
Marine Pollution Bulletin 163 (2021) 112008

Available online 15 January 2021
0025-326X/© 2021 Elsevier Ltd. All rights reserved.

Ocean acidification interacts with growth light to suppress CO2 acquisition 
efficiency and enhance mitochondrial respiration in a coastal diatom 
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A B S T R A C T   

Diatom responses to ocean acidification have been documented with variable and controversial results. We grew 
the coastal diatom Thalassiosira weissflogii under 410 (LC, pH 8.13) vs 1000 μatm (HC, pH 7.83) pCO2 and at 
different levels of light (80, 140, 220 μmol photons m− 2 s− 1), and found that light level alters physiological 
responses to OA. CO2 concentrating mechanisms (CCMs) were down-regulated in the HC-grown cells across all 
the light levels, as reflected by lowered activity of the periplasmic carbonic anhydrase and decreased photo-
synthetic affinity for CO2 or dissolved inorganic carbon. The specific growth rate was, however, enhanced 
significantly by 9.2% only at the limiting low light level. These results indicate that rather than CO2 “fertiliza-
tion”, the energy saved from down-regulation of CCMs promoted the growth rate of the diatom when light 
availability is low, in parallel with enhanced respiration under OA to cope with the acidic stress by providing 
extra energy.   

1. Introduction 

Diatoms constitute the most abundant group of eukaryotic micro-
algae with about 100000 species, with new species continuing to be 
identified (Heydarizadeh et al., 2014; Bork et al., 2015; Beauger et al., 
2018). They collectively contribute up to 40% of the marine primary 
productivity, equivalent to that of all terrestrial rainforests combined 
(Bowler et al., 2010; Clement et al., 2016; Li et al., 2017). Diatoms are 
distributed in a broad range of environments, including marine, 
brackish and fresh waters. They acclimate or adapt to variety of envi-
ronmental conditions by adjusting their physiological performances 
(Pasquet et al., 2014). 

In general, in seawater availability of dissolved CO2 is low enough to 
kinetically limit photosynthesis due to its much lower diffusion rate in 
water compared with air (Shen et al., 2017). Dissolved CO2 concentra-
tions in seawater are also usually much lower than that required to half- 
saturate the Rubisco-catalyzed carboxylation. To adapt to the low CO2 
marine environments, diatoms have developed CO2 concentration 
mechanisms (CCMs), to increase both the flux of CO2 into the cell and 
the intracellular CO2 concentrations around Rubisco (Gee and Niyogi, 
2017). In phytoplankton, most CCMs facilitate the use of HCO3

− in 
photosynthesis via two processes; namely, active uptake of HCO3

− by 

anion exchange (AE) and/or HCO3
− dehydration at the cell surface by 

external periplasmic carbonic anhydrase (eCA) (Giordano et al., 2005). 
Physiological and molecular lines of evidence support this role of eCA in 
diatom CCMs (Clement et al., 2017; Gee and Niyogi, 2017). The eCA 
activity has been detected in numerous diatom species; increases with 
decreasing CO2 availability (Burkhardt et al., 2001; Hopkinson et al., 
2011); and is rapidly induced when diatom cells are transferred to low 
CO2 medium (Chen and Gao, 2003; Clement et al., 2016). 

With increasing anthropogenic CO2 emissions and its continuous 
dissolution into oceans, the CO2 concentration in surface water is pre-
dicted to reach 800–1000 μatm by the end of 2100 (Gattuso et al., 2015), 
resulting in a concomitant decrease of pH, termed ocean acidification 
(OA) (Tortell et al., 2008; Doney et al., 2009). This raises the question of 
how effects of increased CO2 and decreased pH on phytoplankton 
physiology will relate to projections of future marine primary produc-
tivity. There are numerous works showing that elevated CO2 concen-
tration can stimulate diatom growth and carbon fixation (see the review 
by Gao and Campbell, 2014 and literature therein). In laboratory 
studies, the responses of diatoms to OA are highly variable and species- 
specific (Mackey et al., 2015). For example, the effect of OA on the 
growth of the diatom Thalassiosira pseudonana was sometimes negligible 
(Yang and Gao, 2012; Wu et al., 2014; Shi et al., 2015), or interacted 
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with growth light (Li and Campbell, 2013). In contrast, growth and 
photosynthetic C fixation rates in Phaeodactylum tricornutum were 
enhanced by OA (Wu et al., 2010; Hong et al., 2017). Many studies have 
observed a stimulation, inhibition or neutral effect of OA on growth or 
primary production in diatom-dominated communities under OA 
(Hoppe et al., 2015; Gao et al., 2012a; Young et al., 2015, 2016), leading 
to controversy worth further investigation. An increase in pCO2 may 
result in modest savings in the energy expenditure upon carbon fixation 
(Hopkinson et al., 2011), though short exposures to elevated pCO2 or 
lowered pH showed no significant difference in energy use by the CCMs 
compared to direct use in carbon fixation (Goldman et al., 2017). On the 
other hand, elevated CO2 could increase energy requirements under 
light-stressed condition (Passow and Laws, 2015; Li et al., 2014). The 
diatom Proboscia alata sp. showed increased content of particulate 
organic carbon when grown under elevated pCO2 but only at high light 
levels (Hoogstraten et al., 2012). For the Antarctic diatom Chaetoceros 
brevis, growth remained unaffected by changes in pCO2 levels irre-
spective of changing light conditions (Boelen et al., 2011). Nevertheless, 
under dynamic fluctuating light conditions, elevated pCO2 decreased 
primary production of the diatom C. debilis (Hoppe et al., 2015). 

