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Abstract: Haptophytes (Hacrobia: Haptophyta), which can perform phototrophic, phagotrophic, or
mixotrophic nutritional modes, are critical for element cycling in a variety of aquatic ecosystems.
However, their diversity, particularly in the changing Arctic Ocean (AO), remains largely unknown.
In the present study, the biodiversity, community composition, and co-occurrence networks of
pico-sized haptophytes in the surface water and subsurface chlorophyll maximum (SCM) layer of
the AO were explored. Our results found higher alpha diversity estimates in the surface water
compared with in the SCM based on high-throughput sequencing of haptophyte specific 18S rRNA.
The community composition of the surface water was significantly different from that of the SCM,
and water temperature was identified as the primary factor shaping the community compositions.
Prymnesiales (mostly Chrysochromulina), uncultured Prymnesiophyceae, and Phaeocystis dominated
the surface water communities, whereas Phaeocystis dominated the SCM communities, followed by
Chrysochromulina, uncultured Prymnesiophyceae, and the remaining taxa. The communities of the
surface water and SCM layer developed relatively independent modules in the metacommunity
network. Nodes in the surface water were more closely connected to one another than those in the
SCM. Network stability analysis revealed that surface water networks were more stable than SCM
networks. These findings suggest that SCM communities are more susceptible to environmental
fluctuations than those in surface water and that future global changes (e.g., global warming) may
profoundly influence the development, persistence, and service of SCM in the AO.

Keywords: Arctic ecology; community structure; marine biodiversity; protist; microbial eukaryotes;
prymnesiophytes

1. Introduction

Global estimates indicate that the oceans are responsible for approximately half of
the CO2 fixed on Earth [1]. As a major source of marine primary production, haptophytes
(Hacrobia: Haptophyta) are projected to contribute ca. two-fold more to global oceanic
chlorophyll a standing stock in the photic zone of the world oceans compared with either
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cyanobacteria or diatoms [2,3]. Mixotrophic haptophytes, species that can be both phagotro-
phy and phototrophy, have been found to be one of the most important picocyanobacterial
and bacterial predators in the sea [4–6].

Certain calcium carbonate scales bearing coccolithophores (e.g., Emiliania huxleyi) can
absorb atmospheric CO2 and sink to the deep ocean via a biological pump, which may
have a significant effect on oceanic carbonate production and subsequent global carbon
cycling [7]. Some species, e.g., Phaeocystis pouchetii, can release toxins that can be harmful to
other aquatic organisms, which is more prevalent during bloom-forming conditions [8,9].
Additionally, some species, e.g., Phaeocystis globose, are major dimethylsulfoniopropionate
(DMSP) producers and hence may influence global sulfur cycling [10].

Furthermore, the N2-fixing unicellular cyanobacteria (UCYN-A)/haptophyte symbio-
sis has been found in an increasing variety of marine environments, including the Bering
and Chukchi Seas of the Arctic Ocean (AO), and has been proposed to contribute consid-
erably to global nitrogen fixation [11–14]. The flexible nutritional modes and lifestyles of
haptophytes enable them to be one of the most successful microbial eukaryotes, and they
are widely dispersed in a variety of marine and freshwater habitats.

As of 2016, ca. 312 species of Haptophyta had been morphologically characterized [15].
Haptophytes are typically considered as single-celled nanophytoplankton (2–20 µm). Only
a few pico-sized (≤2–3 µm) species have been described [16]. Due to their small cell size,
haptophytes are difficult to study, necessitating observations based on electron microscopy
and a high level of taxonomic expertise. Environmental sequencing using universal primers
targeting the eukaryotic SSU rRNA gene revealed that sequences affiliated with hapto-
phytes account for only a small portion of all eukaryotic sequences [17]. This contrasts
strikingly with the high concentration of 19′-hexanoyloxyfucoxanthin (the accessory pho-
tosynthetic pigment found exclusively in haptophytes) in marine waters as detected by
high performance liquid chromatography [2,18,19]. The high GC content of haptophyte
genomes is proposed to impede amplification processes using universal Eukaryota-specific
primer sets, resulting in a low recovery of Haptophyta-specific sequences during environ-
mental surveys.

With the introduction of haptophyte-specific primers targeting the SSU and LSU rRNA
genes, an unexpected diversity was discovered, particularly within the pico-sized fraction.
This could represent novel species and lineages at taxonomic levels ranging from genus
to class [2,20,21]. Based on plastid SSU rRNA gene data collected from the global ocean, a
study recently found two deep-branching plastid lineages, one of which branched close to
Prymnesiophyceae and the other branching in a sister position to haptophytes [22].

