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A B S T R A C T

Satellite approaches for estimation of the partial pressure of CO2 (pCO2) and air-sea flux of CO2 in coastal regions
offer the potential to reduce uncertainties in coastal carbon budgets and improve understanding of spatial and
temporal patterns and the factors influencing them. We used satellite-derived products in combination with an
extensive data set of ship-based observations to develop an unprecedented multi-year time-series of pCO2 and
air-sea flux of CO2 in the northern Gulf of Mexico for the period 2006–2010. A regression tree algorithm was
used to relate satellite-derived products for chlorophyll, sea surface temperature, and dissolved and detrital
organic matter to ship observations of pCO2. The resulting relationship had an r2 of 0.827 and a prediction error
of 31.7 μatm pCO2 (root mean-squared error of the relationship was 28.8 μatm). Using a wind speed and gas
exchange relationship along with satellite winds, estimates of air-sea flux of CO2 were derived yielding an
average annual flux over the period 2006–2010 of −0.8 to −1.5 (annual mean =−1.1 ± 0.3)
mol C m−2 y−1, where the negative value indicates net ocean uptake. The estimated total annual CO2 flux for
the study region was −4.3 + 1.1 Tg C y−1. Relationships of satellite-derived pCO2 with salinity were consistent
with shipboard observations and exhibited a concave relationship with low values at mid- and low salinities
attributed to strong biological drawdown of CO2 in the high productivity river-mixing zone. The time-series of
satellite-derived pCO2 was characterized by a seasonal pattern with values lower during winter and spring, low
to intermediate values during fall, and higher and more variable values during summer. These findings were
similar to simulations from a coupled physical-biogeochemical model. A seasonal pattern was also evident in the
air-sea flux of CO2 with generally more negative fluxes (i.e., ocean uptake) during winter and spring, and po-
sitive fluxes during summer months with fall being a period of transition. Interannual variations in annual means
of both air-sea flux of CO2 and DIN loading were significant, with higher DIN loading coinciding in some cases
with more negative air-sea flux of CO2 (i.e., net ocean uptake). Spatial patterns of pCO2 reflected regional
environmental forcing including effects of river discharge, wind forcing, and shelf-slope circulation. Our study
also illustrates the utility of satellite extrapolation for highlighting areas that may contribute significantly to
regional signals and for guiding prioritization of locations for acquiring further observations. The approach
should be readily applicable to other regions given adequate availability of in situ observations for algorithm
development.
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1. Introduction

Uncertainties in coastal carbon fluxes are such that the net uptake of
carbon in the coastal margins remains a poorly constrained term in
global budgets (Cai, 2011). The initial works of Borges et al. (2005), Cai
et al. (2006) and Chen and Borges (2009) provided some of the first
global assessments of sinks and sources of CO2 in the coastal ocean, and
highlighted the diversity and heterogeneity of coastal ecosystems and
their associated carbon dynamics. Global estimates of coastal ocean
CO2 fluxes have continued to progress in the recent years, yet there
remain significant inconsistencies in the recent global budgets for the
estuarine CO2 source and the continental shelf CO2 sink (Bauer et al.,
2013; Cai, 2011; Dai et al., 2013; Laruelle et al., 2010; Laruelle et al.,
2014). None of these estimates fully resolves the seasonality or spatial
heterogeneity in CO2 fluxes and a major factor behind the uncertainties
in these global budgets stems from the under sampling of the coastal
oceans, or the continental margins (Dai et al., 2013; Gruber, 2015;
Laruelle et al., 2015; Liu et al., 2010).

Satellite-based approaches for assessments of surface water partial
pressure of CO2 (pCO2) distributions and air-sea fluxes of CO2 are po-
tentially powerful in their ability to provide broad spatial coverage and
extended temporal coverage as well as a synoptic view that no field
survey can match. Several satellite-based predictive models for esti-
mating pCO2 and the air-sea flux have been proposed recently. At
present these algorithms use a variety of approaches ranging from the
use of multivariate statistics (Chen et al., 2016; Chierici et al., 2012;
Lohrenz and Cai, 2006; Shadwick et al., 2010; Signorini et al., 2013;
Zhu et al., 2009) to machine-learning methods such as neural networks
and self-organizing mapping techniques (Bai et al., 2015; Hales et al.,
2012; Lefevre et al., 2002; Telszewski et al., 2009) and quasi-mechan-
istic reconstructions of pCO2 based on the underlying total inorganic
carbon and alkalinity changes in the context of known physical and
biogeochemical processes (Bai et al., 2015; Hales et al., 2012).

Coastal ocean margins that receive input from large rivers represent
extremes of continental shelf systems in carbon cycling and fluxes, and
satellite observations can be particularly helpful in complementing
ship-based observations and modeling approaches for characterizing
carbon dynamics in these complex regions. Recent studies in the large
river-dominated margins have highlighted the characteristics of these
regions as sites of drawdown of surface water pCO2 and net sinks for
atmospheric CO2. This appears to be a consequence of effects on pCO2

of mixing of river and ocean water, as well as the action of a strong
biological uptake stimulated by the input of river-borne nutrients.
Examples of some of the large rivers dominating the different con-
tinental margins include the Amazon (Cooley et al., 2007; Kortzinger,
2003; Ternon et al., 2000) in the western tropical North Atlantic Ocean,
Changjiang in the East China Sea (Bai et al., 2015; Shim et al., 2007;
Tseng et al., 2014; Tsunogai et al., 1999; Zhai and Dai, 2009), Pearl in
South China Sea (Cai et al., 2004; Guo et al., 2008; Guo et al., 2009),
and the Mississippi-Atchafalaya river system (Cai, 2003; Cai and
Lohrenz, 2010; Guo et al., 2012; Huang et al., 2015a) in the northern
Gulf of Mexico, to name a few.

Here, we focus on the Mississippi and Atchafalaya River plume and
surrounding coastal waters in the northern Gulf of Mexico. The
Mississippi and Atchafalaya River System has been ranked as the se-
venth largest freshwater discharge system in the world (Milliman and
Meade, 1983). Previous studies in this region have shown large cross-
shelf gradients in pCO2 with the inner shelf being a moderate seasonal
sink (Cai, 2003; Huang et al., 2015a; Lohrenz and Cai, 2006; Lohrenz
et al., 2010; Xue et al., 2016) despite high fluvial inputs of carbon (Ren
et al., 2016; Ren et al., 2015; Tian et al., 2015). Modeling and ship-
based observations also provide evidence for a distinct seasonal varia-
tion of air-sea CO2 fluxes near the Mississippi River delta (Huang et al.,
2015a; Lohrenz et al., 2010; Xue et al., 2016). Despite a growing body
of work in this region, a recent synthesis of coastal ocean carbon fluxes
in the region (Robbins et al., 2014) highlighted the need for additional

data to adequately characterize seasonal and annual carbon fluxes in
the Gulf of Mexico, as well as underlying spatial patterns. Over the last
several years, we have conducted comprehensive field measurements of
the carbon system properties (see Table 1 in Huang et al., 2015a) in the
northern Gulf of Mexico. Yet, this dataset still gives an incomplete
picture of the spatial and seasonal variability in CO2 distributions and
fluxes for the northern Gulf of Mexico. Recent modeling approaches
have provided an independent assessment, validated by in situ ob-
servations, of the dynamics of carbon in the northern Gulf and the as-
sociated seasonal patterns (Xue et al., 2016). Here, we provide another
independent analysis of seasonal and spatial patterns in both pCO2 and
air-sea flux of CO2 based on satellite imagery and compare our results to
the in situ observations and modeled findings. Our objectives were: i) to
provide an assessment of satellite-based approaches for characterizing
the spatial and temporal variability of the surface ocean pCO2 and sea-
air CO2 flux for the northern Gulf of Mexico, and ii) to investigate the
seasonal CO2 dynamics across the continental margin and elucidate the
interannual variations and possible environmental drivers.