When phytoplankton cells are moved up and down within upper 
mixing layers, they are exposed to continuously changing light condi-
tions due to changing water depths and diurnal solar changes, which 
alters their photochemical performances (Jin et al., 2013). Excessive or 
insufficient light levels constrain diatom optimal physiological perfor-
mance and primary productivity as well as metabolite composition 
(Barofsky et al., 2009, 2010; Carvalho et al., 2011), though they possess 
an outstanding capacity to tolerate light fluctuations (Brunet and Lav-
aud, 2010). Diatom species distributed in coastal waters are frequently 
exposed changing levels pH due to high biological activities which in-
fluence DIC, and may therefore be pre-adapted to tolerate moderate 
levels of acidic stress (Shi et al., 2009; F. Li et al., 2016). While changing 
levels of both light and CO2 can modulate CCMs in diatoms (Chen and 
Gao, 2003; Raven and Beardall, 2020), physiological performances 
under influences of OA and changing levels of light need to be explored 
in the nearshore diatom Thalassiosira weissflogii to elucidate contrast-
ingly different results about its responses to ocean acidification (Taucher 
et al., 2015; W. Li et al., 2016; Zeng et al., 2019). In this work, we hy-
pothesize that different levels of light and CO2 could interactively 
modulate the physiological responses of Thalassiosira weissflogii, and its 
growth response may differ from that reported previously when grown 
under a single constant light level (Wu et al., 2014) or two light levels 
(Needoba and Harrison, 2004). Our results showed that the OA treat-
ment downregulated the CCMs by lowering activity of periplasmic car-
bonic anhydrase, suppressed non-photochemical quenching, increased 
respiration and, in sum, only significantly enhanced the growth in 
T. weissflogii under light-limiting conditions. 

2. Materials and methods 

2.1. Species and culture condition 

Thalassiosira weissflogii (CCMP 1336) was grown in semi-continuous 
culture using 0.45 μm filtered natural seawater supplemented with Aquil 
nutrients and vitamins (Morel and Rueter, 1979). We diluted the cul-
tures using pre-CO2-equilibrated medium every 24 h, and maintained 
the cell concentrations within a range of 2 × 104 to 6 × 104 cells m− 1 to 
ensure stable seawater carbonate chemistry (Table 1). Two levels of CO2 
concentration, 410 μatm (outdoor ambient air, LC) and 1000 μatm 
(predicted for the end of the century, HC) were achieved in plant growth 
CO2 chambers (Ruihua, Wuhan, China) by mixing pure CO2 with air. 
The incubation light was provided by white LED light (400–750 nm) in 
an incubator (Ruihua, Wuhan, China) and was set up to 3 different 
levels: high (HL, growth-saturating light intensity, 220 μmol photons 
m− 2 s− 1), medium (ML, medium light intensity, 140 μmol photons m− 2 

s− 1) and low light level (LL, 70 μmol photons m− 2 s− 1, growth-limiting 

light level) (Goldman et al., 2017), by covering bottles with neutral 
density filters. The light intensities were measured with a Solar Light 
sensor (PAM2100, USA). Cultures were maintained at 20 ◦C with a day/ 
night cycle of 12L : 12D. Triplicate cultures (500 ml) were exposed to 
each light and pCO2 combination, with a total of 18 independent cul-
tures. All triplicates of the cultures were run in parallel, and each culture 
was shaken at least 3 times per day. 