Marine microorganisms support ocean food webs and drive global biogeochemical
cycles by transforming energy and chemical substrates through a multitude of metabolic
processes [1]. Recent global warming has had a dramatic and increasing influence on
the Arctic Ocean (AO), and the Arctic is warming at nearly double the global average
rate [23,24]. Changes in the sea surface temperature have the potential to modify the
diversity, composition, and distribution of plankton [25,26]. Alterations to the taxonomic
composition of plankton communities can significantly influence critical ecosystem func-
tions, including primary and secondary production, carbon and nutrient cycling, and
ultimately ecosystem services [27].

Ecological studies on the composition and distribution of nano- and pico-sized eu-
karyotes have long been a challenge due to their small size and lack of diagnostic features
under light microscopy. In the last several decades, the application of sequencing-based
techniques, e.g., sequencing on marker genes, such as the SSU rRNA gene, has provided an
alternative method for examining the diversity and community composition of these tiny
eukaryotic microbes [17,28–30]. By sequencing the SSU rRNA rather than the gene, active
microbial eukaryotes can be distinguished from dead or dormant cells or extracellular
DNA [29,31–38]. Therefore, the RNA-based community is more sensitive to environmental
factors than the DNA-based community [39]. Molecular surveys of Arctic microbial eukary-
otes have been conducted for more than a decade [40–47]. To the best of our knowledge,
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no molecular surveys focusing solely on haptophyte assemblages have been conducted,
despite the fact that members of this group may play critical roles in the element cycling of
AO’s microbial food webs, such as by forming blooms, grazing on other microorganisms,
or participating in CO2 and nitrogen fixation [13,48].

In the summer of 2016, samples were collected from the surface water and subsurface
chlorophyll maximum (SCM) layer of the AO. By applying high-throughput sequencing on
the SSU rRNA of pico-sized haptophytes, this study aimed to (1) characterize and compare
the community composition and co-occurrence relationships of pico-sized haptophytes
in the surface water and SCM and (2) reveal the environmental factors influencing the
community of pico-sized haptophytes.

2. Materials and Methods
2.1. Sample Collection and Measurement of Environmental Parameters

Samples were collected on board IBRV ARAON in the summer of 2016 (Expedition
ARA07) as detailed in [45,46]. A total of fourteen sites were sampled (Figure 1, Table S1).
At each site, seawater from the surface water and subsurface chlorophyll maximum (SCM)
layer was sampled using Niskin bottles attached in a circular rosette around the CTD
sensors (Sea-Bird SBE 911plus, Sea-Bird Electronics, Bellevue, WA, USA).
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Figure 1. Sampling stations in the Arctic Ocean during the summer cruise of ARA07 conducted
in 2016.

The collection and analysis of seawater samples for nutrients (including nitrate + nitrite
(NO2/NO3), phosphate (PO4), ammonium (NH4), silicate (SiO4)), picoplankton (i.e., het-
erotrophic prokaryotes (HPs), pico-sized pigmented eukaryotes (PPEs)), and sized, fraction-
ated chlorophyll a (i.e., >20 µm, 2–20 µm, and <2 µm fractions), were described in [45].

Water samples for RNA extraction from the surface water and SCM layer were col-
lected as described in [46]. Seawater was prefiltered through a 200 µm mesh (Nitex, Sefar)
to remove large metazoans. Five liters of filtrates were then sequentially filtered through 20,
3, and 0.4 µm pore size membrane filters (ISOPORE, Millipore) to collect plankton from the
micro- (>20 µm), nano- (3–20 µm), and pico-sized (<3 µm) fractions, respectively. After that,
the filters were deep frozen in liquid nitrogen and kept at −80 ◦C until the RNA extraction.
The downstream analysis in this study used only the pico-sized fraction.

