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A B S T R A C T

Concentrations of chloropigments and particulate organic carbon (POC) in large-volume in-situ pump samples
from the Mediterranean Sea were used to estimate rate constants of processes that control the fate of particles,
and specifically chloropigments, in the water column. Here we introduce a Bayesian statistical inversion method
that combines the data with a new box model and has the capacity to infer rate constants for POC respiration/
dissolution, chlorophyll and pheopigment degradation, and particle aggregation and disaggregation. We use
first-order kinetics to model disaggregation, and use both first-order and second-order kinetics to model ag-
gregation. Using these methods, the estimated small-particle (1–70 μm) POC respiration rate constant was
2.44+1.69

−1.00 yr−1 (0.41 yr). The estimated disaggregation and second-order aggregation rate constants were
85.6+63.4

−36.4 yr−1 (1.17×10−2 yr) and 2.78+2.01
−1.17 μM−1 yr−1, respectively. Using the optimal rate constants and the

corresponding particle concentrations, disaggregation is ~4.2 times faster than the small-size POC dissolution
rate, which indicates that disaggregation is a dominant processes at the time of sampling. More importantly, by
comparing our results with those of previous studies, we conclude that sampling methods have less influence
than tracers themselves on inferring particle dynamic rate constants. We previously introduced a somewhat
similar approach to modeling SV sediment trap data, but large volume pumps are a much more common sample
collection method in oceanographic surveys than SV sediment traps, and thus our new model should have a
wider applicability.

1. Introduction

Sinking particles transport organic carbon to the ocean interior at a
globally significant rate of 4–14 Pg C yr−1 (Lima et al. 2014; Emerson
2014), and this is one of the few natural processes removing CO2 from
the atmosphere for periods significant to climate change. However,
most organic matter produced by photosynthesis in the euphotic zone, a
key source of marine particles, is consumed or respired in the upper
ocean. Less than 10% of the total organic matter produced there is
transported into the deep ocean by sinking particles (Lee and Wakeham
1988). Theoretically, particle density and size determine particle
sinking speed according to Stokes' law, and thus residence time in the
water column (McCave 1975; Clegg and Whitfield 1991; Armstrong
et al. 2002). However, processes such as aggregation and disaggrega-
tion can alter this relationship and ultimately influence particle transfer
efficiency (e.g. McDonnell and Buesseler 2010).

Historically, the quantitative dynamics of particle aggregation and
disaggregation processes has been studied using thorium isotopes (e.g.

Bacon and Anderson 1982; Clegg and Whitfield 1991; Clegg et al. 1991;
Murnane 1994; Murnane et al. 1996; Cochran et al. 1993; Cochran et al.
2000), and much of what we currently know about the dynamics of
these processes is from work with particulate thorium. Thorium
radioisotopes have unique advantages, e.g., multiple radionuclides can
share the same chemical characteristics but have different decay half-
lives, which offers independent constraints on particle fluxes. In addi-
tion, the environmental sources of these radionuclides are well-known.
However, thorium tracers also suffer from several inherent dis-
advantages: 1) different particle components have different degrees of
affinity to thorium (Roy-Barman et al. 2005); 2) the particulate thorium
activity of short-lived isotopes (e.g. 234Th) become very low (below
detection limits) in the oligotrophic deep ocean, which can limit their
applicability; and 3) dissolved 234Th activity is orders of magnitude
higher than particulate activity, thus in models, dissolved thorium in-
fluences the adsorption-desorption balance more than particulate
thorium does, making the disaggregation rate constant very sensitive to
small errors in the adsorption rate constant, as illustrated by Wang et al.
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(2016). To make this last point clear, assuming first-order reaction ki-
netics and steady state, an activity balance of small-size particulate
234Th can be expressed using the following equation:

+ + + =[Th ] ( )[Th ] [Th ] 0,1 d 1 234 s l (1)

where κ1, κ−1, α, β, and λ234 are adsorption, desorption, aggregation,
disaggregation, and 234Th radioactivity decay constants, respectively.
[Thd], [Ths], and [Thl] are dissolved, small- and large-size particulate
234Th activities, respectively. Typical dissolved and large-size particu-
late 234Th activities in the surface ocean are 2400 and 2 dpm m−3,
respectively. A small change in adsorption rate constant κ1(e.g. δκ1 =
0.1) changes the disaggregation rate constant by a factor of 120, if we
assume other processes are unchanged. Below we document the ad-
vantages and disadvantages of chloropigments relative to those of
thorium. The use of multiple tracers should provide a more complete
picture of particle dynamics in the ocean than the use of thorium or
chloropigment tracers alone.

Chlorophyll a (Chl a) is an essential pigment that is produced during
phytoplankton photosynthesis. Chloropigment (Chl a and its degrada-
tion products: pheophorbide, pyropheophorbide, and pheophytin) tra-
cers were first proposed as an alternative for thorium isotopes in tracing
particle dynamics by Wang et al. (2017), who used chloropigments
sampled using Indented Rotating Sphere (IRS) sinking velocity (SV)
traps to study particle aggregation and disaggregation. In that study,
particle sinking speeds were measured using SV traps, and sinking
particles were grouped into two categories based on their sinking speed.
A two-layer model was applied to estimate particle aggregation and
disaggregation, and particulate organic matter respiration rate con-
stants. Compared to thorium as a tracer, one distinct advantage of
chloropigments is that they do not adsorb to or desorb from particles.
Chloropigments are also an integral part of most marine particles
formed in the euphotic zone. Wang et al. (2017) compared aggregation
and disaggregation rate constants obtained using chloropigment con-
centrations to their counterparts obtained using thorium isotope ac-
tivities. In that case, chloropigment concentrations and thorium activ-
ities were measured in samples from the same sediment trap. There
were clear differences in the results from the two different tracers:
aggregation and disaggregation rate constants estimated from chlor-
opigments were orders of magnitude higher than those from thorium
tracers, indicating that due to the distinctly different properties of the
two tracers, they trace particle processes differently. One should note
that making inferences about particle dynamics is complicated because
different sampling methods in addition to different tracers have the
potential to influence our conclusions. Therefore, this paper aims to
investigate how the choice of sampling methods versus tracers affects
our inferences.

