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Earth system models are important for predicting the impact of 
climate change on marine ecosystems. Such models have been 
designed primarily for mechanistically describing carbon and 

nutrient fluxes. However, models are increasingly called upon for 
predicting ecosystem behaviour, including changes in the standing 
stock of ocean phytoplankton1,2. There is general agreement of a 
future decline in phytoplankton biomass due largely to an expansion 
of oligotrophic regions and the replacement of larger phytoplankton 
with picophytoplankton3,4. However, phytoplankton biomass predic-
tions are uncertain for at least two reasons. First, model-predicted 
phytoplankton biomass is only cursorily calibrated by remotely 
sensed chlorophyll concentrations. However, the chl/C ratio can 
vary depending on phytoplankton diversity and physiology5, leading 
to high uncertainty in chlorophyll-based estimates of phytoplankton 
biomass6. Second, Earth system models use a simplified ecosystem 
and few phytoplankton functional types7. This approach requires 
identifying and assigning a single set of growth parameters for a 
broad group of phytoplanton8 and fails to capture the high diversity 
present in phytoplankton communities9. Thus, the unknown role of 
phytoplankton diversity could impede our ability to reliably predict 
how biomass will respond to growing environmental changes6,8,10,11.

High intraspecific diversity can enable a lineage to grow across 
broad environmental conditions, leading to a wider fundamental 
niche than predicted from individual genotypes (Extended Data 
Fig. 1)12. Thus, an alternative to Earth system models for predicting 
future changes to phytoplankton abundances is to establish realized 
niche models by statistically quantifying abundances along ocean 
environmental gradients13,14. This approach is based on a simple 
tenet that the best estimate for future abundances is to find regions 
in the contemporary ocean with analogous environmental condi-
tions (Extended Data Fig. 1). A niche model lacks a mechanistic 
basis for the distribution of phytoplankton but implicitly ‘embraces’ 
the within-lineage diversity, interactions between environmental 
factors and poorly understood biotic effects of other organisms.

We previously applied a niche model approach to project how 
Prochlorococcus and Synechococcus will respond to future ocean con-
ditions10. However, we are missing a key phytoplankton group with 
a substantial but unconstrained biomass: the globally distributed 
and highly diverse picoeukaryotic phytoplankton assemblage15–17. 
Combined, these three groups constitute the picophytoplankton 
fraction and nearly all photosynthetic biomass in tropical and sub-
tropical oligotrophic waters18,19. Thus, future climate projections 
of total phytoplankton biomass in low latitude ocean regions must 
include picoeukaryotic phytoplankton.

Here, we combined a global dataset and machine learning 
and asked what is the abundance and quantitative distribution of 
picoeukaryotic phytoplankton? We next combined this niche model 
with ones for Prochlorococcus and Synechococcus and asked how 
environmental factors influence the abundance and niche partition-
ing among these lineages and, finally, how total picophytoplankton 
biomass will respond to future projected climate changes.

Global biogeography of picoeukaryotic phytoplankton
We estimated an annual globally integrated abundance of picoeu-
karyotic phytoplankton of 1.6 × 1026 (±1.8 × 1025) cells. Using a 
neural-network-derived quantitative niche model trained on a geo-
graphically diverse dataset (Extended Data Fig. 2 and Supplementary 
Table 1), we captured a substantial part of the global variability 
(Extended Data Fig. 3, R2 = 0.46 ± 0.01). Regions of elevated concen-
trations (>104 cells ml–1) included an area above 45° N in the North 
Atlantic Ocean, around the North Pacific Current, and a band near 
the southern subtropical convergence zone (Fig. 1). Picoeukaryotic 
phytoplankton were also projected in high abundances near upwell-
ing zones, including the eastern equatorial Pacific Ocean, the 
California Current and the Benguela upwelling zone. Lower abun-
dances were predicted for the oligotrophic gyres and polar regions. 
We also observed seasonal changes with a globally integrated abun-
dance minimum of 1.4 × 1026 (±1.1 × 1025) cells and a maximum 
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of 1.9 × 1026 (±6.8 × 1024) cells in June and September, respectively 
(Extended Data Fig. 4).