2.2. RNA Extraction, PCR Amplification, and High-Throughput Sequencing

Environmental RNA was extracted, and the concentration and quality were checked
as per [45]. The extracted RNA was immediately reverse transcribed into cDNA using the
QuantiTect® Reverse Transcription Kit and gDNA Wipeout Buffer was used to remove
the carryover genomic DNA prior to the reverse transcription reaction (Qiagen, Shanghai,
China). To amplify the V4 regions (ca. 380 bp) of the 18S rRNA, we used Haptophyta-
specific primers (528Flong and PRYM01+7) and the PCR conditions described by [21].
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Each sample was subjected to five separate PCR reactions to produce sufficient am-
plicons for sequencing. The Wizard® SV Gel and PCR Clean-Up kit (Promega, Shanghai,
China) was then used to excise PCR amplicons from gels. Amplicon libraries were then
sequenced in a commercial laboratory using paired-end (2 × 250 bp) sequencing on an
Illumina MiSeq sequencer. The reads were submitted to the NCBI SRA with the accession
number PRJNA632655.

2.3. Data Analysis

Trimmomatic and Flash software were used to perform quality filtering, demultiplex-
ing, and assembly of raw sequences [49,50] with the criteria following [38]. Dereplication of
quality-filtered reads was performed on each sample using Usearch 11 [51]. The reads were
denoised and clustered into biological zero-radius operational taxonomic units (ZOTUs)
using UNOISE3 [52].

SINTAX [53] was used to assign taxonomic information to the representative reads of
the obtained ZOTUs, and PR2 (Protist Ribosomal Reference database) version 4.11.1 [54],
which includes the curated haptophyte reference database, was used as the reference
database [55]. The definition of the environmental clades, including Clade_D, Clade_E,
Clade_B3, Clade_B4, Clade_HAP2, Clade_HAP3, and Clade_HAP4, followed previous
reports [56–59]. After removing non-Haptophyta ZOTUs, a ZOTU table was generated
in USEARCH 11. The ZOTU table was then subsampled for downstream analysis by
randomly resampling at the lowest number (35,677) of the reads retrieved for all samples.

QIIME was used to calculate alpha-diversity estimates, such as the ZOTU Richness,
Shannon, and Phylogenetic Diversity (PD) [60]. To infer differences between samples,
Bray–Curtis distances and Weighted Unifrac distances [61] were calculated to infer sam-
ple grouping in R using the ‘vegan’ package, and the results were visualized using a
two-dimensional Principal Coordinate Analysis (PCoA). The differences across sample
groupings were further tested by ANOSIM within PRIMER 6 [62].

Mantel tests were used to explore the relationships between communities and envi-
ronmental factors using the ‘vegan’ package in R. The multiple linear regression model
(lm function in ‘stats’ package in R [63]) was used in combination with variance decompo-
sition analysis (calc.relimp function in the ‘relaimpo’ package in R [64]) to determine the
contributions of the differences in environmental variables in explaining dissimilarities in
haptophyte communities.

2.4. The Co-Occurrence Network Analyses

To simplify the dataset, ZOTUs with a relative abundance of < 0.01% and found in
< 25% of samples were deleted for constructing metacommunity networks. The Spearman
correlations between selected ZOTUs were determined using the ‘Hmisc’ [65] and ‘igraph’
packages [66]. Correlations between ZOTUs that were significant (p < 0.01) and robust
(ρ ≥ 0.6) were exported as a GML format network file [67,68]. Prior to that, to minimize
false positive results, the p-values for each network were adjusted with a multiple testing
correction using the Benjamini–Hochberg false discovery rate (FDR) control process [69].

Gephi v 0.9.2 was used to visualize networks, perform modular analysis, and deter-
mine network-level topological properties (i.e., the node, edge, average degree, density,
diameter, clustering coefficient, and average path length) [70]. The robustness of the net-
works was evaluated by simulating a network attack scenario according to [71]. This was
accomplished by measuring the natural connectivity of a network when nodes were gradu-
ally removed in a predetermined order (according to degree and betweenness) or randomly.

3. Results
3.1. Environmental Parameters

The environmental parameters of the surface water and SCM layer were reported
in [46] (Table S2). The depth of the SCM layer ranged from 15 m at B2 to 62 m at B29. The
water temperature of the SCM layer varied between −1.58 and 2.96 ◦C. The salinity of the
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SCM layer ranged from 30.7 to 32.4. Except for B2, B3, B10, B12, and B16, the concentration
of NH4 was below the detection limit in the majority of SCM layer samples. NO2/NO3
concentrations ranged from 0.7 to 8.22 µM, while PO4 concentrations ranged from 0.71 to
2.01 µM. The SiO2 concentrations in the SCM layer ranged between 2.55 and 23.74 µM.