SV sediment traps have a major advantage compared to other
techniques, such as time-series sediment traps or large volume pumps,
because SV sediment traps can measure both sinking particle flux and
particle sinking velocity (Peterson et al. 2005, 2009; Armstrong et al.
2009). By using SV trap data, we can avoid any assumptions that link
particle size to particle sinking velocity, assumptions that may not be
true in the ocean (e.g., McDonnell and Buesseler 2010). However, due
to the lack of easy commercial availability, SV sediment traps have not
been widely used in oceanographic surveys. In addition, interpretation
of aggregation and disaggregation derived from SV traps seems am-
biguous, since traditionally it is thought that aggregation is the process
of small particles colliding with other particles and becoming larger,
and disaggregation is the process of larger particles breaking up into
smaller particles. However, particles in fast sinking categories are a
combination of large and small particles, because some smaller particles
have higher sinking speed, and vice versa (McDonnell and Buesseler
2010).

In-situ pumps can collect both large and small particles by filtering
the seawater through filters or meshes of different size (e.g., Bishop
et al. 2012). In terms of flux measurements, these pumps have a

drawback in that they take a snapshot of the water column only over a
1–2 day period and the different depths are not always sampled on the
same day due to logistical constraints. In addition, particles can break
up on filters and may not reflect their in-situ size. However, they are
much cheaper than traps, have simpler electronics, and are easier to
deploy and recover. Unfortunately, there has been no generally ac-
cepted method to convert pump-derived concentrations to flux.

If both sinking flux and sinking velocity are known, a conceptual
model is relatively easy to build (Wang et al. 2017). However, in-situ
particle sinking velocity is rarely measured, thus, different techniques
are required to model pigment concentrations sampled using large-
volume pumps at multiple depths. In the following, chloropigments
sampled using large-volume pumps were used to study particle ag-
gregation, disaggregation, and particulate organic carbon respiration
rate constants. The objectives of this new work were 1) to introduce a
new method that allows us to study particle dynamics using chlor-
opigment (or other geochemical tracer) concentrations measured in
samples from large volume pumps, 2) to compare particle exchange rate
constants with two other studies at the same site, and 3) to determine
whether the tracer used or the sampling technique used is a more im-
portant constraint on modeled rate constants. This third goal was par-
ticularly interesting to us. Wang et al. (2016) and Wang et al. (2017)
used the same sampling techniques but different tracers (thorium and
chloropigments, respectively). The present study and (Wang et al.
2017) used the same chloropigment tracers but sampled using different
techniques, i.e. SV trap versus large volume pumps. The inter-
comparisons we describe here allow us to investigate whether sampling
techniques (pumps vs traps) or the tracer itself (chloropigments vs
thorium) imposed the stronger constraint on modeled rate constants.

2. Methods

2.1. Sampling site

Samples were collected using in-situ pumps as part of the MedFlux
project at the French JGOFS DYFAMED (Dynamics of Atmospheric
Fluxes in the Mediterranean) site (43°20′N, 7°40′E) in the
Mediterranean Sea in May 2005 (Cochran et al. 2009). Lee et al.
(2009a) describe the DYFAMED site and why it was chosen for the
MedFlux study. This site in the Ligurian Sea has an average water depth
of 2300 m and is 53 km from the coast at Nice. It is traditionally treated
as an open ocean site because the longshore Ligurian current cuts off
most terrestrial influence (Marty et al. 2002). This site is characterized
by strong winter mixing and low winter primary production, followed
by a strong phytoplankton spring bloom from March to April. The
spring bloom is terminated by summer stratification and thus a shorter
supply of nutrients. A smaller phytoplankton bloom in fall is promoted
by the decrease in stratification at that time.

2.2. Sampling and analyses

MedFlux chloropigment and POC sampling methods, analytical
procedures, and pump concentration data have been described and
discussed previously in Abramson et al. (2010). Essentially, large vo-
lume in-situ pumps (Challenger Oceanic) were used to collect particle
samples that were separated into two groups based on their size. Sea-
water flowed first through a 70-μm Nitex screen that retained larger
(> 70 μm) particles, and then through a 1-μm quartz microfiber filter
that retained smaller (1–70 μm) particles. Once retrieved, half of each
142-mm filter was frozen for later chloropigment analyses. Material
collected on the 70-μm filter is typically thought to be more re-
presentative of sinking particulate matter, whereas material passing
through the larger filter and collected on the 1-μm filter is typically
thought to be a more slowly settling fraction (Cochran and Masqué
2003). As discussed in Abramson et al. (2010), if Stokes' law were ap-
plied to these particles, the 70-μm cutoff would be roughly equivalent
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to a division between particles settling at speeds less (slowly sinking)
and more (faster sinking) than 0.5 m d−1.