We quantified the niche for picoeukaryotic phytoplankton along 
light (photosynthetically active radiation (PAR)), temperature and 
nitrate gradients (Fig. 2). As expected for photosynthetic organisms, 
the abundance was 14 times higher in the surface compared with the 
deep euphotic zone light levels (Fig. 2a). In addition to light, there 
was a strong but nonlinear relationship between temperature and 
cell density (Fig. 2b). The abundance was lowest (1.8 × 103 cells ml–1) 
at 0 °C but increased to a maximum abundance (2.4 × 104 cells ml–1)  
at 8.5 °C. Beyond the maximum, the abundance declined and 
reached a local minimum at ~21 °C. Above this temperature, we 
saw an increase in cell numbers from 4 × 103 to 12 × 103 cells ml–1, 
leading to intermediate concentrations in tropical waters. We also 
detected a nonlinear correlation between nitrate and abundance 
(Fig. 2c). Low nitrate concentrations had little effect, but abundance 
peaked at 1.6 µM of nitrate associated with a shift from 4 × 103 to 

1 × 104 cells ml–1. Above 1.6 µM, nitrate had a negative correlation 
to cell abundance, reaching a minimum of 2 × 103 cells ml–1 at high 
nitrate concentrations. This hump-shaped distribution may be influ-
enced by competition with Prochlorococcus and Synechococcus at the 
low end and larger phytoplankton at the high end of the nutrient 
gradient. The temperature or nitrate dependence of the predicted 
abundance did not change along gradients of the other variables, 
suggesting limited interaction terms for these factors. However, the 
effect of PAR was less pronounced at lower temperatures (Extended 
Data Fig. 5). In summary, picoeukaryotic phytoplankton displayed 
a clear global biogeography correlated with light, temperature and 
nutrient availability.

Niche portioning of picophytoplankton
We observed clear niche partitioning along gradients of light and 
temperature among Prochlorococcus, Synechococcus and picoeu-
karyotic phytoplankton (Fig. 3). The relative abundances of all lin-
eages were generally positively influenced by increasing light levels 
(Fig. 3a). However, Prochlorococcus had a relative advantage at low 
light, and Synechococcus had a relative advantage at high light levels. 
Picoeukaryotic phytoplankton displayed an intermediate response. 
Small eukaryotic phytoplankton such as Ostreococcus strains show 
some light inhibition at elevated light levels (>1.6 E m−2 d−1) but can 
still sustain intermediate growth rates20,21. By contrast, individual 
Prochlorococcus strains can grow at very low light levels but can 
be photoinhibited near the surface22. Further, some Synechococcus 
strains show little light inhibition even at extremely high light lev-
els but cannot sustain growth at low intensities22. Thus, the dis-
tribution along a light gradient is consistent with physiological 
studies of the three groups. Our models also revealed niche parti-
tioning along a temperature gradient that corresponded with cell size  
(Fig. 3b). The abundance of the largest-sized group, picoeukary-
otic phytoplankton, peaked at 8.5 °C. The intermediate-sized 
Synechococcus peaked at 10 °C, whereas Prochlorococcus, as the 
smallest, was most common at high temperature. The growth rate 
in all three lineages generally responds positively to temperatures 
in this range, which should lead to an overall positive relationship 
between abundance and temperature22,23. However, the decline in 
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Fig. 1 | Global distribution picoeukaryotic phytoplankton abundance. 
Projected picoeukaryotic phytoplankton mean annual cell abundance at the 
sea surface as estimated by our niche model.
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Fig. 2 | Picoeukaryotic phytoplankton observations and niche model predictions as a function of environmental variation. The line and shaded area 
represent the quantitative niche model output mean and s.d. based on 100 trained neural networks. a–c, The niche model represents cell abundance at 
constant temperature and nitrate (15 °C and 3.2 µM) (a), PAR and nitrate (3.2 E m−2 d−1 and 3.2 µM) (b) and PAR and temperature (3.2 E m−2 d−1 and 15 °C) (c).  
Symbol colour represents number of overlapping observations in intervals of PAR 100±1.2 E m−2 d−1, temperature 15 ± 7.5 °C and nitrate 100.5±1 µM.  
See Extended Data Fig. 5 for interactions between terms.
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picoeukaryotic phytoplankton and Synechococcus at intermediate 
temperatures and the sharp decline in abundance of Prochlorococcus 
below 20 °C could result from competition with other phytoplank-
ton linages. We then combined all models to predict changes 
in total picophytoplankton carbon biomass with temperature  
(Fig. 3c). Changes in picoeukaryotic phytoplankton controlled the 
cumulative biomass below ~20 °C, whereas especially changes in 
Prochlorococcus abundance were important above this threshold. 
Combined, total picophytoplankton biomass increased with tem-
perature above ~20 °C.