The Chl a concentration in the SCM layer ranged from 0.42 µg L−1 at B31 to 6.66 µg L−1

at B3, with the 20–200 µm fraction contributing the highest amount at most stations except
B26, B29, and B31, where the <2 µm plankton contributed the most. The abundance of
heterotrophic prokaryotes (HPs) in the SCM layer ranged between 1.28 × 105 (station
B10) to 1.01 × 106 cells mL−1 (station B12). The abundance of pico-sized pigmented
eukaryotes (PPEs) was about one order of magnitude lower than that of HPs, ranging
between 2.12 × 103 and 7.89 cells mL−1 (Table S2).

3.2. Alpha Diversity and Correlations with Environmental Parameters

Following quality filtering, 2,030,397 reads remained. After removing chimeras, ZO-
TUs with less than four reads, and non-Haptophyta ZOTUs, 1,845,901 reads were left,
ranging from 35,677 to 121,493 reads per sample, which were grouped into 1016 ZOTUs,
ranging from 264 to 813 ZOTUs per sample (Table S3). After being rarified at the lowest
read count (35,677) across all samples, the number of ZOTUs varied between 198 and 750,
with the lowest found in B10 surface water and the highest in B1 surface water.

After pooling the samples from the surface water and the SCM layer separately, the
alpha diversity estimates for the surface water, including the ZOTU richness, Shannon,
and phylogenetic diversity (PD), were significantly higher than those for the SCM layer
(Wilcoxon test, p < 0.05; Figure 2). All alpha diversity estimates were negatively correlated
with salinity (Table S4). Except for ZOTU richness, the PD and Shannon were negatively
correlated with the water depth, with the Shannon also being negatively correlated with
the NO2/NO3 concentrations.

Microorganisms 2022, 10, x FOR PEER REVIEW 5 of 16 
 

 

3. Results 
3.1. Environmental Parameters 

The environmental parameters of the surface water and SCM layer were reported in 
[46] (Table S2). The depth of the SCM layer ranged from 15 m at B2 to 62 m at B29. The 
water temperature of the SCM layer varied between −1.58 and 2.96 °C. The salinity of the 
SCM layer ranged from 30.7 to 32.4. Except for B2, B3, B10, B12, and B16, the concentration 
of NH4 was below the detection limit in the majority of SCM layer samples. NO2/NO3 

concentrations ranged from 0.7 to 8.22 µM, while PO4 concentrations ranged from 0.71 to 
2.01 µM. The SiO2 concentrations in the SCM layer ranged between 2.55 and 23.74 µM.  

The Chl a concentration in the SCM layer ranged from 0.42 µg L−1 at B31 to 6.66 µg 
L−1 at B3, with the 20–200 µm fraction contributing the highest amount at most stations 
except B26, B29, and B31, where the <2 µm plankton contributed the most. The abundance 
of heterotrophic prokaryotes (HPs) in the SCM layer ranged between 1.28 × 105 (station 
B10) to 1.01 × 106 cells mL−1 (station B12). The abundance of pico-sized pigmented eukar-
yotes (PPEs) was about one order of magnitude lower than that of HPs, ranging between 
2.12 × 103 and 7.89 cells mL−1 (Table S2). 

3.2. Alpha Diversity and Correlations with Environmental Parameters 
Following quality filtering, 2,030,397 reads remained. After removing chimeras, 

ZOTUs with less than four reads, and non-Haptophyta ZOTUs, 1,845,901 reads were left, 
ranging from 35,677 to 121,493 reads per sample, which were grouped into 1016 ZOTUs, 
ranging from 264 to 813 ZOTUs per sample (Table S3). After being rarified at the lowest 
read count (35,677) across all samples, the number of ZOTUs varied between 198 and 750, 
with the lowest found in B10 surface water and the highest in B1 surface water.  

After pooling the samples from the surface water and the SCM layer separately, the 
alpha diversity estimates for the surface water, including the ZOTU richness, Shannon, 
and phylogenetic diversity (PD), were significantly higher than those for the SCM layer 
(Wilcoxon test, p < 0.05; Figure 2). All alpha diversity estimates were negatively correlated 
with salinity (Table S4). Except for ZOTU richness, the PD and Shannon were negatively 
correlated with the water depth, with the Shannon also being negatively correlated with 
the NO2/NO3 concentrations.  

 
Figure 2. Comparison of the alpha-diversity estimates, including ZOTU Richness, PD, and Shannon, 
for the pico-sized haptophytes in the surface water and the SCM layer. The line in each box plot 
indicates the median, and the box delimits the 25th and 75th percentile. 