2. Materials and methods

2.1. Field observations

Data for this study were obtained during a series of cruises con-
ducted in the northern Gulf of Mexico (Fig. 1) from 2006 to 2010. These
included four cruises on the U.S. Environmental Protection Agency
Ocean Survey Vessel Bold during 6–11 June 2006, 6–11 September
2006, 2–8 May 2007, and 18–24 August 2007, focusing largely on the
area of recurrent hypoxia in the northern Gulf of Mexico (Guo et al.,
2012). Additional shelf-wide cruises were conducted on the R/V Cape
Hatteras 8–20 January 2009, 19 April–1 May 2009, 18–30 July 2009,
and 10–22 March 2010 and on the R/V Hugh G. Sharp 28 October–9
November 2009. These cruises were selected because they covered a
large portion of the study area encompassing inner to outer shelf water
mass regimes and were representative of different seasonal and river
discharge conditions. Underway determinations of sea surface pCO2

were made by directing flow from the ship's flow-through to a shower
head equilibrator plus infrared detector system as previously described
(Huang et al., 2015a; Pierrot et al., 2009). Ship-based observations of
sea surface salinity (SSS) and temperature (SST) were measured using a
Seabird SBE-45 flow-through thermosalinograph.

2.2. Satellite ocean color estimation of pCO2

Previously, we have used principal component analysis and multiple
regressions (Lohrenz and Cai, 2006; Lohrenz et al., 2010) to develop
empirical relationships between surface ocean pCO2 and SST, salinity,
and chlorophyll. We then used satellite-retrieved Moderate Resolution
Imaging Spectroradiometer (MODIS) Aqua products as proxies of these
variables to estimate the regional distributions of pCO2. However, to
apply this approach to satellite data requires the intermediate step of
retrieving satellite estimates of the predictor variables, SST, salinity and
chlorophyll, and using these retrieved estimates in the empirical algo-
rithm. This approach has the potential to introduce additional un-
certainty associated with the uncertainties in the retrieved products.

Table 1
Model results for different variable combinations (PE = prediction error in μatm,
MB =mean bias in μatm, MR =mean ratio, unitless).

Variable combinations PE r2 MB MR

chlor_a, Kd_531_lee, sat_sst 30.8 0.832 1.411 1.010
chlor_a, adg_443_gsm, sat_sst 31.7 0.827 −0.526 1.004
chlor_a, adg_443_qaa, sat_sst 38.6 0.806 −0.894 1.004
nflh, adg_443_gsm, sat_sst 32.6 0.827 −0.726 1.002
nflh, Kd_531_lee, sat_sst 34.6 0.790 −0.569 1.004
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Here, we used regression tree analysis to directly relate surface ocean
pCO2 to satellite-retrieved products, thus avoiding the intermediate
step. The regression tree is a machine-learning algorithm that splits the
data into multiple groups based on rank ordering so as to maximize
homogeneity of the resulting groups (De'ath and Fabricius, 2000).

Image data were acquired from the NASA Ocean Biology Distributed
Active Archive Center (OB.DAAC) at Goddard Space Flight Center.
Level 0 files were processed to quasi-250 m resolution Level 2 products
using the SeaDAS data analysis system version 7.3.3 (Baith et al., 2001).
Products included chlorophyll a (chlor_a), normalized fluorescence line
height (nflh), detrital and dissolved absorption at 443 nm (adg_443_gsm
or adg_443_qaa), diffuse attenuation coefficient at 531 nm (Kd_531_lee),
and sea surface temperature (sat_sst). The chlor_a product as im-
plemented in SeaDAS uses a combination of the standard band ratio
algorithm for MODIS (OC3M) and the Hu et al. (2012) Color Index (CI)
chlorophyll a algorithm. The SeaDAS algorithm differs from Hu et al.
(2012) in that the transition between CI and OC3M occurs for the range
0.15 < CI-derived chlorophyll < 0.2 mg m−3. The nflh product is a
chlorophyll fluorescence index derived as the difference between nor-
malized water leaving radiance at 678 nm and the interpolated baseline
between the two adjacent wavebands (Behrenfeld et al., 2009). The
adg_443_gsm product was derived using the Garver-Siegel-Maritorena
semi-analytical algorithm (Maritorena et al., 2002) and the ad-
g_443_qaa product was derived using the Lee et al. (2002) quasi-ana-
lytical algorithm (version 6). The Kd_531_lee product was derived using
the Lee et al. (2005) algorithm. To ensure a high degree of quality,
pixels were excluded if they were associated with the following quality
control flags as per Chen et al. (2016): atmospheric correction failure,
land, sun glint, high radiance, large sensor viewing angle (> 60°), stray
light, cloud/ice, high solar zenith angle, low water-leaving radiance
(low nLw_555), questionable navigation, chlor_a > 64 or< 0.01
mg m−3, suspicious atmospheric correction, dark pixel (scan line error)
and navigation failure. Minimum allowable quality level for sat_sst was
set to 1 (zero being the highest quality and 2 being the default setting).

Matchups between satellite observations and ship-based underway
measurements of pCO2 were retrieved for 3 × 3 pixel windows co-lo-
cated with observations made within± 6 h of image acquisition. Level
2 products were retrieved from these files for the locations corre-
sponding to the underway pCO2 survey. Values of pCO2 > 1200 μatm
were excluded as these corresponded to a very limited set of data within
or near the mouth of the Mississippi River. Data ranges for the training
dataset were 0.0087–4.94 m−1 (adg_443_gsm), 0.052–1.81 m−1

(Kd_531_lee), 11.7–31.8 °C (sat_sst), 0.040–51.1 mg m−3 (chlor_a), and
nflh (0.0011–3.97). For those variables for which ship-based measure-
ments acquired within± 6 h of the satellite overpass were available,
we found reasonable agreement with the satellite-derived products for
the corresponding 3 × 3 pixel array centered at the sampling location
(Fig. S1). The regression tree function in MATLAB® vR2016b software
(fitrtree) was applied to develop the empirical relationship between
ship-based pCO2 observations and the satellite products (chlor_a or nflh,
adg_443_gsm or adg_443_qaa or Kd_531_lee, and sat_sst). With the ex-
ception of sat_sst, the data were natural log-transformed to normalize
their distributions prior to use in the analysis. A bootstrap approach was
used whereby the data were randomly subsampled such that half the
data were used as a “training” dataset to derive the algorithm and the
other half used to evaluate algorithm performance by comparing the
estimated values of pCO2 for the test dataset to the corresponding ob-
served values. A “deep” regression tree was developed to account for
the complexity of the large dataset. The minimum “parent size” or
smallest size for the number of branch node observations was 5. To
reduce “overfitting”, the resulting regression tree was “pruned” using
the “prune” MATLAB® function to produce a less complex tree without
substantially compromising performance. To evaluate model un-
certainty, a cross-validation approach was used by randomly dividing
the training data into ten subsets and training ten new trees, each one
on nine parts of the data. The predictive accuracy of each new tree on
the data not included in the training set was then examined to de-
termine the prediction error (PE). The lowest PE and highest r2 were
achieved using the combination of chlor_a, Kd_531_lee, and sat_sst
(Table 1). Comparable performance was achieved using the
adg_443_gsm product instead of the Kd_531_lee product. Other variable
combinations that were evaluated exhibited lower r2 and higher pre-
diction errors (Table 1). We chose to use the chlor_a, adg_443_gsm, and
sat_sst product combination in all subsequent analyses as these vari-
ables had clear relationships to either distinct biogeochemical con-
stituents in the case of chlor_a and adg_443_gsm or a key physical
property in the case of sat_sst (Fig. S1). A detailed listing of the re-
gression tree source code along with a copy of the MATLAB® tree file is
given in supplementary material (Table S1). Information about the
variable means and ranges for each region for the matchup dataset used
to develop the model is given in Table S2.