Global current and future picophytoplankton biomass
We next quantified the total picophytoplankton carbon bio-
mass in the global ocean as well as the contribution by each lin-
eage. The combined mean annual picophytoplankton biomass 
was 0.55 ± 0.03 Pg of C in the global ocean and thus higher than 
most biogeochemical model estimations7 but smaller than earlier 
projections24. Picoeukaryotic phytoplankton, Synechococcus and 
Prochlorococcus contributed 45%, 27% and 27% of total picophy-
toplankton carbon biomass, respectively. The niche partitioning of 
each lineage along a temperature gradient translated into regional 
differences in contribution to surface carbon biomass (Fig. 3c and 
Extended Data Fig. 6a–c). Picoeukaryotic phytoplankton domi-
nated picophytoplankton biomass at high latitudes and upwelling 
regions (Extended Data Fig. 6a). At lower latitudes, Cyanobacteria 
were more common, with Prochlorococcus contributing slightly 
higher biomass proportions than Synechococcus (Extended Data 
Fig. 6b,c). The combined picophytoplankton biomass varied 
between ~5 mg m–3 of C in the oligotrophic gyres to ~25 mg m–3 of 
C in temperate regions with high picoeukaryotic phytoplankton 
abundances (Extended Data Fig. 6d).

We compared our biomass estimations with an Earth sys-
tem model (GFDL ESM2) prediction for the current ocean. 
Picophytoplankton constituted 53% of global ocean surface phyto-
plankton biomass and were generally equal to (or slightly above) a 
global community ecosystem model estimate of total phytoplank-
ton biomass in most regions between 60° N and 60° S (Extended 
Data Fig. 6e)18. As expected, picophytoplankton contributed less to 
overall biomass in polar regions and some upwelling zones, where 
larger phytoplankton lineages proliferate. Our biomass estimate was 
up to 50% higher than past model assessments in some regions, 
including warm parts of the oligotrophic gyres (for example, the 

Western Pacific Warm Pool). Thus, there was substantial discrep-
ancy between our estimated picophytoplankton biomass levels and 
the GFDL ESM2 global model predictions.

Finally, we combined niche models with estimates of future 
ocean conditions to predict how total picophytoplankton biomass 
could respond to climate change. Picophytoplankton biomass was 
sensitive to projected ocean environmental changes and showed 
a global increase of 0.05 ± 0.02 Pg of C under the high-emission 
representative concentration pathway (RCP) 8.5 scenario. Mean 
surface carbon biomass between 30° N and 30° S was 12 ± 2.4 and 
15 ± 1.9 mg m–3 for the historic and RCP 8.5 scenarios, respec-
tively (Fig. 4 and Extended Data Fig. 7). However, there were big 
geographical differences leading to regions with strong declines 
(primarily upwelling regions and a temperate band around 40°) 
or increases (for example, tropical Indian Ocean). The change in 
total picophytoplankton biomass was driven by parallel increases 
of Synechococcus and Prochlorococcus between 20 °C and 30 °C, 
whereas integrated picoeukaryotic phytoplankton biomass stayed 
flat (Fig. 3c). As total picophytoplankton constitutes nearly all bio-
mass in oligotrophic regions18,19, we can use the combined niche 
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models as an independent estimate for how low-latitude total phyto-
plankton biomass will respond to environmental changes. Thus, our 
projection suggests elevated picophytoplankton and probably total 
phytoplankton biomass in most low-latitude regions in response to 
projected future climate changes.