3.3. Beta Diversity and Its Driving Factors 
Except for station B10, the samples were clustered into two groups, i.e., the surface 

water group and the SCM layer group, based on their Bray–Curtis dissimilarity (Figure 
3A). This grouping pattern was also supported by the principal component analysis 
(PCoA) of community taxonomic relatedness quantified by the Weighted Unifrac metric 

Figure 2. Comparison of the alpha-diversity estimates, including ZOTU Richness, PD, and Shannon,
for the pico-sized haptophytes in the surface water and the SCM layer. The line in each box plot
indicates the median, and the box delimits the 25th and 75th percentile.

3.3. Beta Diversity and Its Driving Factors

Except for station B10, the samples were clustered into two groups, i.e., the surface
water group and the SCM layer group, based on their Bray–Curtis dissimilarity (Figure 3A).
This grouping pattern was also supported by the principal component analysis (PCoA) of
community taxonomic relatedness quantified by the Weighted Unifrac metric (Figure 3B).
Statistical analysis revealed a substantial difference in the composition of the surface water
and SCM layer samples (ANOSIM, R = 0.343, p = 0.004 for the Bray–Curtis dissimilarity
and R = 0.540, p = 0.001 for the Weighted Unifrac distance).
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The Mantel test was used to determine the influence of environmental parameters
on haptophyte communities. Temperature was identified to be the primary driving factor
(p = 0.002, R2 = 0.448), followed by Chl a (2–20 µm) (p = 0.002, R2 = 0.162) (Table 1).
Additionally, the multiple linear regression analysis showed that water temperature was
the most important driving factor, accounting for ca. 12.9% of the community variance,
followed by other measured environmental parameters, which completely explained ca.
25.8% of the community variance (Table 2).

Table 1. Mantel test comparison between the haptophyte community variability (measured as the
Bray–Curtis dissimilarity) and environmental parameters.

Environmental Parameters R2 p

Geographic distance 0.006 0.415
Depth 0.180 0.055

Temperature 0.448 0.002
Salinity 0.098 0.149

PO4 0.096 0.194
NO2 + NO3 0.040 0.313

SiO2 0.072 0.216
Chl a (>20 µm) 0.086 0.111
Chl a (2–20 µm) 0.162 0.046
Chl a (<2 µm) 0.151 0.081

HPs, abundance 0.029 0.365
PPEs, abundance 0.108 0.167

HPs, heterotrophic prokaryotes; and PPEs, pigmented picoeukaryotes. Numbers in bold indicate statistically
significant results.

Table 2. The results of multivariate multiple linear regression (MLR) performed between environ-
mental variables (temperature, Chl a (<2 µm), Chl a (2–20 µm), Chl a (>20 µm), PPEs, heterotrophic
bacteria, salinity, and geographic distance)) and community dissimilarities. Explanatory variables
were normalized, and the Euclidean distance was calculated.

Variable Cumulative %

Temperature 12.9
Chl a (<2 µm) 4.3

Chl a (2–20 µm) 2.6
PPEs 1.5

Chl a (>20 µm) 1.4
Heterotrophic bacteria 1.3

Salinity 1.3
Geographic distance 0.5
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3.4. Community Composition

To infer the community composition of pico-sized haptophytes, all representative
reads for each ZOTU were searched against the PR2 database, and their identities at the
lowest taxonomic levels were determined. The haptophyte-specific reads were categorized
into 29 phylogenetic taxa, with 13 at the genus level and 7 at the environmental clade
level, including Clade_HAP2-4, Clade_B3-B4, and Clade_D-E. The rest were assigned as
unclassified haptophytes at the class or order level (Figure 4). Most of the sites had a
diverse haptophyte community.
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The surface community was dominated by Chrysochromulina, followed by Prymnesio-
phyceae_UC, Phaeocystis, Prymnesium, and other taxa. In the SCM layer, Phaeocystis sur-
passed Chrysochromulina as the most dominant genus, followed by Prymnesiophyceae_UC
and other taxa. Environmental clades, including Clade_HAP3, Clade_B3, and Clade_E,
contributed more to the SCM layer than to the surface water communities, while Clade_D
was more prevalent in the surface water community. The coccoliths bearing Calcidis-
caceae_UC, Coccolithales_UC, and Emiliania were virtually missing from both the surface
water and SCM layer communities. Within Prymnesiales, the uncultured Chrysochromulina
(Chrysochromulina_UC) predominated in both the surface water and the SCM layer com-
munities (Figure S1A). The uncultured Prymnesium (Prymnesium_UC) was the second
most-abundant genus in surface water among the Prymnesiales, with the others contribut-
ing only marginally to the community. In the surface water of the B10 station (B10.Surface),
the environmental clades Clade_B3-B4-B5 were the second most abundant taxa. In the SCM
layer, Chrysochromulina leadbeateri was the second most abundant species within Prymne-
siales in some samples (e.g., B23.DCM, B2.DCM, and B10.DCM) but was replaced by the
uncultured Haptolina (Haptolina_UC) in certain samples (e.g., B29.DCM, B31.DCM, and
B26.DCM) to be the second most abundant genus (Figure S1A). Within Phaeocystales, sur-
face water samples were dominated by the uncultured Phaeocystis (Phaeocystis_UC) in most
samples, whereas Phaeocystis pouchetii was also prominent in some samples (Figure S1B).
The composition of Phaeocystales in the SCM layer was strikingly different from that in the
surface water samples with Phaeocystis pouchetii being the most abundant species in most
samples (Figure S1B).