Regarding the issue of collinearity (correlations among input vari-
ables), the ln(chlor_a) and ln(adg_443_gsm) variables were correlated
(r > 0.9). Because the regression tree segments the data into smaller
subsets and because we are limiting the use of the algorithm to a geo-
graphic region and environmental range for which the algorithm was
trained, correlations among variables should be less of a concern (e.g.,
Dormann et al., 2013). However, to further examine effects of colli-
nearity, we conducted a separate analysis using orthogonal component
variables derived from principal component analysis (PCA) of the input
variables. We also examined the performance of the algorithm trained
using standard resolution (1.1 km) rather than the quasi-250 m re-
solution satellite products (see comparisons in Results).

The regression tree algorithm was applied to daily imagery for each
cruise to derive estimates of pCO2 and results were compared to the
ship-based observations. Images of satellite products (chlor_a,
adg_443_gsm, sat_sst) were generated by processing the daily L0 MODIS
Aqua imagery through Level 2 (L2) to the 1.1 km resolution Level 3 (L3)
daily products. Because performance of the algorithm was unstable for
input data falling outside the range of the training dataset, we held

Fig. 1. The study region in the northern Gulf of Mexico illustrating the bathymetry (upper
panel) and representative cruise tracks for the 2006–2007 (magenta line) and 2009–2010
(yellow line) cruises overlaid on a true color MODIS Aqua image from 14 April 2009.
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values of adg_443_gsm (hereafter adg_443) and chlor_a to minimums of
0.05 m−1 and 0.04 mg m−3, respectively. Maximum values of sat_sst
were held to 32 °C. Values of adg_443 > 5 m−1, chlor_a > 50
mg m−3, and sat_sst < 11 °C were omitted from the analysis. Highest
algorithm-derived values of pCO2 were capped at 600 μatm as this
encompassed the majority of ship-based observations (Fig. S2). This
also eliminated instances at a small number of locations for which the
regression tree improperly assigned anomalously high values of pCO2,
which could have a disproportionate impact on computed fluxes. We
found that it was nevertheless necessary to retain values of pCO2 up to
1200 μatm in the training dataset to ensure that the upper range of the
ship-based observations were properly represented in the satellite-de-
rived results. Values of ship-based observations of pCO2 were compared
to the mean pCO2 value of the image for the corresponding 3 × 3 pixel
array centered at the location of the ship-based sample acquired
within± 6 h of the satellite overpass. Data were binned by salinity in
unit increments of 2 for comparison.

A time-series of pCO2 imagery was developed by generating pro-
ducts for the period from 2006 to 2010 and applying the satellite em-
pirical algorithm to derive pCO2. The daily L1A MODIS Aqua imagery
were processed through L2 to L3 products for chlor_a, adg_443, and
sat_sst at 1.1 km nominal resolution, and the pCO2 algorithm was ap-
plied to the L3 mapped products. The daily pCO2 products were aver-
aged over 8-day intervals to generate a time-series. Comparisons were
made for means for inner shelf (< 45 m), shelf (< 200 m), and open
Gulf waters to independent data for the same regions and time periods
from the Surface Ocean Carbon Atlas (SOCAT) (Bakker et al., 2016),
excluding that associated with the training dataset. We also compared
the satellite time-series to modeled simulations of pCO2 from Xue et al.
(2016).

2.3. Air-sea flux of carbon dioxide

Satellite-derived regional assessments of sea surface pCO2 were used
in conjunction with estimates of wind fields and atmospheric pCO2 to
produce regional-scale estimates of air-sea fluxes. Following convention
(Huang et al., 2015a), air-sea flux of carbon dioxide, FCO2

, can be esti-
mated as:

= −F k K pCO pCO[ ]CO sw air0 2( ) 2( )2 (1)

where k (cm h−1) is the gas transfer velocity (piston velocity) of CO2,
K0 (mol L−1 atm−1) is the solubility coefficient of CO2 at the in situ
temperature and salinity (Weiss, 1974), and pCO2(sw) and pCO2(air)

(μatm) are the water-saturated partial pressures of CO2 in seawater and
air, respectively. Satellite estimates of salinity were made using an
empirical relationship between adg_443 and salinity (Fig. S3). Positive
values of FCO2 indicate a transfer of CO2 from the water to the atmo-
sphere. For flux calculations, an air mole fraction of CO2 (xCO2) for the
entire Gulf of Mexico was estimated from observations acquired by the

Atmospheric Infrared Sounder (AIRS) following the procedures de-
scribed in Xue et al. (2016). Values of pCO2(air) were then determined as
follows:

= −pCO xCO P P[ ],air air baro sw2( ) 2( ) (2)

where Pbaro is the climatological monthly mean barometric pressure at
sea surface from the NCEP Reanalysis data (NCEP Reanalysis Data,
2017) and Psw is the surface seawater vapor pressure at sea surface
temperature and salinity (Weiss and Price, 1980). The gas transfer ve-
locities were estimated for each 8-day period following the method of
Wanninkhof (2014). Satellite wind data (Cross-Calibrated Multi-Plat-
form Ocean Surface Wind Vector L3.0 6 h, 0.25° resolution) were ac-
quired from the NASA Physical Oceanography Distributed Active Ar-
chive (Atlas et al., 2011) and were interpolated to the resolution of the
L3 imagery to derive gas transfer velocities for air-sea flux calculations.
Representative vector maps of satellite-derived wind speed during each
cruise are given in Fig. S4.

3. Results

3.1. River discharge patterns

River discharge data (Fig. 2) were acquired from the U.S. Army
Corps of Engineers for the Tarbert Landing discharge site (Gage ID
01100) located at approximately river mile 306.3. This site was chosen
as it is located below the Old River Control structure, which diverts
water to the Atchafalaya River such that of the flow coming from the
entire Mississippi-Atchafalaya basin, the fractions of discharge for the
Mississippi and Atchafalaya rivers are 70% and 30% respectively
(Goolsby et al., 1999). As there are no other major locks or dams on the
river below Tarbert Landing, the discharge at this site is considered to
be representative of that exiting through the Belize (or bird-foot) delta
(Fig. 2). Additional discharge data for the Atchafalaya River were ob-
tained from the Simmesport (Gage ID 03045) station (river mile 4.9).
Maximum discharge generally occurs during the late winter or spring.
Compared to the 16 year (1995–2010) annual average discharge
(14.7 × 103 m3 s−1), 2006 was a below average flow year (9.78), 2007
was close to the average (12.9), and 2008–2010 (18.2, 18.3, 16.2) were
above average flow years.

3.2. Satellite-derived estimation of pCO2

The regression tree algorithm for estimation of pCO2 from satellite
observations had a resubstitution error of 9.6 μatm and a prediction
error (PE) of 31.7 μatm. The resubstitution error was the difference
between the response training data (i.e., the observed value of pCO2 for
the input data) and the prediction the tree makes for the corresponding
input data. The PE is that determined by the cross-validation approach
described previously and represents the error associated with estimates

Fig. 2. Mississippi River discharge during the
study period. The dark solid line is the daily river
discharge as determined at the Tarbert Landing,
MS discharge site (Gage ID 01100) located at
approximately river mile 306.3. The dashed line
represents the 5-day average over the period
from 1995 to 2010. The vertical gray bars in-
dicate cruise periods. Discharge data provided
courtesy of the Army Corps of Engineers.
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of pCO2 for new data (data not used in training). A further evaluation of
algorithm performance was made by comparing the pCO2 estimated
from the satellite products using the regression tree algorithm with the
test dataset (i.e., the data randomly selected and excluded from training
set) with the observed pCO2. This relationship (Fig. 3) yielded an ad-
justed r2 of 0.827, a root mean squared error (RMSE) of 28.8 μatm, and
a mean absolute error (MABE) of 12.3 μatm. The mean bias (MB) for
this relationship was −0.526 μatm and mean ratio (MR) was 1.004, an
outcome that demonstrates that the regression tree approach resulted in
relatively low systematic bias. Omission of any one of the input vari-
ables resulted in a lower r2 and higher PE (Table 2) with the largest
effect due to omission of sat_sst. Effects on r2 and PE due to omission of
either chlor_a or adg_443_gsm resulted in a similar degradation in
performance.