Possible mechanisms controlling picophytoplankton biomass
Most conceptual and biogeochemical models suggest that bio-
mass in low-latitude regions is negatively related to stratification 
and associated nutrient supply3. However, phytoplankton biomass 
is controlled by complex growth and decay processes resulting in 
previously unrecognized links between environmental change and 
biomass. First, small particles may be exported less efficiently and 
organic material is respired faster at high temperature25. As seen for 
particulate iron26, the combined effect is a temperature-dependent 
upper-ocean nutrient retention supporting additional growth. 
This nutrient retention effect can be illustrated with a box model 
(Extended Data Fig. 8). Here, phytoplankton biomass in the surface 
ocean is augmented when biomass and nutrients are recycled near 
the surface. Second, the large stock of organically bound nutrients 
(for example, dissolved organic phosphorous (DOP)) may be more 
accessible at elevated temperatures27. Third, phytoplankton can sus-
tain growth with stoichiometrically less nutrients in warm, oligotro-
phic environments28,29. Global biogeochemical simulation suggested 
that modest increases in upper ocean nutrient retention or frugal 
nutrient demand in phytoplankton could support elevated surface 
biomass across low-latitude regions independently of the vertical 
nutrient flux (Fig. 5 and Extended Data Fig. 9). By contrast, elevated 
remineralization of DOP led to only minor shifts in phytoplankton 
biomass. Temperature may also regulate the balance of phytoplank-
ton growth and grazing, and there are indications that this ratio is 
positively related to temperature in oligotrophic ecosystems30. Thus, 
phytoplankton biomass is sensitive to complex temperature- and 
nutrient-driven ecosystem processes and not solely driven by the 
vertical nutrient flux.

This work presents a divergent future prediction for low-lat-
itude phytoplankton biomass in a warming world. Earth system 
models predict a decline, whereas our machine-learning approach 
suggests a biomass increase. However, both approaches are asso-
ciated with significant uncertainty. Biomass estimates in Earth 
system models are generally calibrated against chlorophyll despite 
known variations in chl/C and use a simplified ecosystem descrip-
tion. Niche models assume that phytoplankton biomass will share 
the same relationship to environmental parameters today and in 
the future and may lack important feedbacks. These uncertainties 
and the strongly divergent outcomes of the two approaches ques-
tion the generally accepted prediction of future declines in low-
latitude phytoplankton biomass. Before confident predictions can 
be made, the potential impacts such as efficient recycling of nutri-
ents by diverse communities8, phytoplankton with high C/nutri-
ent biomass composition31 and grazing30 must be evaluated. Thus, 
our analyses indicate that a previously uncharacterized positive 
response in phytoplankton biomass to warming in low-latitude 

environments may be important to future ocean biology and eco-
system functioning.
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Methods
Dataset. All analyses were done using Matlab (Mathworks, MA). We obtained 
13,771 picoeukaryotic phytoplankton observations from available public 
repositories and primary sources of a total of 39 cruises and time series covering 
major ocean regions and diverse environments (Extended Data Fig. 2 and 
Supplementary Table 1). Picoeukaryotic phytoplankton are defined as red 
fluorescent cells larger than Prochlorococcus and less than 2–3 µm in cell diameter. 
We only considered cell counts by flow cytometry. Samples covered a latitudinal 
range from 71.4° N to 66.1° S up to 400 m depth. Ancillary temperature and nitrate 
records were available for all but 2,334 and 6,530 observations, respectively, which 
we complemented with 1° monthly depth-dependent averages from the World 
Ocean Atlas (www.nodc.noaa.gov). To avoid analytical issues with detection limits, 
we imposed a minimum nitrate concentration of 0.01 μM. We calculated surface 
PAR (8 d averaged, 0.047° grid cell) using SeaWiFS and MODIS observations. 
Downward PAR was estimated using the attenuation coefficient K490 from SeaWiFS 
and MODIS (https://oceancolor.gsfc.nasa.gov/) and corrected for chlorophyll a 
(ref. 32), and a minimum of 10−3 E m–2 d–1 was imposed.

Neural network analysis. To partition the nonlinear relationship and 
interactions between oceanographic factors and predict the overall distribution 
of picoeukaryotic phytoplankton, we trained a feed-forward back-propagation 
neural network with 10 nodes and up to 1,000 epochs10. We evaluated the 
inclusion of temperature, PAR (log10 transformed) and nitrate concentration 
(log10 transformed) and found that all three factors contributed to describing 
log-transformed abundances of picoeukaryotic phytoplankton. We used 50% 
of the observations for training (selected randomly) and the rest for validation. 
Optimization of the network was evaluated using Bayesian regularization. This 
process was repeated 100 times to estimate the variance in quantification. We 
then identified the contribution and interactions of environmental factors by 
sequentially varying each factor between the minimum and maximum observed 
value (100 steps). This was repeated across all 100 trained networks to assess any 
bias associated with the data selection, and the variation across the ensemble is the 
reported variance. Any bias regarding differences in cruises or in regional effects 
were not detected10.

