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Abstract. Sea surface partial pressure of CO2 (pCO2) data with a high spatiotemporal resolution are important
in studying the global carbon cycle and assessing the oceanic carbon uptake. However, the observed sea surface
pCO2 data are usually limited in spatial and temporal coverage, especially in marginal seas. This study pro-
vides an approach to reconstruct the complete sea surface pCO2 field in the South China Sea (SCS) with a grid
resolution of 0.5◦× 0.5◦ over the period of 2000–2017 using both remote-sensing-derived pCO2 and observed
underway pCO2, among which the gridded underway pCO2 data in 2004, 2005, and 2006 are presented for
the first time. Empirical orthogonal functions (EOFs) were computed from the remote-sensing-derived pCO2.
Then, a multilinear regression was applied to the observed pCO2 as the response variable with the EOFs as the
explanatory variables. EOF1 explains the general spatial pattern of pCO2 in the SCS. EOF2 shows the pattern
influenced by the Pearl River plume on the northern shelf and slope. EOF3 is consistent with the pattern influ-
enced by coastal upwelling along the northern coast of the SCS. When pCO2 observations cover a sufficiently
large area, the reconstructed fields successfully display a pattern of relatively high pCO2 in the mid and southern
basin. The rate of sea surface pCO2 increase in the SCS is 2.4±0.8 µatmyr−1 based on the spatial average of the
reconstructed pCO2 over the period of 2000–2017. This is consistent with the temporal trends at Station SEATS
(SouthEast Asia Time-series Study; 18◦ N, 116◦ E) in the northern basin of the SCS and at Station ALOHA (A
Long-Term Oligotrophic Habitat Assessment; 22◦45′ N, 158◦W) in the North Pacific. We validated our recon-
struction with a leave-one-out cross-validation approach, which yields the root-mean-square error (RMSE) in
the range of 2.4–5.2 µatm, smaller than the spatial standard deviation of our reconstructed data and much smaller
than the spatial standard deviation of the observed underway data. The RMSE between the reconstructed sum-
mer pCO2 and the observed underway pCO2 is no larger than 31.7 µatm, in contrast to (a) the RMSE from 12.8
to 89.0 µatm between the remote-sensing-derived pCO2 and the underway data and (b) the RMSE from 32.6
to 44.5 µatm between the neural-network-produced pCO2 and the underway data. The difference between the
reconstructed pCO2 and those calculated from observations at Station SEATS is in the range from−7 to 10 µatm.
These comparison results indicate the reliability of our reconstruction method and output. All the data for this
paper are openly and freely available at PANGAEA under the link https://doi.org/10.1594/PANGAEA.921210
(Wang et al., 2020).
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1 Introduction

The ocean plays an important role in absorbing atmospheric
CO2 and consequently helps slow down global warming (Le
Quere et al., 2018a). Over the last half-century the ocean
has taken up approximately 24 % of the total emitted CO2
at an increasing rate from 1.0± 0.5 in the 1960s to 2.6±
0.6 GtCyr−1 in 2019 (Friedlingstein et al., 2020; Le Quere
et al., 2018b). The ocean has been found to be responsible
for up to 40 % of the decadal variability of CO2 accumula-
tion in the atmosphere (DeVries et al., 2019). However, the
regional and global patterns of the oceanic carbon sink vary
both spatially and temporally (Doney et al., 2009; Fay and
McKinley, 2013; Landschutzer et al., 2014; Le Quere et al.,
2010; Rodenbeck et al., 2015; Turi et al., 2014). Thus, it is
necessary to improve the spatiotemporal coverage and accu-
racy of the data in the evaluation of oceanic carbon uptake
capacity in order to better understand the global carbon cycle
and to better project the future climate.

The sea–air CO2 flux is primarily determined by the dif-
ference in the atmospheric and sea surface partial pressure of
CO2 (pCO2). The measurements of sea surface fugacity of
CO2 (fCO2, which is equal to pCO2 corrected for the non-
ideal behavior of the gas; Pfeil et al., 2013) have increased to
28.2 million and are presently available in almost all ocean
basins based on the Surface Ocean CO2 Atlas version 2020
(Bakker et al., 2020). However, for a given year the obser-
vations of sea surface pCO2 may still have sparse spatial
coverage. Thus, interpolation and/or extrapolation methods
are needed to obtain a complete pCO2 field in space and
time over the concerned oceanic areas. Various methods have
been applied for this purpose in the past 2 decades, includ-
ing statistical interpolation (Chou et al., 2005) and empiri-
cal formulas between pCO2 and proxies such as sea surface
temperature, salinity, chlorophyll a, sea surface height, and
mixed-layer depth (Boutin et al., 1999; Denvil-Sommer et al.,
2019; Jo et al., 2012; Laruelle et al., 2017; Lefevre and Tay-
lor, 2002; Ono et al., 2004; Zhai et al., 2005a). These studies
usually present their pCO2 fields in a monthly timescale and
at a 1◦× 1◦ or even coarser grid. In marginal seas a finer
grid resolution is needed to discern influences posed by local
forces such as plumes and upwelling.