2.2. Seawater carbonate chemistry 

To assure the stability of the carbonate system in cultures, pH was 
measured prior to and after the daily dilution as well as at the middle of 
the light period using a pH meter (Orion 2 STAR; Thermo Science), 
which was calibrated with standard NBS buffer (Heiden et al., 2018). 
Total alkalinity (TA) was determined using the titration method and 
other parameters of the carbonate system were derived with CO2SYS 
software (Lewis and Wallace, 1998). The measured pHnbs was converted 
to pHt using CO2SYS. All the carbonate chemistry parameters were 
shown in Table 1. 

2.3. Determination of growth rate 

The diatom cells under each condition were counted at least three 
times using a Counter Z2 Particle Count and Size Analyzer (Beckman 
Coulter Inc., Fullerton, CA, USA), before and after renewal of the me-
dium every 24 h. The specific growth rate (μ, d− 1) of Thalassiosira 
weissflogii was determined based on the change in cell counts over 24 h. 
We grew the diatom Thalassiosira weissflogii for about 25 days under 
different treatments, and the physiological parameters were measured 
with the cells that had acclimated for at least 10 generations. The spe-
cific growth rate (μ, day− 1) was calculated using the following equation: 

μ
(
d− 1) = (lnNt − lnNt− 1)

/
Δt 

where Nt and Nt− 1 are the cell counts (cells mL− 1) over the time 
interval of Δt (t1 and tt− 1) respectively. 

2.4. Determination of pigment contents 

Cell suspensions (100 mL) were filtered onto GF/F filters with low 

Table 1 
Parameters of seawater carbonate system under the ambient (410 μatm, LC) and 
elevated (1000 μatm, HC) CO2 concentration at three different light intensities 
before dilution in the semi-continuous cultures. Values are means ± SD of 
triplicate cultures. DIC = dissolved inorganic carbon, TA = total alkalinity. 
Different superscript letters indicate significant (p < 0.05) differences among 
treatments.   

pHt TA (μmol 
kg− 1) 

DIC 
(μmol 
kg− 1) 

HCO3
−

(μmol 
kg− 1) 

CO3
2−

(μmol 
kg− 1) 

CO2 

(μmol 
kg− 1) 

LCHL 8.11 
±

0.03a 

2410.3 
± 11a 

2126.9 ±
15a 

1923.3 ±
7a 

189.9 ±
2a 

13.7 ±
1a 

HCHL 7.81 
±

0.02b 

2393.5 
± 15a 

2275.3 ±
13b 

2144.2 ±
12b 

97.1 ±
3b 

34.1 ±
1b 

LCML 8.12 
±

0.02a 

2413.9 
± 14a 

2112.2 ±
15a 

1887.5 ±
17a 

194.3 ±
6a 

13.2 ±
2a 

HCML 7.82 
±

0.03b 

2401.8 
± 11a 

2278.2 ±
5b 

2142.5 ±
11b 

100.1 ±
3b 

35.6 ±
2b 

LCLL 8.13 
±

0.04a 

2418.7 
± 19a 

2117.4 ±
9a 

1910.2 ±
22a 

191.4 ±
5a 

15.8 ±
1a 

HCLL 7.82 
±

0.04b 

2414.5 
± 13a 

2279.9 ±
23b 

2144.3 ±
13b 

101.2 ±
2b 

34.4 ±
1b  
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vacuum pressure (<0.02 MPa) and soaked in methanol over-night at 
4 ◦C (Wellburn, 1994). The extracts were centrifuged at 6000 ×g for 10 
min to remove debris and glass fibers. The absorption spectra from 400 
to 800 nm of the supernatant were measured with a spectrophotometer 
(DU 800, Beckman, USA). The chlorophyll a (Chl a) content was 
determined spectrophotometrically as follows: 

Chl a = 16.29×(A665 − A750) − 8.54×(A652 − A750)

where A652, A665, and A750 represent absorbances of the methanol 
extracts at 665, 652, and 750 nm respectively. 

2.5. Measurements of photochemical parameters 

To estimate photochemical responses of the cells to different com-
binations of CO2 concentration and light intensities, rapid light curves 
(RLCs), maximum quantum yield (Fv/Fm) and effective quantum yield 
(Fv

′/Fm
′) were determined using a Multi-Color-PAM (Walz, Germany). 