Biomass contribution. To estimate global cell abundance of picoeukaryotic 
phytoplankton, we used as input to our neural network models monthly average 
temperatures and nitrate from the World Ocean Atlas 2005 (1° × 1° resolution) 
and PAR and K490 values derived from satellite data (SeaWiFS 0.083° × 0.083°) and 
obtained predicted abundances for each set of conditions. We estimated annual 
globally integrated cell abundance by integrating monthly cell abundance from 
surface to 205 m deep (in layers of 10 m) and a 1° × 1° resolution grid. We estimated 
the annual globally integrated cell abundance standard deviation using the 100 trained 
neural networks. For sea surface abundance, we used the first layer. As the neural 
network analysis was done in log10 space, we back-transformed cell abundances using 
a correction of 1.84 (the ratio of the mean in regular space against the lognormal 
mean). Cell abundances for Prochlorococcus and Synechococcus were estimated using 
existing quantitative niche models based on temperature and PAR10. We converted cell 
abundances to biomass using reported cellular carbon biomass content estimates for 
Prochlorococcus (50 fg cell–1 of C), Synechococcus (175 fg cell–1 of C) and picoeukaryotic 
phytoplankton (1,500 fg cell–1 of C) (ref. 33). Total picophytoplankton biomass was 
the sum of the three lineages. For total phytoplankton biomass, we reported values 
simulated by the GFDL ESM2 Earth system model34.

Future predictions. To evaluate the effects of future climate change on 
picoeukaryotic phytoplankton abundance and biomass, we used as input to our 
neural network models year values of temperature and nitrate outputs from Earth 
system models under RCP 8.5 (equivalent to a radiative forcing of 8.5 W m−2 in 
2100) and historical scenarios. Light fields were identical across simulations. We 
calculated the effect of climate change for each lineage and total picophytoplankton 
biomass as the difference between 2070–2099 and 1970–1999 for the RCP 8.5 and 
historical scenarios. We imposed a maximum sea surface temperature of 30 °C as 
model predictions of higher temperature are uncertain due to poorly constrained 
atmospheric convection feedbacks. The combination of temperature and nitrate in 
climate model projections for the end of the century were well represented in our 
observation dataset, and no extrapolation was necessary (Extended Data Fig. 10).  
We used an ensemble of eight Earth system models, CanESM2, CESM1 BGC, 
GFDL ESM2G, HadGEM2 ES, IPSL CM5A MR, MIROC ESM, MPI and NorESM1 
ME35, to estimate mean and standard deviation values for present and future 
projections. Standard deviation for climate change projection was estimated for the 
multimodel ensemble. It is important to note that we assume limited additional 
feedback between the predicted changes in phytoplankton abundances and nitrate 
concentration (that is, beyond what is already captured by the climate model).

Our predictions are based on some important assumptions. First, we assume 
perfect lineage niche conservatism36 as the very large population size of lineages 
suggests selection among existing ecotypes rather than de novo mutations will 
likely be more common. Second, it is assumed that other abiotic as well as biotic 
interactions such as predation or competition with other lineages track the applied 
underlying environmental conditions. This may be a reasonable assumption to 

a first order as larger competing phytoplankton as well as grazers and viruses 
putatively are sensitive to the same underlying environmental ranges. Third, 
climate change may lead to environmental conditions not currently present in the 
ocean (for example, low pH), leading to changes in niches and future abundances 
not captured by our analysis.