The South China Sea (SCS) is the largest marginal sea in
the western Pacific. Measurements of sea surface pCO2 in
the SCS started as early as 2000 (Zhai et al., 2005b). Seasonal
and spatial variations are present in different domains of the
SCS (Li et al., 2020; Zhai et al., 2013). However, the data
coverage is still so sparse each year that on global compila-
tion maps the SCS has large blank areas (Bakker et al., 2016;
Fay and McKinley, 2013; Takahashi et al., 2009). For exam-
ple, the summer observations of 2017 cover 7 % of the SCS,
and those of 2001 cover only 1 %. Consequently, the observa-
tional data themselves cannot quantitatively depict the pCO2

Figure 1. Reconstruction procedure of the sea surface pCO2 in
the SCS. Here, RS pCO2 means the original remote-sensing-
derived pCO2; Obs. pCO2 represents the original observed in
situ pCO2. RS estimates are the grid-aggregated remote-sensing-
derived pCO2, and Obs. data are the grid-aggregated observed
pCO2. The standard deviations are the temporal standard deviation
of the RS pCO2 estimates on each grid box.

field over the entire SCS basin. Thus, it is necessary to recon-
struct a space–time complete pCO2 field in the SCS in order
to better assess the CO2 source and sink features in the SCS
and to supplement the global pCO2 map.

The purpose of this paper is to demonstrate the feasibility
of reconstructing the pCO2 field over the SCS basin from the
sparse in situ observations in the SCS with a grid resolution
of 0.5◦× 0.5◦, using a method illustrated in the flowchart of
Fig. 1. This paper focuses on the pCO2 reconstruction for
the summer season. As indicated in Fig. 1, we need to use
an auxiliary dataset, the remote-sensing-derived pCO2 esti-
mates, e.g., from Bai et al. (2015a), to calculate empirical
orthogonal functions (EOFs) for spatial patterns of pCO2.
The remote sensing pCO2 estimates are relatively complete
in the space–time grid but less accurate, compared with in
situ observations. The singular-value decomposition (SVD)
method is applied to the remote sensing estimates to compute
the EOFs. These EOFs form an orthogonal basis for the spec-
tral optimal gridding (SOG) method (Shen et al., 2014, 2017;
Gao et al., 2015; Lammlein and Shen, 2018). The method
uses a multilinear regression to blend the in situ data (treated
as the data of the response variable in the regression) and
the EOFs (treated as the explanatory variables) together to
reconstruct the complete summer pCO2 field at 0.5◦× 0.5◦

over the SCS.
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Section 2 will describe the datasets and methods; Sect. 3
includes results and discussion; and the conclusions are in
Sect. 4.

2 Datasets and methods

2.1 Observed data in the SCS

In the SCS, the underway sea surface pCO2 data are hardly
available for every month of each year, so we decided to com-
pile the data seasonally. This study focuses on the summer
data, since the greatest temporal coverage of the sampling
occurs in summer. The available underway summer pCO2
data from 2000 to 2017 are compiled in this study and shown
in Table 1, in which the pCO2 data in August 2004, July
2005, and June 2006 are new and obtained continuously with
a non-dispersive infrared gas analyzer (LI-COR 7000). The
summer data are the June–August mean for each year in this
period excluding 2002, 2003, 2010, 2011, and 2013 (Li et
al., 2020; Zhai et al., 2005a). Thus, we have observed under-
way pCO2 data for 13 summers during 2000–2017. Figure 2
shows that these data are distributed mainly on the north-
ern shelf and slope and in the northern and mid basin of the
SCS with a different frequency of summer observations on
different grid boxes. The observational data were aggregated
onto 0.5◦× 0.5◦ grid boxes in the 5–25◦ N, 109–122◦ E re-
gion of the SCS. The aggregation used a simple space–time
average of the data in a grid box. The aggregated data for the
13 summers are shown in Fig. 3, which shows the distribution
pattern of the observed underway pCO2 data of each year.
The aggregated pCO2 in general falls in the range of 160–
480 µatm with relatively larger spatial variation nearshore
and smaller spatial variability in the basin. In addition, the
large differences are apparent in the spatial coverage from
year to year. For example, in the summer of 2007 the ob-
served underway pCO2 data cover a spatial range of 12◦ in
latitude and 13◦ in longitude, with 231 grid boxes with data
that cover 22 % of the SCS. The data fall in the range of 281–
480 µatm. In the summer of 2017 the observed data cover a
spatial range of 13◦ in latitude and 6◦ in longitude, with 77
grid boxes with data that cover 7 % of the SCS. The data are
in the range of 279–440 µatm. The summer of 2000 has only
five grid boxes (covering 0.5 % of the SCS) with data in the
range of 400–425 µatm. The lowest observational pCO2 val-
ues appear on the northern SCS shelf due to the influence of
the Pearl River plume (see Fig. 2), where nutrient-stimulated
phytoplankton uptake consumes CO2. The relatively high sea
surface pCO2 values occur mainly in the basin, which are of-
ten higher than the atmospheric pCO2 (Li et al., 2020; Zhai et
al., 2013). The high pCO2 values off the northeastern coast
of the SCS and the southern coast of Hainan Island in the
summer of 2007 are consistent with local upwelling occur-
rences, which bring CO2-enriched water from the subsurface
(Li et al., 2020). In the summer of 2012, the spatial coverage
is 7◦ in latitude and 9.5◦ in longitude. The pCO2 data are

