chl a) measurements, at
least 50 mL cultures were filtered on Whatman GF/F filters
and extracted in absolute methanol at 4◦C in the dark for
24 h. Then the absorption spectrum (400–800 nm) of the
supernatant was measured using a scanning spectrophotometer
(DU 800, Beckman Coulter, Indianapolis, IN, United States) after
centrifuged at 6,000 × g for 10 min. Subsequently, the Chl a
concentration was estimated according to Porra (Porra, 2002).
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Determination of Coccosphere Size,
Protoplast Size, and Coccosphere
Thickness
Coccosphere and protoplast diameters were measured using the
particle counter mentioned above. Protoplast size was obtained
by dissolving the coccoliths with 0.1 mM HCl (Gerecht et al.,
2015). In addition, the coccosphere thickness was calculated
by subtracting protoplast diameters from coccosphere diameters
and dividing by two.

Determination of Photochemical
Parameters
All fluorescence parameters were measured using a pulse-
amplitude-modulated fluorometer (Multi-color PAM, Walz,
Germany). The indoor HL-cells were acclimated in the dark for
15 min to measure the maximal quantum yield of photosystem
II (PSII) (Fv/Fm). The effective quantum yield of PSII (Yield)
was measured at the actinic light of 250 µmol photons m−2 s−1,
which was similar to the growth high light level. The maximum
relative electron transport rate (rETRmax) and apparent electron
transfer efficiency (α) were obtained by analyzing the rapid light
curves (RLCs) according to Ralph et al. (2005).

To test the responses of LN- and HN-cells grown under
fluctuating sunlight to short-time high light, their effective
quantum yields were measured at 0, 2, 5, 8, 13, 18, 28, 45, and
60 min using the Multi-color PAM after exposures to a PAR level
of 600 µmol photons m−2 s−1 under a solar simulator. Samples
were cultured in quartz tubes covered with 395-nm cutoff film
(Ultraphan UV Opak, Digefra) which allows transmission of
irradiances above 395 nm. The yield was monitored for 50 min
after the cells were transferred to dim light (15 µmol photons
m−2 s−1) for photochemical recovery.

C and N Analysis
Particulate organic carbon (POC) and particulate organic
nitrogen (PON) were determined using Elementar Vario EL cube
(Vario EL cube, Elementar, Langenselbold, Germany). At least
50 mL cultures were filtered onto pre-combusted (450◦C for
5 h) Whatman GF/F filters (25 mm) and frozen at −20◦C until
analysis. The filters for POC analysis were fumed with HCl to
remove particulate inorganic carbon. And for total particulate
carbon (TPC) analysis, samples were not treated with HCl. All
samples were analyzed after drying. Cellular PIC content was
calculated as PIC (pg cell−1) = TPC (pg cell−1)–POC (pg cell−1).
The production rates of POC, PON and PIC (pg cell−1 d−1)
were calculated by multiplying cellular contents by the specific
growth rates µ.

Determination of Sinking Rate and Cell
Density
The sinking rate of G. oceanica cells was measured according
to the SETCOL method (Bienfang, 1981) in an incubator at
the constant temperature of 20◦C. Briefly, settling tubes (about
385 mL, 0.59 m) were vertically fixed, and samples of all
treatments were filled into settling tubes after shaking, which
were sealed and placed in the chamber. Meanwhile, an equal

volume of tested cultures was placed in the same chamber as the
control to monitor changes in cell concentrations. The sinking
rates were determined after the G. oceanica cells had acclimated
to the treatments for at least 9 days under indoor and for 16 days
under outdoor conditions. Cell concentrations were regarded as
the biomass index for the sinking rate calculations.

Cell density was calculated according to Stokes’ law: v = 2gr2

(ρ’-ρ)/9 , where v the sinking rate (m s−1), g the gravitational
acceleration (m s−2), r the radius of the coccosphere (m), ρ’ the
cell density (kg m−3), ρ seawater’s density (kg m−3) and is the
dynamic viscosity of seawater (kg m−1 s−1).

Data Analysis
The specific growth rates at different light levels were plotted
against nitrate concentrations, and were fitted to the Michaelis-
Menten function (Michaelis and Menten, 1913) to analyze the
relationship of growth to nitrate availability. The relationships of
sinking rate vs. coccosphere diameter, cell density and PIC/POC
ratio were obtained by linear fitting.

Results were presented as means ± SD for triplicate cultures
for each treatment, and the data were analyzed with the software
GraphPad Prism 8.0.2. The One-way ANOVA and Tukey Post
hoc (Tukey HSD) test were used to test the differences between
different treatments (p < 0.05).