Box model design for evaluating the impact of nutrient retention by 
phytoplankton in the euphotic layer. We developed a simple model to illustrate 
the effect of nutrient recycling and retention by phytoplankton in the euphotic 
layer (Extended Data Fig. 8). In particular, we wanted to demonstrate that the 
standing stock of phytoplankton is sensitive to the degree of nutrient recycling 
and retention. The model captures the major physical and biological processes 
controlling nutrient cycling in the upper ocean in terms of two prognostic 
variables: the living pool of nutrients in phytoplankton (P), and the dead 
pool of dissolved nutrients (N). Nutrients from the dead pool are taken up by 
phytoplankton in the upper ocean at a rate uPN and returned to the dead pool at a 
rate kP. The model includes a loss of nutrients by sinking particles at a rate sP,  
which is balanced by a net return flux q(Nd − N), where Nd is the nutrient 
concentration in the deep ocean, which is assumed constant, and q is the water-
mass exchange rate between the deep ocean and upper ocean. The differential 
equations governing these time (t) processes are:

dN
dt

¼ qNd þ kP � qN � uNP ð1Þ

and

dP
dt

¼ � qþ kþ sð ÞP þ uNP ð2Þ

These equations can be re-expressed in non-dimensional form:

dn
dτ ¼ 1þ rp� n� γnp
dp
dτ ¼ �p� rp� ϵpþ γnp

ð3Þ

in which we have rescaled the dependent and independent variables by Nd and q, 
respectively:

n ¼ N
Nd

p ¼ P
Nd

τ ¼ qt

ð4Þ

and introduced the following dimensionless parameters:

γ  u
q Nd

r  k
q

ϵ  s
q

ð5Þ

The steady-state solution, obtained by setting the time derivatives to zero, is 
given by:

nss ¼ 1þrþϵ
γ

pss ¼ 1
1þϵ 1� 1þrþϵ

γ

� � ð6Þ

To simplify the preceding expression, we consider parameter values appropriate 
for low-latitude ecosystems where picophytoplankton dominates. For the 
subtropical gyre, we can assume that the rate of nutrient uptake is much faster than 
the vertical supply rate so that γ ≫1. Two limits are of interest. The first, ϵ � 1;

I
 

corresponds to fast-sinking phytoplankton leading to a low-standing stock of 
biomass in the upper ocean:

pss  ϵ�1 ð7Þ

The second, ϵ � 1
I

, corresponding to more slowly sinking small phytoplankton, 
leads to a large stock of biomass in the upper ocean:

pss  1� ϵ ð8Þ

Both solutions are independent of the nutrient supply rate and illustrate that 
the system can achieve different levels of biomass regardless of the nutrient supply 
rate. Instead, the biomass level can depend on the efficiency with which nutrients 
are retained in the upper ocean. A low retention efficiency corresponding to 
particulate sinking rates that are fast compared to the supply rate ðϵ  1Þ

I
 leads to 

a low biomass P � q
s Nd

I
. Conversely, a high retention efficiency corresponding to 

particulate sinking rates that are slow compared to the supply rate ðϵ  1Þ
I

 leads to 
a high biomass P � Nd 1� s

q

� �

I

.

Design of the ocean biogeochemical model. We wanted to test possible 
alternatives to nutrient supply that can result in an increase in biomass under 
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future climate conditions within a three-dimensional ocean circulation model. 
Our model reproduced the transport and cycling of three pools of P, dissolved 
inorganic P (DIP), DOP, and biomass (represented by the particulate fraction, 
POP). The P cycling component simulated the exchange of P among the three 
pools by the processes of production and remineralization of organic matter. We 
then did a sensitivity analysis to evaluate how changes in the remineralization and 
distribution of particles could affect phytoplankton biomass.

The circulation model reproduced global patterns of mass transport for 
each fraction (Supplementary Table 2). The circulation model was constrained 
using a data-assimilation technique that incorporated observations of several 
tracers37,38. The model simulated transport of the two dissolved forms (DIP and 
DOP) using an advection and diffusion operator T (T ≡ ∇[U −k∇]), which is 
an N × N sparse matrix (N: the number of wet grid boxes). T was constrained 
by multiple tracers including temperature, salinity, mean sea surface height, 
natural radiocarbon, CFC-11, air–sea heat exchange and freshwater sources37,39. 
Biomass is subject to sinking and remineralization as particulate organic matter 
in the water column following a power law function (that is, Martin curve). The 
exponential decay (b) was implicitly incorporated into a particle flux divergence 
operator (F in equation (10)) and was optimized as part of the inversion 
(Supplementary Table 2).

DIP losses were simulated as the phytoplankton uptake as well as transport, 
and DIP gains by remineralization and influx of deep water to the euphotic 
layer. DIP consumption rate was modelled using satellite-derived net primary 
production (NPP) together with two tunable parameters (α and β) (equation (9) 
and Supplementary Table 2)39.