Table 1. Underway sea surface pCO2 data in summer in the SCS
compiled in this study.

Year Cruise time Data source

2000 July 2000 Zhai et al. (2005a)
2001 June 2001 Zhai et al. (2005a)
2004 July–August 2004 Zhai et al. (2013), this study
2005 July 2005 This study
2006 June 2006 This study
2007 July–August 2007 Zhai et al. (2013)
2008 July–August 2008 Li et al. (2020)
2009 August 2009 Li et al. (2020)
2012 July–August 2012 Li et al. (2020)
2014 June 2014 Li et al. (2020)
2015 July–August 2015 Li et al. (2020)
2016 June 2016 Li et al. (2020)
2017 June 2017 Li et al. (2020)

in the range of 191–480 µatm with the lowest value appear-
ing on the northwestern shelf of the SCS due to the Jianjiang
River plume and the highest values occurring on the north-
eastern shelf and off the eastern coast of Hainan Island due
to upwelling (Gan et al., 2015; Jing et al., 2015). Some other
data, for example, in the summer of 2000, however, are rela-
tively localized so that no certain spatial pattern is shown be-
fore the reconstruction. Our reconstruction results will help
display the spatial patterns of the complete sea surface pCO2
field.

As a dataset for our reconstruction validation, we calcu-
lated the sea surface pCO2 from the observed temperature,
salinity, total alkalinity, dissolved inorganic carbon, phos-
phate, and silicate at Station SEATS (SouthEast Asia Time-
series Study; 18◦ N, 116◦ E) in the northern basin of the SCS
in the summer of 2007, 2009, 2012, 2014, and 2017. The
nutrient sample collection and measurement are described in
Du et al. (2013, 2017). The samples of total alkalinity and
dissolved inorganic carbon were collected and measured fol-
lowing the same procedure in Guo et al. (2015). The calcu-
lation of pCO2 was made using the program of Lewis and
Wallace (1998), in which the apparent dissociation constants
for carbonic acid of Mehrbach et al. (1973) refit by Dickson
and Millero (1987) and the dissociation constant for bisul-
fate ion from Dickson (1990) were employed. Another sea
surface pCO2 dataset calculated in the same way at Station
SEATS in the summer of 2000, 2001, 2004, and 2006 was
compiled from Lui et al. (2020).

2.2 Remote-sensing-derived sea surface pCO2 data

The satellite remote-sensing-derived sea surface pCO2 in
the SCS was estimated for the years of 2000–2014 using
a “mechanistic semi-analytical algorithm” (MeSAA) devel-
oped by Bai et al. (2015a). In the summer in the SCS,
the thermodynamic, mixing, and biological effects on the
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Figure 2. The number of summers with underway sea surface
pCO2 observations in the SCS in the years 2000–2017. HI repre-
sents Hainan Island; Jian. R. is the Jianjiang River; and Pearl R.
represents the Pearl River.