Samples were dark-acclimated for 15 min to ensure that all photosystem 
II (PS II) reaction centers were oxidized and non-photochemical 
quenching was relaxed. The relative electron transport rate (rETR) 
was assessed as: 

rETR = Y(II)× 0.5× photon flux density (PFD)

where the yield represents the effective quantum yield of Y(II) (Fm − F′/ 
Fm

′); the coefficient 0.5 takes into account that roughly 50% of all 
absorbed quanta reach PSII; PFD is the actinic light intensity (μmol 
photons m− 2 s− 1). Non-photochemical quenching (NPQ) was calculated 
using NPQ = (Fm − Fm

′)/Fm
′, where Fm and Fm

′ represent the maximal 
and effective chlorophyll fluorescence yields in the dark-adapted and 
light-acclimated cells, respectively. Rapid light curves (RLCs) were 
measured to establish the relationship between relative electron trans-
port rate (rETR) and light intensity. RLCs were fitted to the following 
model: rETR = PAR / (a × PAR2 + b × PAR + c), where PAR was the 
photon flux density of actinic light (μmol photons m− 2 s− 1), a, b, and c 
were model parameters. The assay light intensities were increased from 
0 to 1723 μmol photons m− 2 s− 1 with 12 steps (0, 63, 121, 178, 264, 
377, 516, 731, 964, 1214, 1327, 1723 μmol photons m− 2 s− 1) with a 
duration of 15 s at each step. The light-use efficiency (a), light saturation 
point (IK), and maximum electron transport rate (ETRmax) were calcu-
lated from a, b, and c according to the equation in (Eilers and Peeters, 
1988). 

2.6. Determination of photosynthesis and respiration rates 

Net photosynthetic O2 evolution and dark respiration rates were 
determined using a Clarke-type electrode (Hansatech, UK). In the mid-
dle of the light period, the cells were harvested by filtering them onto 
mixed cellulose filters (diameter = 25 mm, pore size 8 μm) under gentle 
vacuum pressure (<0.02 MPa). The packed cells were resuspended in 
buffered seawater of 20mmol/L Tris, which was pre-equilibrated with 
the target CO2 levels, and the pH levels were adjusted to their growth 
levels (7.83 and 8.13) for the high- and low-CO2 grown cells, respec-
tively by adding hydrochloric acid or sodium hydroxide. The resus-
pended cells were injected into an oxygen electrode vessel with a 
magnetic stirrer held in a water-jacked chamber (for temperature con-
trol at 20 ◦C). The dark respiration and net O2 evolution rates under the 
growth light levels were determined by covering the cuvette with black 
box or by adjusting the distances from the light source (white LED), 
respectively. 

2.7. Determination of photosynthetic response to DIC 

We followed Wu et al. (2010) to determine the response of photo-
synthesis to DIC concentrations using RLC obtained under different DIC 
concentrations. Briefly, samples were harvested on mixed cellulose 

filters under gentle vacuum pressure (<0.02 MPa), and re-suspending 
the cells at 2–4 × 104 mL− 1 in DIC free Tris buffered medium (pH 
8.13). The re-suspended diatoms were exposed to light for 15 min under 
culture conditions to deplete the intracellular inorganic carbon pool. 
Then sodium bicarbonate solution was injected stepwise to a final DIC 
concentrations of 8000 μmol L− 1. The RLC was measured as mentioned 
above at each DIC level, and the DIC concentration required for half 
maximal ETR (K1/2) was derived using the Michaelis-Menten formula 
from the ETR vs DIC curves obtained from the RLCs at various DIC 
concentrations. K1/2 for carbon fixation was taken as the DIC concen-
tration at which half of rETRmax was reached. Lower K1/2 reflects 
increased CCMs activity (Li et al., 2018). We obtained K1/2 values at 
growth light levels and at ETR-saturating light levels. Since both types of 
K1/2 values showed the same trend, we used K1/2 values determined at 
growth light levels. 

2.8. Measurement of eCA activity 

The catalyzing activity of the periplasmic extracellular carbonic 
anhydrase (eCA) was measured using the cells in their exponential 
growth phase using an electrometric method (Wilbur and Anderson, 
1948) which had been commonly used for evaluation of CA activity 
(Zeng et al., 2019). The harvested cells about 2 × 104 to 4 × 104 mL− 1 

were washed and re-suspended in seawater buffered with 20 mmol/L 
barbiturate at pH 8.3. Then, 5 m of intact cell suspension was incubated 
in a water-jacketed chamber at 4 ◦C. The reaction was started by adding 
2 m of CO2-saturated milliQ water to 5 ml of cell buffer that had been 
kept at 4 ◦C. The time required for a pH drift from pH 8.3 to 7.3 was 
recorded. Blanks were performed for each assay by omitting the sample. 
Enzyme activity was expressed as enzyme units, being calculated from 
the following equation EU = 10 × (T0/T − 1), where T0 and T represent 
the times required for the reaction in the absence and presence of the cell 
samples respectively. 