2.3. Data selection

The original data used in our model are shown in Table 1. The
MedFlux site was surveyed during multiple cruises in 2003 and 2005;
however, only data from pump samples collected in late May 2005 are
used in this study, because > 70-μm-size particles were only collected
at that time. Samples in the euphotic zone (depth < 80 m) and below
the nepheloid layer (depth > 2000 m) were excluded to reflect only the
export zone and to eliminate the influences of primary production and
sediment resuspension.

According to our CTD data, the mixed layer at the time of pump
sampling was 20–30 m (Lee et al. 2009b). In addition, more extensive
studies of the mixed layer at this location (e.g. D'Ortenzio et al. 2005;
Houpert et al. 2015) show that the mixed layer depth at this location is
always less than ∼ 50 m, which is well above our studied depths. A
more detailed description of these and other MedFlux chloropigment
data, both in general terms and in a discussion of qualitative evidence
for aggregation and disaggregation, can be found in Abramson et al.
(2010).

2.4. Conceptual models

We modified the conceptual model used in Wang et al. (2017) for
sediment trap particles to tailor it for pump data (Fig. 1). Specifically,
we model smaller and larger particle groups rather than slow- and fast-
sinking particle groups. The description of the conceptual model is si-
milar to our previous model. For example, small and large particles
exchange particle components via aggregation and disaggregation:
larger particles disaggregate to form smaller particles, and smaller
particles aggregate to become larger particles. Chl a that originates in
small phytoplankton is incorporated into larger particles via aggrega-
tion, and pheopigments that are products of zooplankton digestion can
be associated with smaller particles via particle disaggregation
(Abramson et al. 2010). In addition, some pheopigments are products of
microbial Chl-a degradation, and can therefore be produced directly in
small particles. Small-size POC and pheopigments can be respired to
CO2. Chl a also can degrade to colorless components, disappearing from
our analytical window. However, current analytical methods did not
allow us to distinguish this latter pathway. Future quantification of
colorless product formation will allow inclusion of this pathway in the
model. However, here we ignore this process as did in Wang et al.
(2017).

2.5. Mathematical descriptions

We assume first-order reaction kinetics for disaggregation since

disaggregation is the breakdown of a large particle into smaller parti-
cles, and a linear dependence on concentration is a reasonable as-
sumption. However, aggregation kinetics are more complicated because
aggregation usually involves two or more particles, and particles need
to collide to aggregate. To simplify mathematical models, first-order
kinetics has been widely used in previous thorium-based studies (e.g.
Murnane et al. 1990; Cochran et al. 1993; Marchal and Lam 2012).
However, Jackson (1990) and Jackson and Burd (2015) argue that
aggregation is a non-linear process, with an aggregation kernel that
depends on particle sinking speed, stickiness, and size. To reconcile the

Table 1
Concentrations in μM of data collected using large volume pumps at the MedFlux/DYFAMED Site (43°20′N, 7°40′E) in the Mediterranean Sea in May 2005 [Cochran
et al. (2009)]. The left-side columns are for small particles (S) (1–70 μm). The rest are for large particles (> 70 μm) (L). According to [Abramson et al. 2010], replicate
pigment samples (i.e., duplicate punches taken from different places on the same pump filter) generally differed within 30% (calculated by propagation of error).
POC data have much lower uncertainty (2%). The corresponding measurement errors are incorporated in data covariance matrix (Σd).

Site Depth Chl a(S) POC(S) ∑(Pheo)(S) Chl a(L) POC(L) ∑(Pheo)(L)

(m) (μM) (μM) (μM) (μM) (μM) (μM)

D 100 1.30×10−5 1.89 3.32×10−5 1.76 ×10−8 2.32×10−1 2.34×10−7

Y 125 9.35×10−6 1.26 1.49×10−5 1.63 ×10−8 1.02×10−1 1.01×10−7

F 150 6.21×10−6 1.04 6.52×10−6 1.98 ×10−8 8.23×10−2 1.41×10−7

A 200 2.63×10−6 0.64 6.60×10−6 3.13 ×10−8 1.56×10−1 1.15×10−7

M 300 1.37×10−6 0.44 1.88×10−6 1.22 ×10−8 4.15×10−2 8.91×10−8

E 500 1.54×10−6 0.44 1.81×10−6 1.36 ×10−8 8.12×10−2 1.22×10−7

D 750 3.75×10−7 0.51 1.12×10−6 3.43 ×10−9 6.44×10−2 6.41×10−8

∑(Pheo) means ∑(pheophorbide,pyropheophorbide,pheophytin).

a)

b)

Fig. 1. Conceptual model modified from that in Wang et al. (2017) for particle
fluxes. One significant difference is that for the pumps, we used small and large
size particles instead of slow- and fast-sinking particles. In addition, aggregation
and disaggregation occur between small and large particles, instead of between
slow- and fast- sinking particles as in Wang et al. (2017). Both small- and large-
size particles sink in the water column.
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differences, we first model aggregation using second-order reaction
kinetics (Eqs. 2–7). We ignore aggregation between small and large
particles since concentrations of large particles are 2–3 orders of
magnitude lower than that of small particles (Table 1), and thus their
interaction rates are assumed to be low. We then compare the first- and
second-order reaction aggregation models to 1) determine how dif-
ferent kinetics can influence our results, and 2) facilitate the compar-
isons with previous results, which are based on steady-state and first-
order aggregation assumptions.