sea surface pCO2 were parameterized in the MeSAA al-
gorithm as a function of major controlling factors derived
from multiple-satellite-derived sea surface temperature, col-
ored dissolved organic matter, and chlorophyll. The spatial
resolution of the remote-sensing-derived pCO2 estimates is
1′×1′. These estimates were aggregated into 0.5◦×0.5◦ grid
boxes in our study region (5–25◦ N, 109–122◦ E). As shown
in Fig. 4, the gridded remote-sensing-derived pCO2 data
cover almost all the areas of the SCS (see the boxes of RS
pCO2 and RS estimates of full coverage in Fig. 1). We made
a validation study for the remote-sensing-derived pCO2 by
comparison with the observed underway pCO2 (Fig. 5). In
general, most of the remote-sensing-derived pCO2 overesti-
mate the sea surface pCO2 but not by more than 50 µatm. The
root-mean-square error (RMSE) falls in the range from 12.8
to 89.0 µatm with a median of 33.8 µatm (Table 2). The
RMSE values are high in the years when the underway data
covered only the shelf regions. With the MeSAA algorithm,
the derived pCO2 dataset represents the major CO2 variation
in large scales. However, variations shown by these remote-
sensing-derived pCO2 data are much less than those shown
by the observed pCO2 data because the current MeSAA al-

gorithm does not consider some local processes, such as ed-
dies and potentially different carbonate system patterns in
coastal areas. Larger spatial variations are expected espe-
cially in areas influenced by river plumes. This makes it nec-
essary to reconstruct a pCO2 field not only from the remote-
sensing-derived pCO2 but also constrained by the observed
in situ pCO2 data from cruises.

2.3 Reconstruction method

Figure 1 is a flowchart of our method. We used the remote-
sensing-derived data to compute the EOFs for the SOG re-
construction. The grid with 0.5◦×0.5◦ resolution covered 5–
25◦ N and 109–122◦ E with 1040 grid boxes in total. The land
area data were marked with NaN. The data were arranged in
a 1040× 15 space–time matrix with rows for grid boxes and
columns for time. Then, we removed the 143 land grid boxes
from the data and computed the climatology and standard de-
viation for the remaining 897 non-NaN grid boxes from the
15 years of remote-sensing-derived data from 2000 to 2014.
The standardized anomalies were computed for each grid box
using the remote-sensing-derived data minus the climatol-
ogy and subsequently dividing the difference by the standard
deviation. The singular-value decomposition (SVD) method
was applied to the standardized anomalies in the space–time
matrix to compute the EOFs. The results are shown in Sect. 3.
The climatology and standard deviation calculated from the
remote-sensing-derived data were also used to compute the
standardized anomalies of the observed data, which were
used as the response variable in the SOG regression recon-
struction. Following the reconstruction of the standardized
anomalies, the remote-sensing-derived climatology and stan-
dard deviation were then used to produce the full field as the
final reconstruction result.

The SOG reconstruction method is basically a multilinear
regression model for the space–time field at grid box x and
time t , expressed as follows:

P (x, t)= β0 (t)+
∑
m∈M

βm (t)Em (x)/
√
a(x)+ e (x, t) , (1)

where P (x, t) is the response variable whose data are the
standardized anomalies of the observed data, β0 (t) is the re-
gression intercept, βm (t) is the regression coefficient for the
mth EOF Em (x), the least-square estimator of βm (t) is de-
noted by bm (t), a (x)= cos(φx) is the area factor, φx is the
centroid’s latitude (expressed in radians) of the grid box x,
and e (x, t) is the regression error. The error is assumed to be
normally distributed with a zero mean and has an indepen-
dent error variance of

ε2(x, t)= E[e2 (x, t)], (2)

where E denotes the mathematical operation of the expected
value. The explanatory variables in the above multilinear re-
gression are Em (x), computed from the area-weighted stan-
dardized anomalies of the remote-sensing-derived data. The
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Figure 3. The aggregated in situ observational pCO2 data in 0.5◦× 0.5◦ grid boxes in the SCS in the 13 summers during the years 2000–
2017.

Table 2. The RMSE between the remote-sensing-derived pCO2 estimates and the observed underway pCO2 data (RMSERS), of the cross-
validation (RMSECV), and between the reconstructed pCO2 and the observed underway pCO2 data (RMSERC) (unit: µatm).

Year 2000 2001 2004 2005 2006 2007 2008 2009 2012 2014 2015 2016 2017

RMSERS 12.8 20.2 47.9 65.7 89.0 25.1 43. 8 36.8 30.7 24.2 NaN NaN NaN
RMSECV NaN 2.8 3.1 4.9 5.2 2.9 4.2 2.9 2.8 4.2 4.3 3.2 2.4
RMSERC 0.01 7.3 19.7 16.3 31.7 16.5 26.1 20.4 15.5 18.8 27.8 13.0 12.8

anomalies were written as an 897× 15 space–time data ma-
trix. The SVD method was applied to this matrix to compute
the spatial patterns, which are EOFs; the temporal patterns,
which are principal components (PCs); and their correspond-
ing variances. M is the set of EOFs selected for our regres-
sion reconstruction. It contained eight EOFs for every year
except 2000, which had only four EOFs because the year had
only five grid boxes with observed underway data.