2.9. Statistics 

All data are shown as the means ± SD of 3 independent cultures. To 
test for significant differences among treatments, one-way analyses of 
variance (ANOVA), with additional normality (Shapiro-Wilk) and post 
hoc tests were performed (α = 0.05). Two-way ANOVA was applied 
when examining the interactions between CO2 and light. To test direct 
effects between two particular treatments standard t-tests (level of sig-
nificance p < 0.05) were used. All statistical analyses were carried out 
with Origin 9.0 and the results presented in Table 2. Different letters in 
figures and tables indicate statistical differences between treatments 
based on post-hoc tests. 

3. Results 

3.1. Carbonate system 

The carbonate chemistry parameters were stable, with pH variation 
less than 0.05 within either the HC or LC treatment (Table 1). The HC 
treatment did not alter TA, but increased concentrations of DIC, pCO2 
and HCO3

− by about 2.2%, 59.8% and 10.3%, respectively; and 
decreased CO3

2− by 48.6% when compared to the LC treatment. 

3.2. Growth rate 

The specific growth rates of T. weissflogii were stable under each 
treatment after ten generations of acclimation to the treatments (Suppl. 
Fig. S1). The growth rates of T. weissflogii were influenced by the light 
intensities and CO2 concentration individually and interactively. Within 
the tested range of light levels, the higher the light intensity, the faster 
the specific growth rate (Fig. 1A), showing a linear relationship with a 
daily light use efficiency which was about 0.02–0.03. The HC treatment 
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did not bring about a significant difference in the growth under HL when 
compared to the LC treatment at the equivalent light levels. However, 
HC promoted the growth rate of T. weissflogii by about 9.2% under the LL 
condition. In addition, the cell size increased with decreasing light in-
tensity, but did not show significant difference between the HC and LC 
treatments (Fig. 1B). 

3.3. Pigment contents 

Cellular chlorophyll contents increased in the HC-grown cells, but 
the contents of carotenoids were lower in HC- than in LC-grown cells 
under low light condition (Fig. 2). Light intensities and CO2 concen-
trations had no interactive effects on the contents of Chl a (Table 2). The 
contents of Chl a increased with decreasing light levels, with carotenoids 
being almost unaffected except for the low light-grown cells (Fig. 2b), 
resulting in a decline of Car to Chl a ratio as light availability decrease. 
In terms of CO2 effects, the HC-grown cells showed a significantly lower 
Car to Chl a ratio but only under the LL level (Fig. 2c). 

3.4. Photochemical responses 

CO2 concentrations and light intensities had no interactive effects on 
rETRmax (Table S1). CO2 concentration did not give rise to significant 
effects on ETRmax and Ik irrespective of the light intensities. Even though 
the cells grown under different levels of light and CO2 concentration 
showed contrasting differences in rETRmax and Ik, light-use efficiency (a) 
was not significantly altered under any of the combinations. The dark- 
adapted maximum PSII quantum yield (Fv/Fm) of LC-grown cells was 
not affected by the growth light condition, but the HC-grown cells 

markedly increased Fv/Fm regardless of the light treatments (Fig. 3A). 
Light intensities and CO2 concentration had no interactive effects on 
rETR (Table 2), though rETR decreased with decreasing light intensities. 
In the HL-grown cells, rETR was higher in than ML- or LL-grown cells 
(Fig. 3B). On the other hand, higher growth light levels resulted in 
higher values of NPQ, which was moderated by HC (Fig. 3C). 

3.5. Photosynthetic and respiratory activities 

The respiration rate, net photosynthetic rate and daily net primary 
production (daytime O2 evolution) of T. weissflogii all showed a 
decreasing trend with the decrease of growth light levels under both CO2 
concentrations (Fig. 4). Such physiological traits were similar whether 
expressed per cell or per Chl a. However, the HC treatment significantly 
enhanced the respiration rate per Chl a or per cell by about 14.5% under 
HL or 17.0% under LL condition (Fig. 4A). Light intensities and CO2 
concentration had no interactive effects on the chlorophyll-normalized 
net photosynthetic rate, and no significant differences in the photosyn-
thetic rates was detected between the LC and HC-grown cells irre-
spective of the growth light intensities. The daily photosynthetic carbon 
fixation (integrated daytime production minus nighttime respiratory 
loss) showed the same trend as net photosynthetic rate (Fig. 4C). 