For large size POC, we have the following governing equation:

= +d
dt

POC POC POC POC S POC POC[ ] [ ][ ] [ ] [ ] [ ] ,L
S S

Aggregation

L

Disaggregation

L L

Sinking

L x

(2)

and for small size POC, we have the following governing equation:

=

+

d
dt

POC POC POC POC POC S POC

POC

[ ] [ ] [ ] [ ][ ] [ ]

[ ] ,

S
L

Disaggregation

S

Respiration

S S

Aggregation

S S

Sinking

S x

2

(3)

where α and β are aggregation and disaggregation rate constants, re-
spectively. κ2 is the small-sized POC dissolution rate constant. The bold
variables (e.g. [POCL] and [POCS]) represent 7×1 vectors, for the
concentrations at each discrete depth level. The subscripts L and S de-
note large- and small-size POC, respectively. The downward tracer
transport by sinking particles is modeled using a transport operator, S,
which is constructed from a powerlaw flux attenuation profile ac-
cording to Martin et al. (1987). Given an assumed constant particle
dissolution rate and an exponent ‘b’ one can define a particle sinking
speed (ω) that reproduces the powerlaw flux attenuation profile (Kriest
and Oschlies (2008). Since the large particle dissolution rate is not
modeled, we used a disaggregation rate constant as a substitute. The
resulting particle flux divergence, c

z
( ) , can be written as a matrix

vector product in which the elements of the vector c are the particle
concentrations in a set of discrete layers and the matrix, S, is con-
structed using finite-differences and a discretized vector of sinking ve-
locities, w, defined at the interfaces separating the layers. For example,
if we divide the water column into 7 layers, the concentration of a
tracer can be organized into the vector, c, and the discretized flux di-
vergence is given by Sc where S is a 7×7 matrix. We neglect advective
and diffusive transport of particles because their influence is assumed to
be small compared to other source and sink terms (Savoye et al. 2006).
[POCL/S]x (or similarly [ChlL/S]x and [PhyL/S]x in Eqs. 4 and 7, re-
spectively) is the source of POC that sinks out of the euphotic zone and
into the model's uppermost box.

Chl a is assumed to originate only in smaller particles. This is a
reasonable assumption considering the sampling time (May 2005). At
that time, the spring bloom is already over, and diatom density should
be low so that primary production should be dominated by smaller
phytoplankton (Marty et al. 2002). Table 1 shows that Chl-a con-
centrations were very low at the sampling time, indicating a low pri-
mary production condition. Then we assume that any Chl a found in
large particles is from small particle aggregation. We also assume that
Chl a has a two-step degradation: it first degrades to pheopigments,
which then further degrade to CO2. The governing equations for pig-
ments are as follow.

= +d
dt
Chl Chl Chl Chl S Chl Chl[ ] [ ][ ] [ ] [ ] [ ] ,L

S S

Aggregation

L

Disaggregation

L L

Sinking

L x

(4)

=

+

d
dt
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L
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S S
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(5)

= +
d

dt
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Phy Phy Phy S Phy Phy
[ ]
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= +

+

d
dt
Phy

Phy Chl Phy Phy Phy

S Phy Phy

[ ]
[ ] [ ] [ ] [ ][ ]

[ ] [ ] ,
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(7)

where κ1 is the rate constant for degradation of Chl a to pheopigments,
and κ3 is the pheopigment respiration rate constant.

2.5.1. Steady state model
Since we do not have time-series measurements, we have no way to

build a traditional non-steady state model. Instead we first assume the
system is at steady state, but we nevertheless take into account the
impact of non-steady state behavior on our inferences (see section
2.5.2). At steady state, we ignore the time derivative terms (d()/dt) on
the left hand side of Eq. 2 through Eq. 7. And the resulting discretized
equations can be written as a system of 42 equations with 42 unknowns
(6 tracers in 7 discrete layers). In vector form we have

=F x( ) 0, (8)

where F is a 42×1 non-linear function where
(xT = [POCl,POCs,Chll,Chls,Phyl,Phys]), that is, a 1×42 row vector.
The non-linearity is due to second-order reaction kinetics for aggrega-
tion. We solve the equation using Newton's method.

F is also a function of k= 13 unknown parameters,
[bL,bS,α,β,κ1,κ2,κ3, [POCL]x, [ChlL]x, [PhyL]x, [POCS]x, [ChlS]x,
[PhyS]x], which makes the solution x an implicit function of these
parameters. (Note that b is the powerlaw exponent used to formulate
the sinking particle transport operator, (S).) We estimate these para-
meters using a two-level Bayesian process. At the first level we estimate
the vector of parameters, e.g., (p= log [bL,bS,α,β,κ1,κ2,κ3, [POCL]x,
[ChlL]x, [PhyL]x, [POCS]x, [ChlS]x, [PhyS]x]) by assigning a normal
probability distribution to the prior probability for p as well as to the
deviations of x(p) from the observations. The resulting logarithm of the
posterior is given by −0.5f(p|Γ,Λ) + constant, with

= +

+

f p x p c x p c p p p p( | , ) ( ( ) ) ( ( ) ) ( ) ( )

constant,
0 d

1
0 0 p

1
0

(9)