For a given year, the grid boxes with observed data are
known. Then, the linear regression model can be computed
based on the observed data P (xd , t) and the EOFs in the grid
boxes xd with the observed data Em (xd ). For example, the
year 2002 had only 17 grid boxes with the observational data:

x1,x2, . . .,x17. The data in these 17 boxes were used to esti-
mate the intercept β0 (t) and coefficients βm (t) of the regres-
sion. With the estimates b0 (t) and bm (t), m ∈M, the recon-
structed standardized anomalies are expressed as

P̂ (x, t)= b0 (t)+
∑

m∈Mbm (t)Em (x)/
√
a(x), (3)

where x runs through the entire 893 grid boxes over our study
region in the SCS. These anomalies were converted to the full
field by adding the climatology and multiplying the standard
deviation computed from the remote-sensing-derived data for
each of the 893 grid boxes. In this way, the full reconstructed
field was produced and is presented in Sect. 3.

Many computer software packages are available to com-
pute the EOFs using SVD and to compute multilinear regres-
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Figure 4. Remote-sensing-derived sea surface pCO2 in summer in
selected years from 2000 to 2014.

sions. This paper chose to use R, a computer program lan-
guage that has become a popular data science tool in the last
few years, for this purpose.

SOG usually uses the first few EOFs or the first M EOFs
that account for more than 80 % of the total variance or that
are determined by response data via a correlation test (Smith
et al., 1998). Here, M is the size of set M. The current pa-
per used eight EOFs that explain 87 % of the total variances
(Fig. 6).

3 Results and discussion

3.1 EOFs and PCs

EOF1 demonstrates the mode of an average level of pCO2
with lower or higher values near the coastal regions of
mainland China (Fig. 7a). This mode accounts for 49 % of
the variance, which indicates the dominance of the average
field and hence a small overall spatial variation, except in
the coastal regions. The remote-sensing-derived pCO2 data
support this mode well. EOF2 shows a north–south dipole
(Fig. 7b), which is supported by the observed data shown in
Fig. 3, particularly in the summer of 2017, showing lower
values in the north on the shelf and slope and higher values
in the south in the ocean basin. The minimum values in the
north occur where the Pearl River plume dominates (Li et
al., 2020; Zhai et al., 2013). EOF3 shows an east–west pat-
tern (Fig. 7c), in addition to the north–south dipole in EOF2.

EOF3 thus reflects a spatial variation of a smaller scale. This
pattern is consistent with that influenced by coastal upwelling
along the northeastern China coast and off eastern Hainan Is-
land (Gan et al., 2015; Jing et al., 2015).

The PCs are a temporal stamp of the occurrence of the
spatial patterns. PC1 basically shows the temporal trend
(Fig. 8d). It has been concluded that surface SCS pCO2 has
an increasing trend with time (Tseng et al., 2007). PC2 in-
dicates the strength of the north–south dipole. This strength
seems to be related to the strength and extent of the Pearl
River plume on the northern shelf and slope (Bai et al.,
2015b; Li et al., 2020; Zhai et al., 2013). PC3 shows the tem-
poral variation corresponding to the east–west spatial pattern
of EOF3.

3.2 Reconstruction results in the SCS

Figure 8 shows that the reconstructed pCO2 fields in the
SCS have successfully displayed the spatial patterns of the
observed pCO2 and in general are consistent with previous
studies (Li et al., 2020; Zhai et al., 2013). Relatively low
values appear in the northern coastal region where the Pearl
River plume is dominant in summer, and generally high val-
ues occur in the mid and southern basins.

The reconstructions have taken the advantages of both the
observed underway data for retaining spatial and temporal
variations and the remote-sensing-derived data for EOF pat-
terns. By default, the reconstructed field has fidelity to the
in situ data because the SOG reconstruction method is a fit
of EOFs to the in situ data. The reconstruction is, thus, con-
sistent with the in situ observations. When the in situ data
cover a sufficiently large area and hence provide a proper
constraint to the EOF fitting through the SOG procedure, the
reconstruction result is more faithful to the reality. For exam-
ple, the reconstructions of the summers of 2004, 2007, 2009,
2012, and 2014–2017 nicely demonstrate the spatial pCO2
patterns (Fig. 8c, f, h, and i–m) that are consistent with ob-
servations (Li et al., 2020; Zhai et al., 2013) and ocean dy-
namics (Gan et al., 2015; Jing et al., 2015).