RESULTS

The specific growth rate (µ) of the exponentially grown
G. oceanica increased with increasing nitrate concentrations,
regardless of light levels (Figure 1). The µmax values of HL-
cells were higher by 12 and 35% than that of ML- and LL-cells,
respectively (Table 1, p < 0.01). Under the N-limited conditions,
the specific growth rates were inhibited at the HL (260 µmol
photons m−2 s−1) by 28% at 6 and by 3% at 12 µM nitrate
compared to that grown at LL, respectively.

In the outdoor experiment, µ of HN-grown cells was
higher than LN-cells (Figure 2B). When the growth rates were
normalized to daytime mean PAR intensity, µ values increased

FIGURE 1 | The specific growth rates of Gephyrocapsa oceanica as a
function of nitrate concentrations (6, 12, 25, 50, and 100 µM) grown under
constant light levels of 260 (HL, solid line), 115 (ML, broken line), and 50 µmol
photons m-2 s-1 (LL, dotted line), respectively. The values are the
means ± SD of triplicate cultures.
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TABLE 1 | The µmax , Km, and efficiency of N assimilation in Gephyrocapsa oceanica cells grown under different levels of photosynthetically active radiation (PAR) (LL:
50 µmol photons m−2 s−1, ML: 115 µmol photons m−2 s−1, and HL: 260 µmol photons m−2 s−1), which were derived from the relationship of growth vs. nitrate
concentrations (Figure 1).

µ max Km Efficiency of N assimilation Goodness of fit R2

LL 1.02 ± 0.05c 2.59 ± 1.00b 0.42 ± 0.12a 0.91

ML 1.22 ± 0.02b 4.05 ± 0.43b 0.30 ± 0.03a 0.99

HL 1.37 ± 0.02a 8.72 ± 0.34a 0.16 ± 0.004b 0.97

The efficiency of N assimilation was assessed as by µmax/Km. The superscripted letters by the values indicate significant differences among LL, ML, and HL treatments
(p < 0.05).

by 75% (p < 0.01) in HN-cells and by 25% (p = 0.02) in LN-
cells with daytime mean PAR increased till 270 µmol photons
m−2 s−1 (Figure 2C). When the average daytime sunlight levels
ranged between 270 and 500 µmol photons m−2 s−1, µ of HN-
cells still increased with increased light levels (p = 0.01). However,
no significant changes in µ were observed in LN-cells (p > 0.05).
By fitting, the µmax and Km for light of LN-cells was 51 and
84% lower than that of HN-cells, respectively (Supplementary
Figure 1). In addition, by comparing growth rates at similar
nitrate concentrations between indoor and outdoor cultures, we
found that µ values under constant (indoor) light regimes were
higher than that under fluctuating (outdoor) sunlight.

The photochemical yield in HN- and LN-cells, decreased
within 28 min, then leveled off (Supplementary Figure 2). After
60 min-exposure, the yield decreased by 48 and 33% for LN-
and HN-cells, respectively. In addition, the yield of HN-cells
recovered to their initial values under the dim light in 50 min,
while that of LN-cells did not, indicating less tolerance of high-
light stress in LN-grown cells.

Higher nitrate concentrations resulted in larger coccosphere
and protoplast size inG. oceanica (Figure 3A and Supplementary
Figure 4). However, the coccosphere thickness increased with
reduced nitrate availability (Supplementary Figure 4). The
coccosphere thickness here referred to all the coccoliths outside
the cell, including any possible stacked ones. This was consistent
with cellular PIC quotas, which increased, respectively, by 24%
under indoor light and by 35% under outdoor sunlight in the
N-limited cells (p > 0.05, Supplementary Table 1). The PON,
PIC, and POC production rates exhibited the same trend as
cellular PON and POC quotas, with values significantly lower
in the low nitrate treatments (p < 0.01). The PIC production
rates were significantly reduced by lowered N availability under
constant light conditions (p < 0.01). However, the production
rates of PIC were relatively stable for LN- and HN-cells
exposed to fluctuating sunlight. Additionally, the less decrease
in calcification rates than organic carbon fixation rates in
the low nitrate treatments resulted in higher PIC/POC ratios
(Supplementary Table 1 and Figure 3C).