where c0 is a vector that contains observed data, and p0 is a vector that
contains the mean of prior probability distribution of the parameters.
Σd/Γ and Σp/Λ are the covariance matrices for the likelihood and the
prior. The hyper-parameters, Γ and Λ scale the data and prior preci-
sions. The relative sizes of Γ and Λ control the relative importance of
the prior and the likelihood function in determining the location of the
maximum of the posterior probability for the parameters. Their overall
magnitude influences the size of the posterior error bars. At the first
level, we find the most probable parameter values (conditioned on as-
sumed values for Γ and Λ) by minimizing f using a trust-region algo-
rithm as implemented in Matlab's fminunc function. By optimizing the
logarithm of the parameters rather than the parameters themselves we
avoid the possibility that the optimization routine will propose negative
rate constants. After conditioning on the model, the errors are expected
to be independent so that Σd is a diagonal matrix, whose diagonal
elements are the squares of the measurement standard deviations of the
corresponding data. The hyper parameter, Γ, rescales these variances to
account for the fact that model errors can also contribute to the misfits.
We also assign a diagonal matrix to Σp, which is equivalent to assuming
that a priori knowledge of one parameter does not provide any in-
formation on the value of another parameter. We assigned a large prior
variance for each parameter (Table 2) to allow the data to have as much
influence as possible. Ultimately, only the relative size of the prior
parameter precisions matters because we rescale the prior covariance
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matrix with the hyper parameter, Λ. The trust-region optimization al-
gorithm iteratively searches for optimal parameters. It is very efficient
because we are able to provide the gradient and Hessian matrix for f
(p|Γ,Λ). Typically, we obtain the optimal parameters in less than 50
iterations.

At the second level we estimate Γ and Λ by maximizing Bayesian
evidence (MacKay 1992),

=Z dp p c( , ) prob( | ),l0 (10)

which is equivalent to maximizing the likelihood for Γ and Λ. A good
approximation to the logarithm of the evidence is given by

= + +

+

Z f k Np Alog( ( , )) ( ) 1
2

log(det( ))
2

log( )
2

log( )

constant. (11)

where p is the vector of optimal parameter values estimated at the first
level for a prescribed Γ and Λ. A is the k× k Hessian matrix computed
by taking the second derivatives of f(p|Γ,Λ) given in Eq. 9 with respect
to the k= 13 parameters and evaluating the resulting 13 × 13 matrix
at the optimal parameter values. Because the first level optimization for
p is very fast, we perform the second level optimization by evaluating
log(Z(Γ,Λ)) on a two-dimensional mesh and choosing the arguments,
( , ) that yield the maximum (Fig. 2a, c). The two-level evidence
maximization algorithm allows for the automatic calibration of the
relative importance of the likelihood and prior for the determination of
the posterior probability for the parameters, which is then used to find
the most probable parameter values along with their errorbars. Our best
estimate for each parameter is given by the p that maximizes
f p( | , ). The parameter errorbars corresponding to ± 1 σ are de-
termined using Laplaces approximation (e.g. Teng et al. 2014).

2.5.2. Non-steady state model
The validity of the steady-state assumption is somewhat dubious.

Phytoplankton blooms at the MedFlux study site evolve with a time-
scale of a week or so, which does not seem long enough for the full
particle flux dynamics to reach steady-state. We therefore wish to test
the robustness of our inferences to departures from steady-state. If we
allow arbitrary departures from steady-state our biogeochemistry
model is able to fit our dataset – which provides only a snapshot view of
the particles – with essentially any choice of parameters because the
residuals between the steady-state solution and the observations can
simply be attributed to the time tendency term. With such a flexible
model it is impossible to learn anything about the parameters control-
ling the particle-flux dynamics.

To make progress we apply an analysis method first developed in
Wang et al. (2019) to test the robustness of inverse-model inferences to

the steady-state assumption when the constraining dataset consists of a
single snapshot in time. This involves decomposing the model's dy-
namics into a part that equilibrates quickly on a timescale shorter than
that of a bloom, τbloom∼1 week, and a part that equilibrates more
slowly on timescales τ > τbloom. We then allow for departures from
steady-state only in the slowly equilibrating dynamical modes.

The decomposition into fast and slowly equilibrating dynamics is
achieved through an eigenmode analysis of the linearized model about
its steady-state solution at the optimal (steady-state) parameter set,
x p( )o . Assuming that such departures are small, the leading-order
governing equations for the departures from steady-state, x′(t) ≡ x
(t) − xo, can be expressed as

=d
dt
x Jx , (12)

where

=
=

J F x
x
( )

x xo (13)

is the model's Jacobian matrix. The above system of differential equa-
tions admits solutions of the form

=
=

t a ex v( ) ,
k

N

k k
t

1

k

(14)

where {σk,vk|k= 1,⋯,N= 42} are eigenvalue-eigenvector pairs sa-
tisfying −σkvk = Jvk. The real part of the eigenvalues yields the cor-
responding eigenmode's damping rate and can be used to separate the
solution into a weakly damped part with e-folding decay timescales,

’s 1/ { }k k bloomR and a strongly damped part with <’sk bloom.
The ak’s are undetermined amplitudes that can be determined by
knowing the solution at some given time. Since the dimensions of the
model's state space is equal to the number of amplitudes, any initial
condition can be accommodated if we retain all the eigenmodes.
Instead we assume that all the strongly damped modes have negligible
amplitudes on the grounds that the amplitudes of these modes cannot
deviate far from zero before being damped out. The remaining ampli-
tudes corresponding to slowly decaying modes are retained in the
model and their unknown amplitudes are added to the list of adjustable
parameters, which when marginalized out of the posterior probability
will yield errorbars on the other parameters that take into account the
possibility that the system is out of equilibrium on longer timescales.
Through this procedure we relax the steady state assumption without
making the model so flexible that it can teach us nothing about the
particle-flux dynamics.