Algorithm stability was evaluated by introducing random variability
to each of the input variables comparable to expected uncertainties in
the satellite products, using a +20% range in either chlor_a or adg_443,
or a +1 °C difference in sat_sst (Table 3). The model appeared to be
most sensitive to variability in sat_sst, which resulted in the highest PE
(46.8 μatm). Introducing variability in either chlor_a or adg_443_gsm
resulted in a slightly lower r2 and higher PE, but to a lesser degree than
was seen for sat_sst.

The regression tree algorithm was applied to composite MODIS
Aqua L3 imagery to generate monthly maps of pCO2 corresponding to
each cruise period (Fig. 4). The pCO2 images were characterized by

predominantly lower values in the shelf region and higher values off-
shore. Low values of pCO2 were especially evident during spring as
exemplified by the May 2007 and March 2010 images (Fig. 4). Values in
offshore waters were higher particularly during summer months, pre-
sumably related to temperature effects on solubility. Monthly compo-
site images of chlor_a (Fig. S5), adg_443_gsm (Fig. S6), and sat_sst (Fig.
S7) were provided for comparison in supplementary material. High
values of chlor_a extending offshore can be seen in the Mar 2010
composite (Fig. S5) and relatively high temperatures in August 2007
and July 2009 (Fig. S7).

Match-ups between satellite and in situ pCO2 binned by salinity
range showed general consistency in observed versus satellite-derived
values (Fig. 5). The pattern of variation in pCO2 was characterized by
values close to atmospheric levels at high salinities, lower values in the
mid-salinity regions, and increases at low salinities. While the trends in
satellite-derived and ship-based observations of pCO2 were generally
consistent, there were some differences, particularly at lower salinities.
We noted that the algorithm also tended to underestimate pCO2 at very
high salinities for the September 2006 and July 2009 datasets (Fig. 5).
Despite these differences, the satellite-derived pCO2 exhibited trends
that were generally consistent with the ship-based measurements.

A seasonal cycle was evident in the 8-day composite time-series of
pCO2 (Fig. 6), characterized by higher values in summer months and
lower during spring and winter. Low or intermediate values of pCO2

were observed during fall. Values of pCO2 for open Gulf waters ranged
from a high of 426 μatm in August 2010 to 342 μatm in January 2010.
The amplitudes of the seasonal variations were larger for the shelf
(< 200 m) and inner shelf (< 45 m) regions. For shelf waters, the
highest pCO2 was observed during July 2006 (504 μatm) and lowest
values (271 μatm) in March 2010. The highest pCO2 for inner shelf
waters (530 μatm) was also during July 2006 and lowest values
(252 μatm) in March 2010. Levels of pCO2 were below atmospheric
levels during much of the year with the exception of summer months
when surface water pCO2 values exceeded atmospheric levels. Satellite-
estimated pCO2 exhibited similar patterns in temporal variation to that
of the ship-based observations, including observations not used in the
development of the algorithm that were acquired through the SOCAT
database. The seasonal temporal pattern in the satellite times-series also
tracked that of the modeled pCO2 time series from Xue et al. (2016).
However, the model simulations were characterized by a larger sea-
sonal amplitude particularly for shelf waters. The model-simulated
pCO2 tended towards higher values in late spring, summer, and early
fall. Satellite estimated pCO2 also tended to exhibit more short-term
variability, particularly evident as episodic peaks during summer
months.

Results for pCO2 output for the PCA approach were evaluated for
comparison. The PCA-modified version of the algorithm had a similar r2

of 0.826, but a slightly higher prediction error of 35.3 μatm pCO2. The
PCA approach underestimated in some instances the average pCO2

values for shelf and inner shelf waters (cf. Figs. 6 and S8). Therefore, we
chose not to use PCA given that it did not substantially improve the
performance of the algorithm. Similarly, we also compared the algo-
rithm trained using the 1.1 km resolution satellite products. Although
the resulting regression tree had a relatively high r2 (0.941) and low
prediction error (22.3 μatm), it did not perform as well in representing
the full extent of temporal variability in signals (cf. Fig. 6 and Fig. S9)
and was therefore not used (see Discussion).

3.3. Air-sea flux of CO2

The pattern of seasonal variation in air-sea flux of CO2 (Fig. 7)
paralleled that of pCO2 with more negative (net ocean uptake) fluxes
during winter and spring, positive (net ocean emission) fluxes in
summer months, and with fall being a period of transition (Table 4).
Values of air-sea flux of CO2 for open Gulf (> 200 m) waters ranged
from a positive (sea-to-air) flux of 3.1 mmol C m−2 d−1 in Jul 2006 to a

Fig. 3. Estimates of pCO2 (μatm) from the regression tree empirical algorithm resulted in
strong correlations between observed and predicted pCO2. Value of the adjusted r2 for the
relationship was 0.827 (N = 5149). The prediction error for the regression tree was
31.7 μatm. Substitution error was 9.6 μatm. The black line represents the 1:1 relationship.

Table 2
Model results for selective omission of input variables (abbreviations as in Table 1).

Variable omitted PE r2 MB MR

None 31.7 0.827 −0.526 1.004
chlor_a 36.7 0.784 −1.212 1.003
adg_443_gsm 37.9 0.748 0.006 1.008
sat_sst 56.1 0.473 0.852 1.020

Table 3
Model sensitivity to random variation in input variables (abbreviations as in Table 1).

Variable Effect PE r2 MB MR

None N/A 31.7 0.827 −0.526 1.004
chlor_a ± 20% 36.5 0.777 0.134 1.007
adg_443_gsm ±20% 39.8 0.764 0.739 1.008
sat_sst ± 1 °C 46.8 0.708 −0.294 1.007
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negative of −9.7 mmol C m−2 d−1 in Mar 2010. As in the case of
pCO2, the amplitudes of the seasonal variations were larger for the shelf
(< 200 m) region. For shelf waters, the highest positive flux was ob-
served during Jul 2006 (10.4 mmol C m−2 d−1) and lowest negative
flux (−30.6 mmol C m−2 d−1) in Mar 2010. Inner shelf (< 45 m)
fluxes were generally more negative that outer shelf (45–200 m) fluxes
(Table 4). The satellite-derived estimates of air-sea CO2 flux were
generally in good agreement with the ship-based estimates by Huang
et al. (2015a) (circle symbols in Fig. 7).

The seasonal pattern of air-sea flux of CO2 was out of phase with
both the combined river discharge and dissolved inorganic nitrogen
(DIN) loading from the Mississippi and Atchafalaya rivers (bottom
panel in Fig. 7). River discharge and DIN loading generally peaked in
spring, prior to the summer period of positive net sea to air flux of CO2

(Fig. 7). The peak value of DIN loading (4.18 × 106 kg N d−1) occurred
in both Apr 2008 and May 2009, while the lowest
(0.254 × 106 kg N d−1) was observed in Aug 2006. The peak fluxes in
DIN coincided with maxima in river discharge during those years
(Fig. 7).