3.6. Enzyme activity 

Light intensities and CO2 concentration had an interactive effect on 
eCA activity (Fig. 5A). The eCA activity increased with increasing 
growth light levels. Under the LC condition, the eCA activity in the HL- 
grown was higher by about 52.4% than ML- and LL-grown ones, 
respectively. The HC-treatment resulted in a higher K1/2, reflecting the 
decreased affinity of DIC or CO2 for photosynthesis and a down- 
regulation of CCMs in the diatoms (Fig. 6). While the K1/2 increased 
with decreasing growth light levels and elevating CO2 concentration, 

Table 2 
Summary of Two-way ANOVA analyses for interactive effects of pCO2 and light 
intensities on growth, photosynthesis, pigments, eCA activity, fluorescence pa-
rameters in Thalassiosira weissflogii. The symbol ‘*’ indicates the interactions 
between factors, df = degrees of freedom, F = F value, P = probability, the 
significant differences level was set at p < 0.05.  

Response variable Factor 
variables 

df Mean 
square 

F P 

μ pCO2  1 0.002  4.241  0.062 
μ Light  2 0.264  674.795  <0.01 
μ pCO2*Light  2 0.003  6.855  0.010 
Net photosynthesis 

rate/Chl a 
pCO2  1 <0.01  0.100  0.757 

Net photosynthesis 
rete/Chl a 

Light  2 0.351  252.981  <0.01 

Net photosynthesis 
rate/Chl a 

pCO2*Light  2 0.003  2.020  0.175 

Respiration rate/Chl a pCO2  1 <0.01  12.434  0.004 
Respiration rate/Chl a Light  2 0.002  230.709  <0.01 
Respiration rate/Chl a pCO2*Light  2 <0.01  0.166  0.849 
Daytime C fixation 

rate/Chl a 
pCO2  1 0.078  0.404  0.537 

Daytime C fixation 
rate/Chl a 

Light  2 42.459  219.057  <0.01 

Daytime C fixation 
rate/Chl a 

pCO2*Light  2 0.386  1.990  0.179 

eCA activity pCO2  1 0.514  88.878  <0.01 
eCA activity Light  2 3.957  684.780  <0.01 
eCA activity pCO2*Light  2 0.106  18.376  <0.01 
K1/2(A) pCO2  1 0.001  9.673  0.021 
K1/2(A) Light  2 0.014  53.972  <0.01 
K1/2(A) pCO2*Light  2 <0.01  0.820  0.484 
k1/2(B) pCO2  1 0.003  34.743  0.001 
k1/2(B) Light  2 0.013  136.060  <0.01 
k1/2(B) pCO2*Light  2 <0.01  0.557  0.600 
Chl a pCO2  1 0.109  17.690  0.001 
Chl a Light  2 1.48E+00  <0.01  <0.01 
Chl a pCO2*Light  2 0.023  <0.01  0.055 
NPQ pCO2  1 0.006  9.989  0.008 
NPQ Light  2 0.079  121.413  <0.01 
NPQ pCO2*Light  2 <0.01  0.457  0.644  

HL ML LL 

12.0

12.5

13.0
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14.0

C
e

ll
 S

iz
e

 (
µm

)

B

a a

b b

c c

0.0

0.3

0.6

0.9

1.2

1.5

d

c

bb

a

µ
(d

a
y
-
1

)

 LC

 HC

a

A

Fig. 1. The relative growth rate (μ, d− 1) (A) and cell size (B) of T. weissflogii 
cells grown under different levels of light intensities and CO2 concentration. 
Values are the means ± SD of triplicate cultures. Different superscript letters 
indicate significant (p < 0.05) differences among treatments. 
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light intensities and CO2 concentration had no interactive effects on K1/2 
(Table S2). The K1/2 values increased significantly in HL and HC-grown 
cells either based on the ETR obtained at their growth light (Fig. 5B) or 
saturating light levels (Fig. S2), indicating that the downregulation of 
CCMs can be detected under either ETR-saturating or limiting light 
levels. Nevertheless, the HC treatment significantly enhanced the rET-
Rmax by about 17% in LL level. The efficiency of carbon acquisition, 
expressed as the ratio of rETRmax to K1/2 for CO2 decreased under HC, 
but not under LL. The parameters obtained from the growth light or from 
saturating light intensity had no significant difference. 