The sinking rates of 6 µM nitrate-grown cells were
significantly higher than that of the cells grown under other
nitrate concentrations (p < 0.01, Figure. 3D). Outdoor LN-
grown cells showed sinking rates of 2.19 ± 0.29 µm s−1,
which were significantly faster by 82% than HN-cells
(1.20 ± 0.19 µm s−1, p < 0.01). By plotting the relationships
of sinking rates vs. coccosphere size and PIC/POC ratios
irrespective of all the treatments, it revealed that the sinking

FIGURE 2 | (A) Daily doses of photosynthetically active radiation (PAR) during
the outdoor culture periods (from 18th December 2018 to 2nd January 2019).
(B) The specific growth rates of Gephyrocapsa oceanica cells grown under
fluctuating light regimes and replete (HN) and limited (LN) conditions. Values
are the means ± SD of triplicate cultures. The dark gray and light gray
darkened areas indicate the periods of reduced levels of solar radiation for the
cells to acclimate from 17 to 30% and then to 100% incident sunlight. (C) The
specific growth rates of the cells grown at HN and LN as a function of daytime
mean light levels. The values of daytime mean PAR exposed to the algal cells
was 89% incident sunlight.

rate was positively correlated with cell density and the ratio of
PIC to POC and negatively correlated with coccosphere size in
G. oceanica (Figure 4).

DISCUSSION

Our results indicated that G. oceanica cells grown under
N-limited conditions increased their PIC quotas with thicker
coccoliths, resulting in faster sinking rates, which were positively
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FIGURE 3 | The coccosphere diameter (A), cellular particulate inorganic
carbon (PIC) quotas (B), PIC/particulate organic carbon (POC) ratio (C), and
sinking rate (D) of Gephyrocapsa oceanica cells grown under different levels
of nitrate under indoor and outdoor light conditions. Values are the
means ± SD of triplicate cultures. Symbols with different lowercase letters and
∗ indicate significant differences among different treatments (p < 0.05). The
difference is not significant if there the letters above the columns are the same
or their combinations, completely different letters indicate significant changes.

correlated with PIC/POC ratios regardless of indoor constant
light and outdoor fluctuating sunlight conditions. The microalgal
cells sustained their photochemical performances with non-
affected light use efficiency for photosynthetic electron transport
even under nitrate deficient conditions (Table 2), so that energy
required for PIC production was sufficiently provided.

With reduced availability of nitrate, the decrease in Chl
a content (Supplementary Figure 3), and maximal relative
electron transfer rate should hinder light harvesting and
photosynthetic energy transfer (Kolber et al., 1988). However,
our results showed that photochemical performances that are
essential for energy transfer sustained even under the nitrate

FIGURE 4 | The relationship of sinking rates vs. coccosphere diameter (A),
cell density (B), and PIC/POC ratios (C) of Gephyrocapsa oceanica. The solid
line was obtained by linear fitting. Data represent sinking rates of the indoor
and outdoor grown cells.

limitation (Table 2), though the growth rates of G. oceanica
were reduced (Figures 1, 2). Excess light energy is suggested
to harm the PSII of microalgae and lead to photoinactivation
(Loebl et al., 2010; Campbell and Serôdio, 2020), which can
be exacerbated due to reduced availability of macro-nutrients
(Talmy et al., 2013; Li et al., 2015). However, proteins associated
with mitigation of photo-oxidative stress as shown in Emiliania
huxleyi could be prominently enhanced under N-limitation,
allowing the cells to maintain relatively high Fv/Fm values
(Rokitta et al., 2014). In this study, although N-limitation
made the G. oceanica cells more susceptible to high-light
stress (Supplementary Figure 2), the cells acclimated to LN
sustained their light use efficiency (Table 2), supporting the
energy supply for calcification and assimilation processes.
Calcification of coccolithophores has been discussed to play
roles as a sunshade or in photoprotection in coccolithophores
against solar radiation or high light (Guan and Gao, 2010;
Xu and Gao, 2012; Monteiro et al., 2016). Although the
reduced levels of transmission of UVR and PAR by the
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TABLE 2 | The maximum quantum yield (Fv/Fm), effective quantum yield (Yield), apparent electron transfer efficiency (α), and maximum relative electron transfer rate
(rETRmax ) of Gephyrocapsa oceanica cells grown under different nitrate concentrations.