In terms of the ZOTU richness, the composition of pico-haptophytes varied little be-
tween samples. Prymnesiales and Prymnesiophyceae_UC both contributed nearly equally
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to the community, which in total accounted for >80% of the ZOTUs detected in each sample.
The remaining taxa made only a marginal contribution to the community (Figure S2).

Spearman’s correlation analysis was conducted to explore the possible influence of
environmental variables on the relative sequence abundance of key taxa (Figure 5). Water
depth was typically negatively correlated with several taxa, including Haptophyta_X,
Clade_HAP2, Syracosphaerales, Clade_D, Prymnesiales, Isochrysidales, and Calcihapto-
phycidae, but was positively correlated with Phaeocystales. The temperature negatively
affected only Clade_HAP2 and Clade_E. Except for Phaeocystales, which was usually
positively correlated with the above factors, most groups responded negatively to depth,
temperature, salinity, and nutrients. Certain taxa, including Clade_HAP4 and Clade_HAP3,
were found to have no significant correlations with any of the factors measured.
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3.5. Co-Occurrence Networks

Based on correlation relationships, a metacommunity co-occurrence network was
constructed, capturing 23,324 associations among 372 haptophyte ZOTUs (Figure 6A).
A total of 226 and 53 significantly enriched ZOTUs in surface water and the SCM layer
were identified, respectively. Surface-water- and SCM-enriched ZOTUs formed distinct
modules, with surface-water-enriched ZOTUs exhibiting much closer interconnections than
SCM-enriched ZOTUs. Additionally, we examined the node-level topological parameters
of different groups of ZOTUs (Figure 6B). The values of topological parameters, including
the degree and closeness centrality, were significantly higher (p < 0.01) in surface-water-
enriched ZOTUs compared to SCM-enriched ZOTUs.

Subnetworks were generated for surface-water- and SCM-enriched communities, and a
set of network-level topological parameters were calculated (Table S5). The average degree,
clustering coefficient, and graph density of the surface water subnetwork were significantly
higher than those of the SCM subnetwork, implying that surface-water-enriched ZOTUs
were more interconnected. The average path length and diameter were lower in the
surface water subnetwork, indicating that surface-water-enriched communities are more
closely related.

Additionally, we simulated a network attack scenario to examine the stability of surface
water and SCM layer networks. With the removal of critical nodes with high betweenness
and degree, the SCM layer network lost connectedness more rapidly than the surface
water network (Figure S3A). The random attacking scenario revealed a similar pattern
(Figure S3B): the natural connectedness of the surface water network was constantly greater
than that of the SCM layer network under increasing random node loss, thus, suggesting
greater robustness of the surface water network.
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4. Discussion

The SCM layer is typically characterized as the region beneath the surface water that
has a maximum of chlorophyll fluorescence at depth, which is a common feature of most
aquatic ecosystems, particularly those with strong thermal stratification [72]. The depth
of the SCM was traditionally viewed as a trade-off between available light and nutrients
for phytoplankton growth [72]. The persistence of SCM may be highly susceptible to
changes in the water column’s physical properties. One of the most noticeable hydrological
characteristics in the western AO in summer is the formation and persistence of the SCM
layer, which is responsible for most of the primary production [73]. Any perturbance of this
sensitive light-nutrient balance is expected to change the community structure [74], hence,
affecting essential ecosystem functions, such as the primary and secondary production
as well as element cycling [27]. Research reported that microeukaryotic phytoplankton
were the predominant primary producers in the western AO [75,76]. Thus, understanding
the community composition, co-occurrence relationships, and environmental drivers of
microeukaryotic assemblages, particularly haptophytes, is critical for appreciating their
functions in a changing AO.