Table 2
Particle aggregation, disaggregation, chloropigment degradation, and POC dissolution rate constants and ± 1σ errorbars estimated based on pump data sampled at
the MedFlux/DYFAMED site (unit: yr−1 except for Martin curve exponential b that is dimensionless and second-order aggregation rate constant (α) that has a unit of
μM−1 yr−1). exp.(p0) is parameter prior, and σp2 is variance. SS and NSS denote steady state and non-steady state results. The last column is reference.

kinetics SS/NSS bS bL κ1 κ2 κ3 α β Ref.

exp(p0) – – 0.87 0.87 1.38 1.38 1.38 5.47 148
σp2 – – 0.16 0.16 2.98 2.98 2.98 4.01 6.64
Pump pigments 2nd-order NSS1 0.90+0.09

−0.08 0.89+0.09
−0.08 1.38+0.75

−0.49 1.94+0.70
−0.52 1.39+0.75

−0.49 4.84+1.69
−1.25 144.9+66.1

−45.4 [Ref.]3
Pump pigments 2nd-order NSS2 1.00+0.22

−0.18 0.81+0.17
−0.14 1.69+1.81

−0.87 2.46+1.77
−1.03 2.07+1.93

−1.00 2.75+2.04
−1.17 84.6+63.7

−36.3 [Ref.]3
Pump pigments 2nd-order SS 0.98+0.21

−0.17 0.83+0.17
−0.14 1.68+1.74

−0.86 2.44+1.69
−1.00 2.06+1.86

−0.98 2.78+2.01
−1.17 85.6+63.4

−36.4 [Ref.]3
Pump pigments 1st-order SS 0.93+0.24

−0.19 0.86+0.22
−0.18 2.00+3.03

−1.21 2.66+2.49
−1.28 1.86+2.68

−1.10 3.18+3.05
−1.56 73.1+69.6

−35.6 [Ref.]3
SV Thorium 1st-order SS – – – – – 0.07–1.88 0.30–3.01 [Ref.]4
SV pigment 1st-order SS – – 1.6+0.4

−0.3 1.5+0.5
−0.4 2.1+0.7

−0.5 3.2+9.9
−2.4 149.9+297.3

−99.6 [Ref.]5

1Corresponding to Θ = 10−2 (see text).
2Corresponding to Θ = 1013 (see text).
3this study;
4Wang et al. (2016);
5Wang et al. (2017).
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2.5.3. First-order aggregation model
To compare with previous models, in which steady-state and first-

order reaction kinetics are assumed for aggregation, we altered Eqs. 2–7
by changing the formulation for aggregation from Chl Chl[ ][ ]

Aggregation

s s to

Chl[ ]
Aggregation

s . And then Eqs. 2–7 are simplified into a linear system, which

can be easily solved using a direct matrix inversion in Matlab. We then
use the same Bayesian inversion method as introduced above to esti-
mate the parameters.

3. Results and discussion

A Bayesian inverse method was previously applied to MedFlux IRS
SV sediment trap data to estimate particle exchange parameters (Wang
et al. 2017). In that study, the method was tested by creating a set of
synthetic data using a finite difference model with a set of known “true”
parameters, and then contaminating the data with random errors, fi-
nally recovering the “true” parameters by using the inverse method.
The same mathematical model is applied here; however, instead of
using the two-layer model created to describe data collected using SV
sediment traps, we use a box model to describe the data collected using
large volume pumps, a sample collection method that is more common
in oceanographic surveys than SV sediment traps.

One important difference between pump and SV sediment trap data
is that pumps measure concentrations, and SV sediment traps measure
particle fluxes at different sinking velocities. The previous "two-layer
model" is tailored for flux data because flux differences between trap
depths are known. In addition, because the data are available at only
three trap depths, they are inadequate to build a traditional box model
(Wang et al. 2016, 2017). In contrast, the pump data is available at 7
depths and enables us to create a box model, for which the boundary

condition is estimated as part of the inversion.

3.1. First-order versus second-order model

Fig. 2b and Fig. 2d show model versus observation comparisons for
first- and second-order aggregation models, respectively. With the same
number of parameters, the second-order model (R2 = 0.94) fits the
observations better than the first-order model (R2 = 0.90). However,
the estimated values of the common parameters (Table 2) are not sig-
nificantly different (Note that the aggregation rate constants have dif-
ferent units and are therefore not comparable.). The comparisons here
are interesting in several respects. On one hand, the assumptions we
made about first- and second-order reaction kinetics of aggregation do
not significantly influence POC dissolution and chloropigment de-
gradation rate constant estimates. We think this is mainly due to the
fact that aggregation is assumed to occur among particles that have the
same size, same stickiness, and are non-sinking, instead of among dif-
ferent classes of particles. On the other hand, the better fit of the
second-order model to observed data shows that a second-order model
can better represent particle dynamics as suggested by Jackson (1990)
and Jackson and Burd (2015).

3.2. Steady state versus non-steady state

Carrying out the eigenmode analysis described in Section 2.5.2 for
our model we found 21 modes with e-folding decay timescales greater
than τbloom = 5 days (Fig. 3a). The amplitude of these modes were then
added to the list of adjustable parameter, [p,a], which is now a 34×1
vector (the 13 original model parameters plus 21 amplitudes). With 34
parameters and 36 equations, the system is nearly underdetermined.
We thus added a Gaussian prior with zero mean on the amplitudes of
the weakly damped eigenmodes with one more hyper-parameter, Θ,
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scaling the prior precision of these amplitudes. We note that in the limit
Θ → ∞ we recover the steady state model. Whereas in the limit Θ → 0
the amplitudes are completely free to fit as much of the data variance as
possible. To determine the value of Θ we maximized the corresponding
evidence similar to Eq. 11 but now over the three-dimensional space
spanned by Λ, Γ, and Θ. This analysis yielded a most probable value for
the scaling of the prior precision on the weakly damped eigenmodes
with log10(Θ)∼13, a value that is so large as to effectively clamp the
amplitudes to zero. This result suggests that conditioned on our limited
dataset the steady-state model is more probable because it can fit the
data reasonably well (R2 = 0.94) with a much smaller number of free
parameters than the model that retains the weakly damped dynamics.
For reference we also fit the non-steady state model by prescribing
log10Θ=-2 and obtained an R2 = 0.98 (Fig. 3b). By further reducing Θ
we were able to capture up to 99% of the variance indicating that the
residuals of the steady-state model project most strongly onto the
model's weakly damped dynamics rather than on the neglected strongly
damped dynamics, which we assumed a priori to be unimportant.