We sought to examine whether there were relationships between
DIN loading and river discharge with other variables on seasonal time
scales. Cross-correlation analyses did reveal significant positive corre-
lations in the relationship of DIN loading and river discharge to satellite
chlor_a, adg_443, sat_sst, pCO2, and CO2 flux (Table 5); highest corre-
lations were observed for time lags between the satellite-derived time-
series and either DIN loading or river discharge of 0 to 120 days
(Table 5). Shelf and inner shelf chlor_a and adg_443 generally exhibited
small positive lags (0 to 24 days) relative to river inputs. Lags relative to
shelf pCO2 and CO2 flux were longer, ranging from 72 to 120 days.

Relatively long lags were also observed in the relationship of sat_sst to
DIN loading and river discharge (96 to 120 days). Open Gulf chlor_a
also exhibited relatively long lags in relationship to DIN loading
(112 days), but a zero lag relative to river discharge.

Average annual fluxes of CO2 (Table 6) differed significantly among
the different regions based on one-way analysis of variance (ANOVA: F
(2,687) = 67.5, p < 0.0001). Post hoc comparisons using the Tukey
HSD test indicated that fluxes were progressively more negative
(greater uptake by seawater) going from open Gulf to shelf to inner
shelf (Table S3). Significant interannual variations of CO2 fluxes within
regions were also evident, as supported by ANOVA (open Gulf: F
(4,225) = 4.36, p = 0.0021; shelf: F(4,225) = 3.08, p= 0.017; inner
shelf: F(4,225) = 2.84, p = 0.025; total: F(4,225) = 3.53,
p = 0.0081). For open Gulf waters, post hoc comparisons using the
Tukey HSD test indicated that fluxes during 2010 were more negative
than observed in both 2006 and 2007 (Table S4). For shelf and inner
shelf waters, fluxes during 2008 were more negative than during 2007,
and for the combined total fluxes for the entire study region, fluxes
during both 2008 and 2010 were more negative than during 2007
(Table S4). Annual average DIN loadings (Table 6) also differed be-
tween years (ANOVA: F(4,225) = 7.57, p < 0.00001), with sig-
nificantly lower loading in 2006 as compared to 2008, 2009 and 2010
(Table S5).

Consistent with the findings that annual CO2 fluxes were more ne-
gative and DIN loading higher during 2010, we noted previously that
the largest magnitude negative CO2 flux was in March 2010 (indicated
by arrow in Fig. 7). A large expanse of relatively low pCO2 over the
shelf was also evident in the imagery for that month (Fig. 4). The March
2010 period was preceded by an unusually high period of discharge

Fig. 4. Monthly composite Images of satellite-derived pCO2 corresponding to each of the cruises for which observational data were acquired. Black pixels in the images correspond to
areas that were masked (e.g., land, clouds), as described in Methods. The dotted lines represent the 45 and 200 m isobaths.
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(Fig. 2) and DIN loading (Fig. 7). Prior studies have documented the
widespread nature of the river plume during that time frame (Huang
et al., 2013).

Total annual CO2 fluxes for the study area (Fig. 1) were derived for
each of the subregions (Table 7), including open Gulf (> 200 m), shelf
(< 200 m), inner shelf (< 45 m) and outer shelf (45–200 m). The es-
timated areas of the subregions are given in Table S6. Total annual Gulf
CO2 fluxes ranged from −1.0 to −2.3 Tg C y−1, while shelf fluxes
ranged −2.0 to −3.6 Tg C y−1. Inner shelf fluxes accounted for the
majority of the total annual shelf CO2 flux, and in most years accounted
for more than half of the total CO2 flux for the region. The overall mean
total annual flux for the region and period of study was
−4.3 ± 1.1 Tg C y−1.

3.4. Uncertainties in air-sea flux of CO2

The errors presented thus far such as in Tables 4 and 6 correspond to
the variance associated with region and temporal mean values. Un-
certainties in air-sea fluxes at a given location and time can be esti-
mated through systematic assessment of sources of error in the terms
used in Eq. (1) to compute the fluxes. Uncertainty in the coefficient of
gas transfer, k, was assumed to be 20% as given in Wanninkhof (2014).
Uncertainty in the solubility coefficient, Ko, for the expected un-
certainties in satellite-derived sea surface temperatures (± 1 °C) and
salinity (± 5) were determined to be< 4%. The other sources of un-
certainty are due to the air and seawater estimates of pCO2. We as-
sumed an air pCO2 uncertainty of 6 μatm, following the precedent of
Huang et al. (2015a). For seawater pCO2, we used the PE of 31.7 μatm
as estimated for the full regression tree algorithm. Through propagation

of errors, we estimate the relative uncertainty in air-sea flux to be the
following:
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The mean and standard deviation of uncertainty estimates for dif-
ferent flux values (Fig. 8) ranged from 1.9 ± 1.0 mmol C m−2 d−1 at
low fluxes (|FCO2

| ≤ 2.0) to 21.2 ± 2.8 mmol C m−2 d−1 at high ne-
gative fluxes (FCO2

~ − 80 mmol C m−2 d−1) or
12.2 ± 6.0 mmol C m−2 d−1 at high positive fluxes
(FCO2

~ 40 mmol C m−2 d−1). Expressed as percent error, mean un-
certainties were> 100% for flux absolute values of< 2.0
mmol C m−2 d−1 and decreased to< 50% for flux absolute values
exceeding 10 mmol C m−2 d−1. These uncertainties, while relatively
high for low fluxes, were comparable to or less than the spatial varia-
bility encountered in the different regions, as shown by the standard
deviation ranges for the time-series of air-sea CO2 fluxes in Fig. 7. For
comparison, flux uncertainties reported by Huang et al. (2015a) for in
situ data ranged from± 0.05 to± 2.98 mmol C m−2 d−1 (overall
mean of 1.15 mmol C m−2 d−1).

Fig. 5. Comparison between satellite-derived pCO2 (open circles) and ship-based observations (triangles) along the salinity gradient for the different cruise periods. Salinity data were
those acquired from the underway measurements and were binned over increments of two salinity units. The horizontal gray line represents the atmospheric pCO2 value. Symbol error
bars are plus or minus one standard deviation of the mean for each salinity bin.
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Fig. 6. Time-series of surface water pCO2 derived
from a satellite algorithm (solid black line) trained
using ship-based observations (blue open symbols)
and compared to independent observations for the
same region from the SOCAT database (green sym-
bols), and to the SABGOM-ROMS model (magenta
line). Shaded areas are plus or minus one standard
deviation around the mean satellite-derived pCO2.
Symbol error bars also represent plus or minus one
standard deviation around the mean. The dashed
line represents the atmospheric pCO2.

Fig. 7. Estimates of sea-to-air flux of CO2

were made using the satellite-derived esti-
mates of pCO2 and using the wind para-
meterization of Wanninkhof (2014). The
shaded areas in the top two panels represent
plus or minus one standard deviation
around the mean. The circle symbols are
results from Huang et al. (2015a, 2015b) for
comparison (shelf values shown are the
mean of their inner, middle and outer shelf
estimates). The vertical black arrow in-
dicates the period of strong uptake of CO2

during March 2010. Combined river dis-
charge and dissolved inorganic nitrogen
(DIN) loading from the Mississippi and
Atchafalaya rivers are provided in the
bottom panel for comparison. Nutrient data
were provided courtesy of United States
Geological Survey from the St. Francisville
(water quality station number 07373420)
and Melville (water quality station number
07381495) NASQAN sites. DIN loading was
estimated from the combination of nutrient
concentrations and river discharge as de-
scribed in Lohrenz et al. (2013).
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4. Discussion