4.1. Beta Diversity, Taxonomic Composition, and Environmental Driving Factors

The striking difference in temperature, salinity, nutrients, and light between the surface
water and SCM layer has resulted in distinct community compositions of microbial eu-
karyotes in diverse marine environments, including the AO [41,46,77,78]. In the Southeast
Pacific Ocean, Red Sea, Mediterranean Sea, Norwegian coast, and the central Pacific Ocean,
previous studies have reported contrasting haptophyte communities in the surface water
and SCM layer [20,55,59,79,80]. Separation of surface water and SCM-layer haptophyte
communities was also observed in this study, as determined by PCoA plotting of both the
Bray–Curtis dissimilarities and Weighted Unifrac distance, which is consistent with earlier
reports (Figure 3).

The mantel test identified temperature as the most influential factor shaping the
haptophyte communities in the AO, which was corroborated by the multivariate multiple
linear regression analysis, which showed that temperature explained 12.9% of the observed
variations. The influence of temperature on community structure may be partially explained
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by how species’ performance (fitness) responds to temperature variations, i.e., the species’
thermal tolerance curves [81].

Prymnesiales were the most abundant taxon in most of the surface water samples and
the second most abundant taxon in the majority of SCM samples, which is consistent with
previous reports (Figure 4). Chrysochromulina and Prymnesium were the two most abundant
genera in the Prymnesiales encountered in this study. These two genera were previously
recognized for their high diversity and widespread distribution [15]. Some species of these
two genera, e.g., Chrysochromulina hirta, Chrysochromulina ericina, Prymnesium patelliferum,
and Prymnesium parvum, have been reported to be capable of hunting for prey or ingesting
organic particles via phagocytosis using the haptonema, allowing them to adapt to the low
light/nutrient environments [82–86].

Indeed, throughout our study, the nutrients PO4, NO2/NO3, and SiO4 were much
lower in the surface water than in the SCM layer (Table S2). The ability of Prymnesiales,
especially species of the genera Chrysochromulina and Prymnesium, to perform both pho-
totrophy and phagotrophy may enable them to outcompete species that can only perform
phototrophy or phagotrophy and may account for their dominance in the low nutrient
surface water of the AO. Phaeocystis within the Order Phaeocystales replaces Prymnesiales
as the highest contributor to the SCM layer in most of the samples. Most of the Phaeocystis
ZOTUs recovered in the SCM layer were classified as Phaeocystis pouchetii (Figure S1).
P. pouchetii is a phytoplankton species that lives in cold waters in the northern hemisphere.

In the AO, P. pouchetii can form spring blooms, contributing to primary production, the
sedimentation of organic carbon, and the food supply for zooplankton [87–89]. Although
this species has not been observed to undertake phagotrophy, the comparatively rich nutri-
ents and ample light in the SCM layer enabled P. pouchetii to proliferate rapidly, displacing
Chrysochromulina and Prymnesium as the dominating species in the SCM layer. Indeed,
previous studies suggested that haptophytes, particularly the non-calcifying taxa, includ-
ing Chrysochromulina and Prymnesium, were primarily K-strategists capable of mixotrophy
and well-adapted to conditions of intermediate or low nutrition availability and turbu-
lence [80,90].

On the contrary, bloom-forming species, such as P. pouchetii, that can grow fast and
achieve high abundances under optimum conditions (e.g., nutrients and light), are most
likely R-strategists [90]. Indeed, in the Spearman’s correlation analysis between envi-
ronmental variables and the relative sequence abundance of major taxonomic groups,
Prymnesiales and Phaeocystales responded oppositely, with the former being negatively
correlated with water depth and nutrients and the latter being positively correlated with
these environmental factors (Figure 5). The distinct niche preferences of Prymnesiales and
Phaeocystales, as well as the contrasting environmental conditions between the surface wa-
ter and SCM layer, may explain the different distribution patterns of these two haptophyte
taxa observed in the present study.