The optimal parameters calculated for both steady-state and non-
steady-state models are listed in Table 2. The differences in the optimal
parameter values are small compared to their uncertainties, which

indicates that the steady-state assumption is not a large source of bias in
our model. A plot of the model-predicted concentrations against the ob-
served concentrations is shown in Fig. 3b. The steady-state model (R2 =
0.94) fits the data almost as well as the non steady-state case (R2 = 0.98),
but with significantly less parameters (13 for steady-state and 34 for non
steady-state models). The optimal parameter estimates have strongly
overlapping errorbars and are therefore consistent. The errorbars for the
steady-state model are slightly smaller compared to those of the most-
probable non steady-state model. Note that although the non-steady model
with Θ = 0.01 has the smallest parameter errorbars, we reject that model
due to its very low probability (more than 10 orders of magnitude less
probable). We thus report the parameter values from the steady-state
model. Considering the large dynamic range of the data (up to 7 orders of
magnitude), both models do a decent job of fitting the observational data.

3.3. Particle sinking velocity

In contrast to previous box models that assign an arbitrary sinking
velocity for large particles (e.g. Clegg and Whitfield 1991; Murnane
et al. 1990; Murnane 1994; Cochran et al. 1993; Cochran et al. 2000), in
this study we built depth-dependent sinking velocity into the model by
using a vertical flux transport operator S. Variable sinking velocities
have been shown to better represent sinking particles in geochemical
models (Kriest and Oschlies 2008). The power law model for the flux
attenuation with depth, known as the Martin Curve, indicates either an
increasing sinking speed or a decreasing remineralization rate with
depth (Martin et al. 1987). Increasing sinking speed has also been
suggested by analyses of sediment trap array data (Berelson 2002). On
the other hand, when Xue and Armstrong (2009) applied the bench-
mark method to IRS time series sediment trap data collected at multiple
locations, they obtained an average sinking speed of 220 ± 65 m d−1,
and concluded that particle sinking speed did not change with depth.
Here we do not apply a constant sinking speed for three reasons.

First, results based on sediment trap data may not be applicable to
the large-volume pump data. Traps are deployed for months, and are
likely to capture a larger amount of fast-sinking particles. The relatively
short sampling time that the pump is deployed decreases the chance of
capturing really fast-sinking particles, which are rare in the ocean.
According to Giering et al. (2016); Villa-Alfageme et al. (2014); Alonso-
González et al. (2010), a large fraction of the particles sink at a speed
lower than 40 m d−1. For comparison, we calculated particle sinking
velocities based on an optimal ‘b’ value and disaggregation rate con-
stant (see Section 2.5). Large-size particle sinking velocity ranged from
∼7 to ∼183 m d−1 with an average of 66.79 ± 68.56 m d−1. Both the
range and mean SV are similar to previous estimates for aggregates (e.g.
Alldredge and Gotschalk 1988; Asper et al. 1992; Pilskaln et al. 1998),
but lower than that for fecal pellets (Fowler and Small 1972; Komar
et al. 1981). Small-size particle sinking velocity ranged from ∼0.2 to
∼5 m d−1, with an average of 1.84 ± 1.88 m d−1, much slower than
that of large-size particles. The average sinking speed is slightly higher
than the cutoff speed (0.5 m d−1) estimated by Abramson et al. (2010)
from Stokes' law.

Second, without a rate-determining factor like decay half-life in
thorium models, we cannot simultaneously determine sinking speed
and particle exchange rates. We tested our model by applying two
different sinking speeds: 100 m d−1 and 200 m d−1. As shown in
Table 3, disaggregation rate constants change proportionally with
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Fig. 3. a) Plot of e-folding decay timescale in units of days of slowly decaying
eigenmodes (> 5 days) (second-order model). b) model versus observation
comparisons for the second-order non steady-state model. Red stars represent
POC, blue triangles correspond to pheopigments, and cyan circles stand for Chl
a. (For interpretation of the references to colour in this figure legend, the reader
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Table 3
Parameter values of constant sinking speed model (unit: yr−1 except for sinking
speed (SV) that is m d−1). Parameters are defined in Fig. 1.

SV κ1 κ2 κ3 α β

ω= 100 1.68 10.55 1.98 453 1096
ω= 200 1.66 12.84 1.93 498 1722
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sinking speed.
Lastly but most importantly, our objective here is to introduce a

versatile method for calibrating parameters and to test the sensitivity of
these inferences to different sampling methods (SV sediment traps
versus large volume pumps) and to different tracers (thorium versus
pigments). Since particle sinking velocities (SV) are rarely precisely
measured, the arbitrary assignment (e.g., 100 or 200 m d−1) of a
sinking velocity could cause large uncertainties (Table 3). Our method
does not require a value for SV, because the Martin Curve exponential b
is an estimated parameter.