N concentration (µ M) Fv/Fm Yield α rETRmax

6 0.55 ± 0.003c 0.48 ± 0.01b 0.21 ± 0.002a 132.3 ± 5.7b

12 0.57 ± 0.005b 0.49 ± 0.003ab 0.22 ± 0.004a 142.4 ± 5.3ab

(0.56 ± 0.003)

25 0.59 ± 0.005a 0.50 ± 0.008ab 0.22 ± 0.003a 151.0 ± 5.1a

50 0.59 ± 0.005a 0.50 ± 0.005a 0.21 ± 0.01a 156.9 ± 2.6a

(0.58 ± 0.004)

Values in brackets represent the data of the outdoor cultures. Others are the data of indoor HL-grown cultures. Values are the mean ± SD of triplicate cultures. Different
superscripted letters indicate significant differences among treatments (p < 0.05).

coccosphere in E. huxleyi was quantified (Gao et al., 2009) and
calcification increased with increased artificial or solar radiation
levels in E. huxleyi (Guan and Gao, 2010; Zhang et al., 2019),
enhanced PIC quotas with reduced nitrate availability in
the present study (Supplementary Table 1) can only infer
a photoprotective strategy associated with PIC-sheltering
(Gao, 2017). From the energetic point of view, G. oceanica
cells grown under LN could allocate relatively more energy to
produce PIC in the sacrifice of growth and POC production.
This was reflected in the model established by Rokitta and
Rost (2012), showing that the light-depend energetics of the
cell was further altered by secondary treatments. Moreover,
the decreased cell size of LN-grown cells might be beneficial
for coccoliths to be expelled to the outside of cells due to
increased ratios of cell surface to volume. This is because
coccoliths are formed in the intracellular coccolith vesicle
(Paasche, 2001), and the smaller cell diameter, the shorter
distance for coccolith transportation from the coccolith
vesicle to the cell surface (Müller et al., 2012). Comparing
the results of indoor and outdoor experiments, the effects of
lowered nitrate availability on the physiological performance
of G. oceanica did not appear to be altered by fluctuating
sunlight (Table 2, Figure 3, and Supplementary Figure 3).
Interestingly, the growth rates of HN- and LN-cells under
constant light conditions were higher than that under
fluctuating sunlight at low to mid daytime mean light levels,
at which the growth of LN-cells was no longer stimulated
with increased light availability. This implies that the cells
demand more energy to cope with fluctuation of light in
sacrifice of growth.

While the Stokes’ law shows that the sinking rate of spherical
particles is mainly dependent on size and density, here, we
demonstrated that combination of N-limitation and high light
gave rise to faster sinking rates that positively correlated with PIC
content and PIC/POC ratios (Figures 3, 4). In E. huxleyi, cell size
was considered as the major determinant of sinking rate, though
a significant increase of lipid in N-limited cells was detected
(Pantorno et al., 2013). Contrastingly, our results point to the
“ballast effect” of coccoliths on sinking, which was negatively
correlated with cell size in G. oceanica (Figure 4). Additionally,
the positive correlation of sinking rate with PIC/POC ratios
has been demonstrated in Coccolithus pelagicus cells grown
with different availabilities of phosphate (Gerecht et al., 2015).
And it has also been reported in E. huxleyi under increased

temperature (Milner et al., 2016). Although N-limitation is
known to facilitate the production of fatty acids and regulate
the expression of related enzymes in coccolithophores (Rokitta
et al., 2014; Bakku et al., 2017) and other microalgae (Kumar
et al., 2019), specific gravities of microalgal species could be
complicated by bio-mineralization, as reflected in G. oceanica in
the present work.

Most POC exported to the deep ocean is in the form
of aggregates such as fecal pellets and marine snow (Fowler
and Knauer, 1986), and is partially re-mineralized to dissolved
inorganic carbon (DIC) during sinking (Hedges, 1992; Iversen
and Ploug, 2013). Faster sinking rates of aggregates can
alleviate the POC loss caused by remineralization. Coccoliths
in the form of calcium carbonate have been reported to be
beneficial for aggregate formation and to protect the aggregates
against disaggregation (Engel et al., 2009). Taken together
with our results, we speculate that in the oligotrophic oceans,
although the POC production is relatively slow, increased
PIC content of coccolithophores as ballast in aggregates can
enhance POC export efficiency. While, nutrient co-limitation
matters more than nitrogen limitation alone in terms of
phytoplankton growth in pelagic surface waters (Browning et al.,
2021), coccolithophores in surface oceans under nutrient-co-
limited conditions with high solar exposures may produce
more PIC per POC. Consequently, the ballasting effect
could be enhanced with progressive ocean climate changes
due to less upward transport of nutrients associated with
enhanced stratification of upper mixing layer (Gao et al.,
2019). Nevertheless, the calcification-related genes for E. huxleyi
were shown to be down-regulated under multiple stressors,
including nutrients, warming, and CO2 (Feng et al., 2020).
Although omics-responses to multiple stressors have not yet well-
documented in coccolithophores, future ocean climate changes
can inevitably impact their photosynthesis and calcification
(Bolton et al., 2016; Tong et al., 2019). This emphasizes the
need to understand mechanistic responses of phytoplankton
physiology and sinking to multiple environmental changes
(Feng et al., 2021).
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