4.2. Co-Occurrence Networks

In recent decades, co-occurrence networks, which can reveal information on associa-
tions among microbial communities and the stability of communities, have been increas-
ingly used to infer potential interactions of microbial assemblages in a variety of terrestrial
and aquatic environments [37,46,91–96]. In this study, we constructed co-occurrence net-
works based on high-throughput sequencing on 18S rRNA of pico-sized haptophytes. By
using the 18S rRNA instead of the gene, we can avoid interference from dead, dormant
cells, and extracellular free DNA, thus, allowing us to analyze only the “active” members
of the community [29,31–33].

Similar to the community structure, the co-occurrence networks displayed different
patterns with distinct network properties and stability between the surface water and SCM
layer (Figure 6). A total of 226 and 53 highly enriched ZOTUs were detected in the surface
water and SCM layer, respectively, which is consistent with the fact that higher surface water
communities had higher alpha diversity estimates than the SCM layer communities. The
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surface-water- and SCM layer-enriched ZOTUs formed two largely independent modules
in the co-occurrence network (Figure 6).

According to our findings, the surface water network had a higher average degree,
clustering coefficient, and graph density than the SCM network, according to our findings.
Additionally, the degree and closeness centrality of surface-water-enriched ZOTUs were
higher than those of SCM-enriched ZOTUs. All the aforementioned findings revealed that
the pico-sized haptophytes within the surface water and SCM layer were more closely
connected than those between the two groups.

This is congruent with the sample grouping determined by the Bray–Curtis dissimilar-
ity and Weighted Unifrac distance analyses, which showed that the surface water and SCM
layer communities were well separated. The SCM is persistent in the western AO during
the summer [73]. The strongly salinity stratified seawater can result in distinct physical
and chemical properties between the surface water and the SCM layer, which may select
microbial eukaryotes that adapt to the surrounding seawater and the assembly processes
of microbial eukaryotic communities resulting in the separation of the surface water and
SCM layer microbial eukaryotic communities [97].

Our results showed that, with the removal of both critical nodes and the random
nodes, the surface water networks lost connections more slowly than the SCM networks.
As a result, the surface water networks were likely more robust, i.e., stable, compared with
the SCM networks. It has been suggested that high diversity can facilitate the co-occurrence
of microbial communities [98], and ecosystems with higher levels of biodiversity are more
stable [99,100].

Indeed, we found significantly higher alpha diversity estimates, including the ZOTU
richness, Shannon, and PD, in the surface water than in the SCM layer. Additionally, a
previous study revealed that communities with low diversity may be more susceptible
to fast change than those with higher diversity [101]. Thus, communities in the SCM
layer, which have lower diversity and more unstable co-occurrence network relationships
among species compared with surface water communities, are likely to be more sensitive to
environmental changes, e.g., inflow from the melting sea ice and river discharge that add
freshwater to the AO. Changes in the microbial assemblages inhabiting the SCM are antici-
pated to influence the key ecological processes of the SCM, e.g., the primary production.
Our findings corroborate a previous report indicating that increased terrigenous input may
influence the development of SCM and result in a more heterotroph dominated microbial
eukaryotic community, thereby, resulting in decreased primary production [97].

5. Conclusions

In the present study, high-throughput sequencing of haptophyte specific 18S rRNA
was used to investigate the biodiversity, community composition, and co-occurrence rela-
tionships of pico-sized haptophytes in the AO’s surface water and SCM layer. Our data
found that the surface water had higher alpha diversity estimates compared with the SCM
layer. The surface water and SCM layer were found to harbor distinct communities with
water temperature being the primary driving factor.

The surface water and SCM layer communities formed relatively independent modules
in the metacommunity network with the surface water networks being more stable than
the SCM networks. These findings imply that SCM communities are more susceptible to
environmental fluctuations compared with surface water, and that future global changes
(e.g., global warming) may have a profound impact on the development, persistence, and
service of SCM in the AO.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10020248/s1, Figure S1: Taxonomic compositions
of Prymnesiales and Phaeocystales. Figure S2: The proportions of ZOTUs. Figure S3: Network
stability was measured for surface water and SCM layer pico-haptophyte communities using a
network at-tacking scenario in which nodes were gradually removed in a predetermined order or
randomly. Table S1: Sample Information: SCM—subsurface chlorophyll maximum layer. Table S2:
Environmental parameters at the sampling stations. Table S3: Alpha diversity estimates of the
samples collected. *Reads before randomly subsampling of 35,677 sequences without replacement.
Table S4: Spearman correlations between environmental factors and alpha diversity estimates of
pico-sized haptophytes revealed by the SSU rRNA. Table S5: The topological features of co-occurrence
networks for pico-sized haptophytes in surface water and SCM layer.
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