When the observational data are scarce, as long as the in
situ data provide a proper constraint to the EOFs, the recon-
struction can still yield reasonable results. For example, the
summer of 2001 has few in situ data, but its reconstruction,
with an RMSE of 7.3 µatm between the reconstructed data
and the observed data, appears reasonable (Fig. 8b).

In cases of extreme data scarcity, the reconstruction may
not be reliable. For example, the reconstructed data in the
summer of 2000 appear to be of poor quality (Fig. 8a), since
the relatively low values in the mid-SCS basin may not be
realistic. These poorly reconstructed data may be due to the
poor spatial coverage of the in situ pCO2 data in the summer
of 2000, which had only five grid boxes with data (Fig. 3a).
These five boxes are all located together and cover only 0.5 %
of the SCS. Similarly, the reconstructed pCO2 data for the
summers of 2005, 2006, and 2008 are not well constrained by
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Figure 5. The difference between the remote-sensing-derived summer pCO2 estimates and the observed underway pCO2 (unit: µatm) in
2000, 2001, 2004–2009, 2012, and 2014.

Figure 6. The percentage variances and cumulative variances based
on the summer remote-sensing-derived pCO2 data for the period of
2000–2014.

the in situ pCO2 data that cover only the northern shelf and
slope of the SCS so that the reconstructed pCO2 in the mid
basin are less than 350 µatm (Figs. 8d, e, and g). These small
values are unlikely, since the sea surface pCO2 in the basin is
generally higher than the atmospheric pCO2 (380–420 µatm)

(Li et al., 2020; Zhai et al., 2013). Another cause of the less
ideal reconstruction results for the summers of 2005, 2006,
and 2008 may be the large spatial variations in the in situ
data. These variations, such as those for the summer of 2008
(Fig. 3g), in the in situ data can cause a large deviation of
the regression coefficients because the linear regression is not
robust.

The reconstruction results have demonstrated the feasibil-
ity of the SOG reconstruction of the sea surface pCO2 over
the SCS, as long as the in situ data provide a proper con-
straint to the EOFs. The percentage of the in situ data cov-
erage needs not necessarily be large. However, large spatial
variations in the in situ data can distort the reconstruction and
lower the quality of reconstruction because the linear regres-
sion method is not robust.

3.3 Reconstruction validation and uncertainty
quantification

To quantitatively validate our reconstruction, we conducted a
leave-one-out cross-validation study: withholding a grid box
datum, making the reconstruction using the remaining in situ
data, and computing the difference between the withheld da-
tum and the reconstructed datum at the same grid box. This
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Figure 7. EOFs and PCs of the remote-sensing-derived pCO2 estimates. (a–c) EOFs and (d) PCs.

was repeated for every grid box with in situ data for each
year. The final cross-validation result is output as RMSE (Ta-
ble 2). The maximum RMSE is 5.2 µatm, which occurred in
2006 when there were only 25 grid boxes with in situ pCO2
data, and the in situ data had the largest spatial standard de-
viation, 49.4 µatm, among the 13 years under consideration.
The minimum RMSE is 2.4 µatm, which occurred in 2017
with 77 in situ data grid boxes and a spatial standard devia-
tion of 17.6 µatm for the in situ data. This accuracy is very
good compared to the spatial standard deviation of the in situ
data in the same year. Compared to the 2006 data, a more ac-
curate reconstruction for 2017 is expected because of more
grid boxes with in situ data and smaller spatial variability.
This is supported by the cross-validation result. The spatial
standard deviation of the reconstructed data is in the range of
2.1–6.6 µatm. The cross-validation RMSEs are in the range
of 2.4–5.2 µatm. We thus conclude that the reliability of our
reconstruction is well supported by the leave-one-out cross-
validation result.

We have also considered other types of cross-validations,
such as leaving out data in half of the study region. A nu-
merical test was made for the following situation: leaving
out the western or eastern half of the data in a year, mak-
ing the reconstruction using the remaining half of data, and
computing the RMSE between the removed data and the re-
constructed data. The analysis was done for the years with

better spatial coverage: 2007, 2009, and 2012. When the
western halves (longitude< 115.5◦ E) of data in these years
were removed, the resulted RMSEs were 2.77, 4.46, and
3.82 µatm for 2007, 2009, and 2012, respectively. When the
eastern halves (longitude> 115.5◦ E) of data were removed,
the RMSEs were 4.32, 3.66, and 3.55 µatm in 2007, 2009,
and 2012, respectively. These RMSEs fall within the range
of the RMSEs of the leave-one-out cross-validation. These
numerical results are another confirmation of the reliability
of our reconstruction.