4.1. Satellite estimation of pCO2 and air-sea flux of CO2

Satellite approaches to estimate pCO2 and air-sea flux of CO2 have
been increasingly used and provide a considerable advantage over ex-
clusively ship-based or buoy observations in enabling extrapolation

over wider spatial and temporal scales. The present study provides an
illustration of the utility of satellite-derived time-series in both pCO2

and air-sea flux of CO2 for delineating patterns in relationship to sea-
sonal forcing and other environmental drivers such as river discharge.
The results also provide examples of how satellite time-series enable the
elucidation of episodic and spatially-localized events, which can be
difficult to detect or fully characterize with ship-based observations.
While a number of other studies have applied satellite algorithms for
estimation of pCO2 and air-sea flux of CO2 in coastal margins (Bai et al.,
2015; Chen et al., 2016; Hales et al., 2012; Lohrenz and Cai, 2006;
Lohrenz et al., 2010; Nakaoka et al., 2013; Signorini et al., 2013; Zhu
et al., 2009), this is the first such assessment over a multi-year period
for the northern Gulf of Mexico. Chen et al. (2016) used a multiple
nonlinear regression approach to derive estimates of pCO2 from satellite
observations of chlorophyll, diffuse attenuation, and SST on the west
Florida Shelf. They obtained an RMSE of ~11 μatm. In addition to their
analysis of the west Florida Shelf region, they conducted a preliminary
analysis of surface pCO2 in the northern Gulf of Mexico using their
multivariate approach, although they did not estimate air-sea flux of
CO2. They obtained a slightly larger RMSE (44.1 μatm as compared to
our PE of 31.7 μatm and RMSE of 28.8 μatm). Signorini et al. (2013)
used a combination of multiple linear regression and spatial binning to
develop satellite estimates of pCO2 for different regions on the eastern
U.S. continental shelf. Values of RMSE ranged from 22.4–36.9 μatm
pCO2. A combination of self-organizing maps and a nonlinear semi-
empirical model was used to derive estimates of pCO2 on the North
American west coast (Hales et al., 2012), which yielded a numerically
averaged RMSE for all regions of 57.8 μatm and an area-weighted
average of 24.5 μatm. We contend that the regression tree algorithm
used in this present study performed well – comparable to or better
than other methods, even in the highly complex and heterogeneous
northern Gulf of Mexico region. We acknowledge that the complex
optical environment in river-influenced northern Gulf of Mexico poses a
challenge for the application of satellite algorithms. We found that the
satellite-derived products for the selected variables (chlor_a,
adg_443_gsm, sat_sst) were generally representative of in situ observa-
tions (Fig. S1), but also note that future work should explore the po-
tential for improved performance of the pCO2 algorithm using other
satellite-derived indices (e.g., Kd_531_lee). An additional topic for fur-
ther study is a consideration of the sensitivity of the algorithm to spatial

Table 4
Mean (± standard deviation) of monthly estimates of air-sea flux of CO2 (mmol C m−2 d−1).

Month Open gulf Shelf Inner shelf Outer shelf Total

1 −4.1 ± 1.8 −9.4 ± 3.5 −10.8 ± 4.2 −7.4 ± 2.7 −5.6 ± 2.2
2 −3.9 ± 1.8 −9.3 ± 3.4 −10.7 ± 4.1 −7.1 ± 2.8 −5.6 ± 2.2
3 −2.7 ± 2.3 −8.0 ± 7.0 −9.4 ± 7.6 −5.9 ± 6.0 −4.3 ± 3.7
4 −1.6 ± 0.8 −5.1 ± 2.5 −6.4 ± 3.0 −3.3 ± 1.9 −2.7 ± 1.2
5 −1.0 ± 0.7 −3.9 ± 3.1 −5.1 ± 3.9 −2.4 ± 1.8 −1.9 ± 1.5
6 −0.4 ± 0.6 −0.9 ± 2.2 −1.0 ± 2.8 −0.8 ± 1.2 −0.6 ± 1.1
7 0.2 ± 1.0 −0.2 ± 3.7 −0.5 ± 4.7 0.0 ± 2.1 0.1 ± 1.8
8 0.5 ± 0.6 −1.1 ± 3.2 −1.7 ± 3.9 −0.2 ± 2.2 0.0 ± 1.3
9 −0.9 ± 1.4 −4.5 ± 5.8 −5.5 ± 6.7 −2.9 ± 4.0 −2.2 ± 3.2
10 −2.1 ± 0.8 −7.4 ± 2.7 −9.2 ± 3.6 −4.7 ± 1.6 −3.7 ± 1.4
11 −2.5 ± 1.3 −8.7 ± 3.3 −10.5 ± 3.9 −5.7 ± 2.6 −4.5 ± 1.9
12 −4.0 ± 2.2 −11.6 ± 4.8 −13.6 ± 5.6 −8.3 ± 3.7 −6.4 ± 2.9

Table 5
Cross-correlation of Mississippi-Atchafalaya river system DIN loading and discharge with
satellite-derived chlorophyll, adg443, sst, pCO2 and CO2 flux. Lags indicate the shift in
timing of DIN loading or river discharge relative to the satellite-derived products corre-
sponding to the maximum correlation.

Variable 1 Variable 2 Region r p Lag (days)

DIN flux chlor_a Open Gulf 0.347 p≪ 0.001 112
DIN flux chlor_a Shelf 0.355 p≪ 0.001 8
DIN flux chlor_a Inner Shelf 0.482 p≪ 0.001 0
DIN flux adg_443_gsm Open Gulf 0.428 p≪ 0.001 24
DIN flux adg_443_gsm Shelf 0.418 p≪ 0.001 0
DIN flux adg_443_gsm Inner Shelf 0.466 p≪ 0.001 0
DIN flux sat_sst Open Gulf 0.676 p≪ 0.001 112
DIN flux sat_sst Shelf 0.693 p≪ 0.001 96
DIN flux sat_sst Inner Shelf 0.701 p≪ 0.001 96
DIN flux pCO2 Open Gulf 0.534 p≪ 0.001 112
DIN flux pCO2 Shelf 0.495 p ≪ 0.001 80
DIN flux pCO2 Inner Shelf 0.501 p≪ 0.001 72
DIN flux CO2 flux Open Gulf 0.501 p≪ 0.001 104
DIN flux CO2 flux Shelf 0.447 p ≪ 0.001 88
DIN flux CO2 flux Inner Shelf 0.450 p≪ 0.001 80
Discharge chlor_a Open Gulf 0.207 0.002 0
Discharge chlor_a Shelf 0.439 p≪ 0.001 24
Discharge chlor_a Inner Shelf 0.542 p≪ 0.001 16
Discharge adg_443_gsm Open Gulf 0.493 p≪ 0.001 24
Discharge adg_443_gsm Shelf 0.485 p≪ 0.001 0
Discharge adg_443_gsm Inner Shelf 0.540 p≪ 0.001 0
Discharge sat_sst Open Gulf 0.445 p≪ 0.001 120
Discharge sat_sst Shelf 0.468 p≪ 0.001 112
Discharge sat_sst Inner Shelf 0.475 p≪ 0.001 112
Discharge pCO2 Open Gulf 0.324 p≪ 0.001 120
Discharge pCO2 Shelf 0.310 p ≪ 0.001 112
Discharge pCO2 Inner Shelf 0.337 p≪ 0.001 72
Discharge CO2 flux Open Gulf 0.311 p < 0.001 104
Discharge CO2 flux Shelf 0.281 p ≪ 0.001 104
Discharge CO2 flux Inner Shelf 0.288 p≪ 0.001 88

Table 6
Mean (± standard deviation) of annual estimates of air-sea flux of CO2 (mol C m−2 y−1) and DIN loading (Tg N y−1).