4. Discussion 

Our results showed that OA treatment did not result in significant 
effects on growth rate in T. weissflogii when grown under HL (220 μmol 
photons m− 2 s− 1) or ML (140 μmol photons m− 2 s− 1). Under the LL (80 
μmol photons m− 2 s− 1) conditions, OA promoted the growth rate of 
T. weissflogii (Fig. 1), differing from other studies in which OA had non or 
negative effects on the growth rate of T. weissflogii (Seebah et al., 2014; 
Passow and Laws, 2015; Taucher et al., 2015). There have been 16 

published works on T. weissflogii growth responses to OA (Table 3), with 
stimulative, neutral and negative effects documented under different 
conditions. In this work, we demonstrated that OA lowered periplasmic 
carbonic anhydrase (eCA) activity, down-regulated the CCMs, and 
increased mitochondrial respiration, with enhanced growth rate only at 
light-limiting conditions (Fig. 7). This was consistent with other diatom 
species that OA only stimulated their growth under limiting light levels 
(Gao et al., 2012a). The enhanced growth under insufficient light supply 
was attributed to saved energy due to down-regulation of CCMs (Gao 
et al., 2012b). In the present study, extra energy freed up from down- 
regulated operation of CCMs should be responsible for the enhanced 
growth rate in T. weissflogii under low light, and it was not “CO2 fertil-
ization” since no enhancement of growth was observed under high light 
when more CO2 was demanded for carboxylation (Fig. 7). It was most 
likely that down-regulated CCMs could have reduced intracellular DIC 
concentration in T. weissflogii as in another diatom Phaeodactylum tri-
cornutum (Liu et al., 2017), that is, increased CO2 availability outside the 
cells reduces its intracellular concentration. On the other hand, 
increased respiration under OA indicates that the cells required extra 
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energy during night to cope with the acidic stress. In addition, enhanced 
respiration could theoretically lead to an increased growth rate as 
mitochondrial respiration provides energy for cell biosynthesis and 
maintenance (Hoppe et al., 2015; F. Li et al., 2016; Li et al., 2018). Even 
though the OA treatment did not result in any difference in the daily net 
primary productivity (Fig. 4C, F), across growth lights, the enhanced 
growth in the HC-/LL-grown cells could also be attributed to lowered 
energy transfer loss in addition to the saved energy from down-regulated 
CCMs operation. 

The none enhancement of growth under HL and ML levels by OA 
(Fig. 1) could be attributed to that the energy freed up from CCMs-down- 
regulation was relatively small compared to the relatively sufficient 
energy supply under the higher light levels when photosynthesis-driven 
energy supply was relatively high (Goldman et al., 2017). The diatom 
Chaetoceros sp. also showed little or no growth response to OA, with 
apparent light-dependent differences (Boelen et al., 2011; Ihnken et al., 
2011). Thalassiosira pseudonana showed an increased metabolic burden 
to maintain the photosynthetic system under OA and high light condi-
tion, which could counter the saving energy from down-regulation of the 
CCMs (Li et al., 2014). In the present work, the rate of net photosynthesis 
of LL-grown cells was lower by about 55% of than that at HL level, so the 
energetic cost for maintaining a stable physiological performance be-
comes a big fraction in the cells growing under the low light level, thus 
the saved energy from down-regulated CCMs aided to raise the growth. 

As the enzyme Ribulose-1,5-bisphosphate carboxylase–oxygenase 
(RubisCO) catalyzes both carboxylation and oxygenation reaction. Since 
intracellular CO2 concentration becomes lower in a diatom grown under 
elevated CO2 concentrations compared to the cells grown under lower 
CO2 levels (Liu et al., 2017), the ratio of CO2 to O2 surrounding Rubisco 
was supposed to decline. Therefore, OA induced down-regulation of 
CCMs could result in enhanced of photorespiration (Gao et al., 2012a; 
(Xu and Gao, 2012). In the present work, we did not measure photo-
respiration, the non-enhanced growth of T. weissflogii could be partially 
due to increased photorespiratory carbon loss. Since high light resulted 
in a high photorespiration, down-regulation of CCMs by OA could 
further exacerbate it, therefore, excessive light levels might reduce the 
growth rate of diatoms (Gao et al., 2012b). In this study, the high light 
was only at a growth-saturating level, which was not high enough to 
cause photoinhibition. 