The uncertainty in our reconstruction was quantified by
grid-by-grid comparisons of the reconstructed pCO2 with
the observed pCO2 in two ways. One is the comparison
with the observed underway data (Fig. 9). The difference be-
tween the reconstructed data and the observed underway data
mostly falls within the range from −30 to 30 µatm (Fig. 9).
The greatest deviation from the underway data appears near
the coast, likely due to the lack of some typical patterns in
coastal areas transferred via EOFs from the remote sensing
estimates. The RMSE between the reconstructed data and the
observed underway data is no larger than 31.7 µatm with a
median of 16.5 µatm, which is smaller than the RMSE be-
tween the remote-sensing-derived pCO2 and the underway
data with the relative difference between the two RMSEs
(rows 1 and 3 in Table 2) by at least 29 %. When comparing
the pCO2 data produced by Jo et al. (2012) in the northern

Earth Syst. Sci. Data, 13, 1403–1417, 2021 https://doi.org/10.5194/essd-13-1403-2021



G. Wang et al.: Feasibility of reconstructing the summer basin-scale sea surface pCO2 1411

Figure 8. Reconstructed summer pCO2 fields for the years 2000–2017 in the SCS.

SCS by a neural network approach in the summer of the years
2004–2007 with the underway pCO2, the resultant RMSE
falls in the range from 32.6 to 44.5 µatm and is twice as much
as the median RMSE between our reconstructed pCO2 and
the underway pCO2 (Table 2). Another uncertainty quantifi-
cation for our reconstruction is to compare it with the pCO2
calculated from long-term observations at Station SEATS
(Fig. 10). The difference between the reconstructed pCO2
and the observed data at Station SEATS ranges from −7
to 10 µatm with the relative difference from−1.5 % to 2.1 %.
Both comparisons confirm that our reconstruction results are
reliable.

As an application of our reconstruction and a validation,
we examine the temporal trend of sea surface pCO2 over the
SCS. The rate based on the linear temporal trend of the spa-
tial average of the reconstructed sea surface pCO2 over the
SCS from 2000 to 2017 is 2.4±0.8 µatmyr−1 (see Fig. 11a).
It is lower than the rate of fCO2 increase (4 µatmyr−1) for
the period of 1999–2003 (Tseng et al., 2007), while it is
higher than the rate of pCO2 increase for the period of 1998–
2006 (0.8 µatmyr−1) at Station SEATS (Lui et al., 2020). The
differences between their rates and ours exist because (a) our
rate is a spatial average in summer and their rates are based

on data collected in spring, summer, fall, and winter at a basin
station and (b) the period to derive our rate is much longer
than theirs. Using the summer data in Lui et al. (2020), the
rate we estimated from the year 2000, which is the begin-
ning year of our data, to the year 2006 at Station SEATS
is 2.5± 1.0 µatmyr−1. Although the period of 2000–2006 is
much shorter than our period of 2000–2017, the summer rate
at Station SEATS is almost the same as our rate based on the
reconstructed data over the SCS. When compared with the
summer rate of observed pCO2 at Station ALOHA (A Long-
Term Oligotrophic Habitat Assessment station) (22◦45′ N,
158◦W) in the North Pacific, which is 2.0± 0.2 µatmyr−1

over 2000–2017 (Dore et al., 2009) (see Fig. 11b), our rate is
consistent with the rate in the North Pacific. The consistency
of the trend in our reconstructed sea surface pCO2 over the
SCS with the local trend at Station SEATS and the North Pa-
cific trend at Station ALOHA confirms that our reconstruc-
tion is reasonable.

3.4 Outliers of the observed data in the reconstruction

The SOG method is basically a linear regression method,
which is known to be sensitive to the outliers of the response
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Figure 9. The difference between the reconstructed summer pCO2 and the observed underway pCO2 (unit: µatm) in 2000, 2001, 2004–2009,
2012, and 2014–2017.

Figure 10. The comparison between the summer sea surface pCO2 calculated from the observations and those from our reconstruction at
Station SEATS (18◦ N, 116◦ E). The pCO2 data calculated from the observations in the years of 2000, 2001, 2004, and 2006 are from Lui et
al. (2020).
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Figure 11. (a) Time series and linear trend of the spatial averages of the reconstructed summer pCO2 data in the SCS in the period of
2000–2017; (b) summer sea surface pCO2 at Station ALOHA in the years 2000–2017 adapted from Dore et al. (2009).