Year Open gulf Shelf Inner shelf Outer shelf Total DIN loading

2006 −0.5 ± 0.7 −1.8 ± 1.9 −2.2 ± 2.3 −1.1 ± 1.3 −0.9 + 1.1 0.6 + 0.3
2007 −0.4 ± 0.5 −1.5 ± 1.2 −1.9 ± 1.4 −1.0 ± 0.9 −0.8 + 0.7 0.8 + 0.4
2008 −0.8 ± 0.7 −2.7 ± 2.2 −3.3 ± 2.5 −1.9 ± 1.6 −1.4 + 1.2 1.0 + 0.6
2009 −0.7 ± 0.7 −2.1 ± 1.9 −2.5 ± 2.2 −1.4 ± 1.4 −1.1 + 1.1 1.1 + 0.5
2010 −1.0 ± 1.0 −2.5 ± 2.4 −2.9 ± 2.7 −2.0 ± 1.9 −1.5 + 1.4 1.0 + 0.5
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resolution in satellite products used to train the algorithm. As noted
previously, we found that the algorithm trained using the 1.1 km re-
solution data did not perform as well in representing the full extent of
temporal variability observed in pCO2 (cf. Fig. 6 and Fig. S9). We
speculate that this was due to an effective reduction in the number of
satellite matchups with ship-based observations for the reduced re-
solution training dataset. This limited the possible model outcomes for
given combinations of environmental variables and consequently
tended to dampen the range of variability in the model-simulated re-
sults.

Our findings of temporal and spatial variability in air-sea CO2 fluxes
were consistent with those of prior studies based on shipboard ob-
servations (Huang et al., 2015a) and support the view that the Gulf of
Mexico, specifically the region encompassing the river-influenced
northern Gulf of Mexico, is a net sink for atmospheric CO2. Our esti-
mates of annual per unit area CO2 fluxes ranged from −0.8 to −1.5
(annual mean =−1.1 ± 0.3) mol C m−2 y−1 (Table 6), where the
negative sign indicates ocean uptake. This was consistent with the per
unit area CO2 flux of −0.96 ± 3.7 mol C m−2 y−1 given by Huang
et al. (2015a). We derived a much higher total annual CO2 flux for our
study region of −4.3 ± 1.1 Tg C y−1, compared to an estimate of
−1.2 ± 4.4 Tg C y−1 reported by Huang et al. (2015a). However,
their value was based on a much smaller area. Using their area estimate
(74.8 × 103 km2) along with our mean annual per unit area CO2 flux,
we obtained an average annual air-to-sea CO2 flux of
−1.0 ± 0.3 Tg C y−1, similar to the Huang et al. (2015a) value. This
net ocean uptake of carbon in the region is notable in light of the large
fluvial input of ~17 Tg C y−1 bicarbonate carbon (Huang et al., 2015a)
and 8.6 Tg C y−1 total organic carbon (Lohrenz et al., 2013).

Our assessment of the northern Gulf of Mexico air-sea CO2 fluxes
can be compared to findings of other studies that have estimated air-sea
flux of CO2 using satellite-based approaches. Satellite-derived estimates
for the eastern continental U.S. region varied from −2.12 Tg C y−1 in
the Mid-Atlantic Bight to near zero fluxes of 0.007 Tg C y−1 for the
Scotian Shelf (Signorini et al., 2013). Hales et al. (2012) estimated a

much higher ocean uptake of CO2 on the North American west coast of
approximately 14 Tg C y−1, largely attributable to strong upwelling in
that region.

An examination of the pattern of pCO2 distributions along the sali-
nity gradient (Fig. 5) provided insight as to underlying factors con-
trolling spatial patterns. A downward curvilinear shape in the pCO2-
salinity relationship was observed, with lower values at intermediate
salinities and higher values at low salinities corresponding to high
fluvial inputs of dissolved inorganic carbon and total alkalinity, and at
the highest salinities corresponding to the high temperature and low
production open ocean conditions (Guo et al., 2012; Huang et al.,
2015a). The low values of pCO2 at intermediate salinities can be ex-
plained by a strong biological drawdown of CO2 associated with the
high productivity (Guo et al., 2012; Lohrenz et al., 1999; Lohrenz et al.,
2008), particularly during spring and summer months. While trends in
satellite-derived and ship-based estimates of pCO2 along the salinity
gradient were generally comparable, there were some differences, such
as at low salinities during May 2007. The region around the delta is
especially dynamic and spatially heterogeneous (Figs. S5–7) and,
therefore, differences can be expected between ship-based point mea-
surements and satellite observations, especially in the mid- and low
salinity regions. For example, sharp spatial gradients (Huang et al.,
2015a) could lead to intrapixel variability that may have contributed to
observed differences. Differences between satellite-derived and ship-
based estimates of pCO2 were also noted at high salinities in the case of
September 2006 and July 2009 (Fig. 5). These were likely due to a
limited number of satellite matchups with ship-based observations in
the offshore waters, such that the algorithm did not adequately capture
the full range of environmental variability. These examples highlight
the challenges of matching point observations to satellite-observed
signals in a highly dynamic and heterogeneous coastal region. Despite
this, the overall trends in the satellite estimates were consistent with
the ship-based data.

Regions of reduced surface pCO2 were evident in the vicinity of the
river and inner shelf regions in the pCO2 imagery (Fig. 4), and high
values of chlor_a in the shelf region (Fig. S5) was consistent with a
strong biological influence. Offshore distributions of pCO2 were char-
acterized by distinct features in some of the imagery and we speculate
that these may have been, in some cases, influenced by major circula-
tion phenomena such as the Loop Current and its associated eddies and
meanders (Oey et al., 2005). A Loop Current feature could be seen, for
example, in January 2009 and March 2010 composite sat_sst images
(Fig. S7). Offshore extensions of low pCO2 features were present in
some images, for example in July 2009 and March 2010. We ac-
knowledge that data density for in situ measurements of pCO2 was re-
latively low in the deep offshore waters of the Gulf of Mexico (see Fig. 1
for coverage); algorithm performance could be improved with in-
creased spatial and temporal resolution of in situ training data. Huang
et al. (2015a) provided a conceptual model of the pattern of air-sea
exchange of CO2 along the salinity gradient consistent with our find-
ings. Their model is a representation of a river-influenced source of CO2

in the inner shelf at low salinities which transitions to a region of high
productivity and drawdown of CO2 at mid-salinities, while offshore
waters shift towards near neutral status.

Table 7
Mean (± standard deviation) of annual CO2 fluxes for the different subregions within the study area in (Tg C y−1).

Year Open gulf Shelf Inner shelf Outer shelf Total

2006 −1.2 ± 1.6 −2.3 ± 2.5 −2.0 ± 2.0 −0.5 ± 0.5 −3.5 ± 3.0
2007 −1.0 ± 1.0 −2.0 ± 1.6 −1.7 ± 1.3 −0.4 ± 0.4 −3.0 ± 1.9
2008 −1.8 ± 1.6 −3.6 ± 2.9 −3.0 ± 2.3 −0.8 ± 0.7 −5.4 ± 3.3
2009 −1.4 ± 1.6 −2.7 ± 2.5 −2.2 ± 2.0 −0.6 ± 0.6 −4.2 ± 3.0
2010 −2.3 ± 2.2 −3.4 ± 3.1 −2.6 ± 2.4 −0.8 ± 0.8 −5.6 ± 3.8
Overall mean −1.5 ± 0.5 −2.8 ± 0.7 −2.3 ± 0.5 −0.6 ± 0.2 −4.3 ± 1.1

Fig. 8. Mean and standard deviations of uncertainty for 8-day composite air-sea CO2 flux
estimates for the time period 2006–2010.
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4.2. Seasonal variations in pCO2 and air-sea flux of CO2

Seasonal variability evident in time-series of pCO2 (Fig. 6) and air-
sea fluxes of CO2 (Fig. 7, Table 4) reflected a combination of variations
in environmental conditions and associated biological effects, likely to
some extent mediated by river inputs. A similar seasonal pattern was
reported by Huang et al. (2015a), based on shipboard observations
compiled over multiple years. The observed pattern of seasonal varia-
bility was also consistent with that of a coupled physical-biogeochem-
ical model (Xue et al., 2016), results of which are compared in Fig. 6.