In our study, the Fv/Fm and effective quantum yield of diatom were 
generally higher especially under LL level, indicating that diatoms were 
in a good physiological state. Similar to other studies, the rETRmax and Ik 
were lower under lower growth light intensities (Ralph and Gademann, 
2005). Under HL condition, OA had no influence on relative electron 
transfer rate and light harvesting efficiency (a), indicating that OA had 
insignificant effects on electron transfer efficiency for biomass conver-
sion (Ihnken et al., 2011). The energy saved from the down-regulation of 
CCMs activity may be used by the LL-grown cells to better deal with 

Fig. 4. The chlorophyll-normalized dark respiration rates (A), net photosynthetic rate per cell (B) and daytime O2 evolution (C) of T. weissflogii, and cell-normalized 
dark respiration rates (D), net photosynthetic rate (E) and daytime O2 evolution (F) of T. weissflogii at different light intensities and CO2 concentration levels. Values 
are means ± SD of triplicate cultures. Different superscript letters indicate significant (p < 0.05) differences among treatments. 
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acidic stress associated with the pH decline in comparison with the HL 
cells (Liu et al., 2017). Higher respiration rates at low light had previ-
ously been observed under OA and it was attributed to the increased 
contribution of light-dependent respiration pathways, which could 
generate ATP without depleting the cell’s carbon pool (Fisher and Hal-
sey, 2016). Therefore, compared to the large requirement for CO2 by the 
HL-grown cells with high photosynthetic rate, the cells grown under LL 
required less CO2 and benefited from the down-regulation of CCMs in 
order to cope with the acidic stress of OA. 

Thalassiosira weissflogii and other diatoms distributed in nearshore 
waters experience episodical and diel changes in carbonate chemistry 
due to tidal changes, biological production and wind-driven mixing. 
Therefore, they are exposed to changing levels of light and CO2/pH at 
different timings or weather conditions under the ongoing global ocean 
acidification. On the basis of the present results, coastal diatoms 
including T. weissflogii may benefit from increased CO2 availability 
during twilight periods or under cloudy weather conditions and endure 
acidic stress of OA even under fluctuating or fast changing light condi-
tions. On the other hand, fast mixing can frequently expose the cells to 
high and low light conditions, modulating OA effects on its physiological 
performances as in other phytoplankter (Jin et al., 2013) The balance of 
positive and negative effects of OA on diatom depend on physical and 
chemical conditions in different waters, will eventually lead to “winner” 
or “loser”, therefore, influencing diatom community structure and 
related biogeochemical processes. 
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Table 3 
Documented specific growth rates (μ) of T. weissflogii grown under different 
light, temperature and CO2 conditions. T indicates temperature, “N” no signif-
icant change under OA, “U” Unknown the result, “+” OA increase the growth 
rate, “− ” OA decrease the growth rate.  

Light (μmol 
photons m− 2 

s− 1) 

Photoperiod T (◦C) OA 
(μ) 

CCMP Reference 

35, 65 14L:10D 15, 20 − , N 1053 Passow and 
Laws, 2015 

50 14L:0D 25 N Isolated 
Japan 

(Ishida et al., 
2000) 

50 14L:10D 15, 20 N 1336 Seebah et al., 
2014 

50, 120 12L:12D 17 N 1010 Larsen et al., 
2015 

100 14L:10D 15, 20 N 1053 Taucher et al., 
2015 

100 12L:12D 18, 24 N 102 Gao et al., 2018 
115 12L:12D 20 N 1336 F. Li et al., 2016 
120 12L:12D 20 U 102 Zeng et al., 2019 
150 12L:12D 20 N 102 (Li et al., 2019) 
15, 140 12L:12D 18 U 1336 Needoba and 

Harrison, 2004 
20, 120 12L:12D 

2L:22D 
5–15 U 1336 Walter et al., 

2015 
200 12L:12D 18 N 1336 Reinfelder, 2011 
230 12L:12D 20 + 102 Gao et al., 2018 
235 12L:12D 20, 25 U UN Helbling et al., 

2011 
350 12L:12D 20 + 1336 Wu et al., 2014 
Solar radiation 12L:12D 25–27 N 102 W. Li et al., 2016 
80 12L:12D 20 + 1336 This paper 
140 12L:12D 20 N 1336 This paper 
220 12L:12D 20 N 1336 This paper  
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