3.4. Particle exchange rate constants

The inverse model described here predicts a small-particle POC re-
mineralization rate constant of 2.44+1.69

−1.00 yr−1 (0.41 yr), which is quite
similar to the previous estimate (1.5+0.5

−0.4 yr−1) for slow-sinking parti-
cles) using SV sediment trap data from this site (Wang et al. 2017). It is
also consistent to estimates in other oceanic regions at a corresponding
depth range (1.6–2.4 yr−1) (Clegg et al. 1991; Clegg and Whitfield
1991). However, the POC dissolution rate constants estimated here are
significantly lower than those (∼29–73 yr−1) reported by Iversen and
Ploug (2010), who determined the POC dissolution rate for freshly
formed aggregates. The difference between our findings is most likely
because they were looking at fresh, labile POC, and we were looking at
more refractory material from depth that had been subject to con-
siderable decomposition due to its slow sinking rate.

Chl-a and pheopigment degradation rate constants compare well to
our previous estimates from sediment traps (Wang et al. 2017). For
example, our estimates from trap-collected pigments were 1.6+0.4

−0.3 yr−1

for Chl-a and 2.1 +0.7
−0.5yr−1 for pheopigment degradation rate constants.

Our new corresponding estimates based on chloropigments collected
using large-volume pumps are 1.68+1.74

−0.86 yr−1 and 2.06 +1.86
−0.98 yr−1,

respectively.
The aggregation and disaggregation rate constants calculated here

using pump chloropigment data are 2.78+2.01
−1.17 μM−1 yr−1 and 85.6+63.4

−36.4

yr−1, respectively, assuming second-order reaction kinetics for ag-
gregation. Using first-order kinetics, these rate constants are 3.18+3.05

−1.56

and 73.1+69.6
−35.6 yr−1. Compared to estimates using SV sediment trap

thorium data, these rate constants are much more similar to those es-
timated from SV sediment trap chloropigment data (3.20 and 149.9
yr−1) under the same first-order aggregation and steady state as-
sumptions (Table 2). Disaggregation rate constants from both pump and
trap studies fall within the range of previous thorium-based estimates
(0.8–6500 yr−1)) (e.g. Clegg and Whitfield 1991; Murnane et al. 1996;
Lerner et al. 2016). Aggregation rate constants are also in agreement
with previous thorium-based estimates. For example, Cochran et al.
(1993) obtained a range of 1.1–33 yr−1 for an aggregation rate constant
in the North Atlantic, and Nozaki et al. (1987) estimated aggregation
rate constants in the Western Pacific as 2.36–12.3 yr−1 with large error
bars.

In addition, we can calculate aggregation and disaggregation rates
based on the most probable rate constants and particle concentrations.
At the time of sampling, depth-averaged aggregation and disaggrega-
tion rates (2.91 and 9.04 μM yr−1, respectively) are ∼1.3 to ∼4.2
times higher than dissolution of small-particle POC. Chl a and pheo-
pigments have low aggregation rates because their extremely low
concentrations give them little chance to collide and then aggregate.
Disaggregation becomes the dominant process. This conclusion is
mostly consistent with the idea that small and large particles exchange
particle components via aggregation and disaggregation during low flux
times, because we found that disaggregation is the dominant process for
all tracers, while the importance of aggregation depends on tracer
concentration, which determines the probability to collide. Abramson
et al. (2010) have previously suggested this based on a simple, but non-
quantitative, comparison of the chloropigment composition of traps and
pumps at the Medflux site in both 2003 and 2005. They suggested that

aggregation and disaggregation were low during high flux times, and
high during low flux times.

It is interesting to compare results obtained in this study using
chloropigment tracers and in-situ pumps, with those obtained using the
same chloropigment tracers but sampled using SV sediment traps, and
with those obtained using SV sediment trap thorium data. These rate
constants are summarized in Table 2. Note that the data used in the
three studies were sampled at the same location and roughly the same
time (sediment traps had a longer deployment time). The comparison
shows that aggregation/disaggregation rate constants are similar when
the same tracers are used, even though the sampling methods are dif-
ferent. Aggregation/disaggregation rate constants are significantly dif-
ferent when different tracers are used, even when the tracers were
sampled using the same method. These comparisons are intriguing
because they suggest that parameters estimated using the same tracers
but different sampling techniques are more consistent than those using
the same techniques but different tracers. Chloropigments, as integral
parts of particulate organic matter, may more accurately trace the
particle dynamics than thorium isotopes because the later tracer is also
influenced by adsorption and desorption processes (especially when
234Th is used), which might obscure the underlying particle exchange
processes.

4. Conclusions

In this study, we applied both steady-state and non steady-state
Bayesian inverse methods to chloropigment data obtained using large
volume pumps at the MedFlux site in the Mediterranean Sea. We also
compared both first- and second-order reaction kinetics for aggregation.
The samples used were collected during a low flux period well after the
normal spring bloom. Particles appeared to have experienced extensive
aggregation and disaggregation. The order of reaction kinetics did not
significantly influence the estimated rate constants, however, the
second-order model fits the data better, in agreement with the idea that
second-order reaction kinetics for aggregation is a better model of the
particle dynamics. Comparison to previous results estimated using
thorium and pigment data but sampled using sediment traps indicate
that the two different sampling and model methods have less influence
on particle aggregation and disaggregation rate constant estimations
than do the two different tracers themselves. The comparison also
highlights the different characteristics between pigment tracers and
thorium tracers that we have discussed previously. Future work should
build a combined model based on multiple tracers that are simulta-
neously collected using either large volume pumps or SV sediment traps
since the results are not overly sensitive to the sampling methods.
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