The significant relationships of DIN loading and river discharge with
satellite-derived chlor_a, adg_443, pCO2, and air-sea flux of CO2

(Table 5) provided evidence for a significant influence of the river on
the biogeochemistry of the region. Prior studies have demonstrated a
relationship between satellite-derived chlorophyll and river DIN
loading in the vicinity of the river plume (Lohrenz et al., 2013; Lohrenz
et al., 2008), which was consistent with our findings. Similarly, there is
a well-documented relationship between river discharge and colored
dissolved organic matter absorption (related to adg_443) (Del Castillo
and Miller, 2008; Green et al., 2008). The findings of these prior studies
along with the positive correlations with relatively short lags reported
here for chlor_a and adg_443 (Table 5), can be explained by enhanced
biological activity related to nutrient inputs as well as high inputs of
dissolved and detrital organic matter from the river. In contrast to the
short lag observed for shelf and inner shelf chlor_a, there was a long lag
between DIN loading and open Gulf chlor_a of 112 d (Table 5). The
longer lag might be explained by a time delay due to the period of
transit of river water from the point of upriver measurements to Gulf
waters. This was in contrast to a zero lag between river discharge and
open Gulf chlor_a. The correlation between river discharge and open
Gulf chlor_a was quite low, and likely does not reflect a direct re-
lationship.

We also observed positive correlations of DIN loading and river
discharge with pCO2 and CO2 flux, but with a long lag of 72 to 104 days.
This similarly raised the question of whether there was a direct causal
linkage between the river inputs and the higher and more variable
values of pCO2 and more positive CO2 flux for shelf waters in summer
months. The higher pCO2 and more positive air-sea flux of CO2 could in
part be related to decomposition of organic matter, either terrestrial
organic matter supplied by the river or autochthonous organic matter
produced by nutrient-enhanced primary production. It is also reason-
able to surmise that the higher summer temperatures could reinforce
such a seasonal pattern, the higher temperatures both accelerating
decomposition and reducing the solubility of CO2 in surface waters. Xue
et al. (2016) reported a negative correlation between pCO2 and surface
salinity and positive correlation of pCO2 with DIN in shelf waters and
suggested that high turbidity of river waters may have constrained rates
of primary production and that combined with the high inorganic
carbon content of the river could have resulted in increased levels of
pCO2 and positive CO2 flux. Justic et al. (1993) reported a two month
lag between river flow and bottom water hypoxia at a site to the west of
the Mississippi River delta, and attributed this to coupling between
river nutrients, net productivity and delivery of organic matter and its
decomposition in bottom waters. We acknowledge that a causal re-
lationship between river DIN loading and discharge with other vari-
ables can only be inferred from correlations. For example, patterns of
temporal variation, particularly for open Gulf waters, may simply re-
flect a seasonal signal that is not necessarily directly linked to river
inputs. The seasonal variation in temperature could explain the longer
lags in sat_sst (96 to 120 days) relative to river DIN loading and dis-
charge (Table 5), and these lags were similar to that observed for pCO2

and CO2 flux.

4.3. Environmental forcing and inter-annual variations pCO2 and air-sea
CO2 fluxes

Satellite extrapolations of pCO2 allow the examination of the in-
fluence of environmental factors such as the combination of river dis-
charge, wind forcing and mesoscale circulation phenomena. The period
of March 2010 corresponded to an extensive area of low pCO2 in shelf
waters (Fig. 4) and strong ocean uptake of CO2 (Fig. 7). This period was
also associated with anomalously high chlorophyll concentrations (Fig.
S5), low sea surface temperatures (Fig. S7), and strong offshore wind
forcing (Huang et al., 2013). The pattern of river discharge and DIN
loading was also unusually high during the period leading up to March
2010 (Fig. 7, bottom panel). These conditions resulted in a widespread
plume event that was associated with low pCO2 (Huang et al., 2013). In
a separate study, Huang et al. (2015b) examined the period of July
2009, during which strong upwelling favorable winds resulted in an
offshore distribution of river influenced low pCO2 water. This was
contrasted with conditions during August 2007 more representative of
average climatology in which the plume is confined to the inner shelf.
Patterns evident in our monthly composite images of pCO2 for Aug
2007 and Jul 2009 (Fig. 4) were consistent with their findings, in that a
region of relatively low pCO2 could be seen extending well off the delta
region into offshore waters in July 2009 as compared to August 2007.
Higher values of chlor_a were also evident in offshore waters during
July 2009 as compared to August 2007 (Fig. S5). Other studies have
documented through satellite observations and modeling the interac-
tions of the Mississippi River plume with wind forcing, topography, and
shelf-slope circulation (Schiller et al., 2011; Walker et al., 2005). Our
results provide further evidence of the spatially extensive influence of
the river as modified by environmental forcing, and potential impacts
on regional carbon cycling and air-sea exchange.

Interannual variations were evident in air-sea flux of CO2 with more
negative values during the latter years of the study, and this coincided
with higher levels of river DIN loading (Tables 6 and S3). Thus, in
contrast to the lagged positive correlations of CO2 flux with discharge
and DIN loading on a seasonal basis (Table 5), more negative mean
annual CO2 fluxes on a regional basis were associated with higher DIN
loading (Tables 6, S3 and S4). This finding is consistent with that of
prior studies highlighting relationships between river inputs and re-
gional primary production or net community production (Justic et al.,
1993; Lohrenz et al., 1997, 1999, 2008; Xue et al., 2016). These results
demonstrate a need for further study to resolve the linkages between
the extent and temporal variability of river inputs and both seasonal
and annual scale carbon dynamics in this region.

5. Conclusions

The present study provides the first multi-year assessment of pCO2

and air-sea flux of CO2 using satellite-derived environmental data for
the northern Gulf of Mexico, and illustrates the utility of satellite ap-
proaches as a complement to ship-based and buoy observations, al-
lowing coverage over more extended spatial and temporal scales. The
regression tree algorithm used here performed well for the region stu-
died, and should be readily applicable to other regions for which there
are adequate in situ pCO2 observations and other supporting satellite-
derived environmental data. As the availability of in situ data increases,
it is expected that the satellite method described here would be able to
improve in performance. The combined approach of a quality in situ
data set complemented by synoptic satellite coverage may also lead to
improved precision of estimates of carbon exchanges by accounting for
temporal and spatial patterns not accessible through in situ observa-
tions alone. For example, the satellite observations can provide tem-
poral and spatial continuity over time scales beyond that of ship- and
buoy-based measurements and can capture effects of episodic en-
vironmental forcing on carbon processes. While it is acknowledged that
applications of the satellite-derived algorithm beyond the time and
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space domain of the training data set must be interpreted critically, the
satellite approach is nonetheless useful in highlighting features and
regions which may contribute significantly to carbon signals and for
which more observations should be prioritized. Coupled with other
approaches such as semi-mechanistic algorithms (Bai et al., 2015; Hales
et al., 2012) or coupled physical-biogeochemical models (Xue et al.,
2016), it should be possible to considerably advance our ability to
quantify spatial and temporal variations in carbon fluxes and under-
lying drivers of those variations. Our results add to a growing body of
evidence that in the context of a rapidly changing global environment,
natural and anthropogenic changes in movement of water, carbon and
nutrients through terrestrial systems have the potential to dramatically
alter carbon processes in coastal and adjacent ocean environments
(Borges, 2011), particularly in the case of large river-dominated margin
ecosystems.
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