data. Some outliers, whether due to observational biases or
extreme events, can cause a large change in the regression co-
efficients and hence the regression results and can even make
the regression results outside the physically valid domain,
such as negative pCO2 values in the reconstructed data. Al-
though we cannot conclude that the outliers of 3σ away from
the mean in the observed data are due to data biases, we have
decided not to use them in our reconstruction to avoid the
unphysical reconstruction results. Table 3 shows the 14 out-
lier entries excluded from our response data for regression.
These outliers are located in the region of 21.25–23.25◦ N,
113.25–116.75◦ E. This region is near the Pearl River es-
tuary. Thus, these extremely low pCO2 values may result
from the Pearl River plume where the observed pCO2 can
be very low. These very low values, such as those at least
3σ away from the mean, may cause a very large gradient in
the observed pCO2. Our reconstruction has excluded these
extremely low values influenced by the river plumes. Our re-
constructed data may therefore overestimate the pCO2 val-
ues in the Pearl River estuary and its nearby region.

4 Code availability

The R computer codes and their required files for
this paper are freely available at the following link:
https://doi.org/10.5281/zenodo.4567859 (Wang et al., 2021).

Table 3. Outliers excluded from the SOG reconstruction.

Year Grid Latitude Longitude pCO2
ID (N) (E) (µatm)

2006 926 22.75◦ 116.75◦ 208
2006 952 23.25◦ 116.75◦ 197
2009 896 22.25◦ 114.75◦ 212
2009 923 22.75◦ 115.25◦ 217
2012 836 21.25◦ 110.75◦ 248
2014 873 21.75◦ 116.25◦ 191
2014 874 21.75◦ 116.75◦ 219
2016 841 21.25◦ 113.25◦ 265
2016 842 21.25◦ 113.75◦ 272
2016 868 21.75◦ 113.75◦ 239
2016 869 21.75◦ 114.25◦ 205
2016 870 21.75◦ 114.75◦ 216
2016 896 22.25◦ 114.75◦ 210
2016 897 22.25◦ 115.25◦ 274

5 Data availability

The gridded underway sea surface pCO2 data, the
remote-sensing-derived sea surface pCO2 estimates,
and the reconstruction result data are openly and
freely available at PANGAEA at the following link:
https://doi.org/10.1594/PANGAEA.921210 (Wang et al.,
2020).
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6 Conclusions

This study has demonstrated the feasibility of using the SOG
method to reconstruct the sea surface pCO2 data into reg-
ular grid boxes. We compiled the observed underway and
remote-sensing-derived sea surface pCO2 data in the SCS in
summer over the period of 2000–2017 and aggregated these
data with a grid resolution of 0.5◦× 0.5◦ for reconstruction.
The SOG method based on the multilinear regression was
applied to reconstruct the space–time complete pCO2 field
in the SCS. The method took the EOFs calculated from the
remote-sensing-derived pCO2 as the explanatory variables
and treated the observed pCO2 as the response variable. The
EOFs reflect reasonably well the general spatial pattern of the
sea surface pCO2 in the SCS and reveal features affected by
regional physical forcing such as the river plume and coastal
upwelling in the northern SCS. As long as the in situ data
provide a proper constraint to the EOFs, the reconstructed
pCO2 fields are, in general, consistent with the patterns of
the observed pCO2 and demonstrate relatively low values
along the northern coast affected by the Pearl River plume
and consistently high values in the ocean basin of the SCS.
The leave-one-out cross-validation result validates our recon-
struction with an RMSE smaller than the spatial standard de-
viation of the observed underway data in the same year. The
grid-by-grid comparison of the reconstructed summer pCO2
with the observed underway pCO2 has an RMSE smaller
than that of the remote-sensing-derived pCO2, as well as
that of the neural-network-produced pCO2 in the same year.
Moreover, our reconstructed pCO2 compares well with the
pCO2 calculated from observations around Station SEATS
in the northern basin of the SCS. These comparisons confirm
that our reconstruction is reliable. The temporal rate of our
reconstructed sea surface pCO2 over the SCS is consistent
with the local rate at Station SEATS and the North Pacific
rate at Station ALOHA, which further validates our recon-
struction. These reconstructed pCO2 fields provide full spa-
tial coverage of the sea surface pCO2 of the SCS in sum-
mer over a temporal scale of almost 2 decades and there-
fore help fill the long-lasting blanks on the global sea surface
pCO2 map. Thus, the reconstruction products will help im-
prove the accuracy of the estimate of the oceanic CO2 flux of
the largest marginal sea of the western Pacific so as to better
constrain the global oceanic carbon uptake capacity.

Although the SOG method can optimize the information
from both the in situ data and the remote-sensing-derived
data, the reliability of the reconstructed results is still limited
by the observed data. When the observed data are limited to
only a few grid boxes in a small region, the reconstruction
results may not be realistic. Additional constraints have to be
considered.
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