γ ¼ α
½NPP=RC=Pβ

DIP½ obs
ð9Þ

where the unit of NPP was converted to mmol m−2 s−1 of C, β is a dimensionless 
parameter and RC/P is the carbon-to-phosphate ratio. The assimilation rate (γ) 
had the same units as α (s−1). Gains of DOP were simulated by DIP assimilation 
to organic matter and by POP dissolution, and losses were simulated by DOP 
remineralization. Gains of POP were simulated by DIP assimilation and losses by 
POP dissolution. Changes in the three components of the P cycle are summarized 
in equation (10).

d
dt þ T
� �

DIP½  ¼ �γ DIP½  þ κd DOP½  þ κg DIP½  � DIP
� �

obs

� �

d
dt þ T
� �

DOP½  ¼ σγ DIP½  þ κp POP½  � κd½DOP
d
dt þ F
� �

POP½  ¼ 1� σð Þγ DIP½  � κp POP½ 

ð10Þ

where DIP
� �

I
 is volume-weighted average DIP concentration; κg is a geological 

restore term, which is a small value (that is, 1/10−6 yr) and is used to restored 
DIP concentration to observed global mean; σ is a parameter that governed the 
partition of DIP assimilation in production of DOP and POP. We used σ = 1/3, 
which means that one-third of DIP is produced as DOP and the rest as POP 
(equation (10)). The term κd is the DOP remineralization rate optimized as part of 
the inversion (Supplementary Table 2). Finally, κp is the POP dissolution rate and is 
set at κp = 1/30 d−1.

Most ocean biogeochemical concepts and models include a direct or 
implied control of nutrient supply on upper ocean biomass. Thus, we used 
the model to explore three possible alternative mechanisms for regulation of 
upper ocean biomass and manipulated values within their known range. The 
first mechanism is based on the principle that increased temperature leads to 
smaller surface phytoplankton (such as Prochlorococcus) with lower sinking 
speed, leading to remineralization closer to the surface. To simulate this effect, 
we modified b in the range of ±15%. The second mechanism is that increased 
temperature leads to higher remineralization of DOP to DIP. To simulate this 
effect, we modified κd in the range of ±15%. The third mechanism is that the 
C/P ratio of phytoplankton is higher in a warmer, nutrient-deplete future ocean 
environment28,40,41. To simulate this effect, we compare biomass levels using 
C/P based on Redfield proportions (106/1) versus the empirical relationship 
determined by Galbraith and Martiny40. Finally, we tested the effect of a change 
with a combination of all mechanisms.

Data availability
All observations and phytoplankton model data are available at BCO-DMO 
(https://www.bco-dmo.org/project/764270). The biogeochemical model data are 
available here (https://zenodo.org/record/3543774).

Code availability
The biogeochemical model code is available at https://doi.org/10.5281/
zenodo.3543779.
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Extended Data Fig. 1 | Conceptual model for linking ecotype diversity, environmental, and biotic factors to the fundamental and realized niches of 
phytoplankton lineages.
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Extended Data Fig. 2 | Global distribution of sampling sites for the 13,771 observations used in this study.
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Extended Data Fig. 3 | Scatter density for observed versus predicted picoeukaryotic phytoplankton cell abundance.  Cell abundances were predicted 
based on ancillary environmental information associated with each observation. The dashed line represents the 1:1 relationship.
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Extended Data Fig. 4 | Predicted seasonal distributions of picoeukaryotic phytoplankton at the surface.  Mean quarterly surface picoeukaryotic 
phytoplankton abundance for (a) January to March, (b) April to June, (c) July to September, and (d) October to December.
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Extended Data Fig. 5 | Predicted picoeukaryotic phytoplankton cell abundance and number of observations for the combination of temperature and 
(a) nitrate, and (b) photosynthetic active radiation (PAR).  The predicted abundance represents the mean quantitative niche model output based on 
100 trained neural networks at constant (a) PAR (3.2 E m−2 d−1) and (b) nitrate (3.2 µM). Circle size represents the number of observations on a gridded 
combination of environmental variables.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Distribution of total picophytoplankton carbon biomass and relative contribution of each lineage at the ocean surface.  
Proportional contribution to total picophytoplankton carbon biomass by (a) picoeukaryotic phytoplankton, (b) Synechococcus and (c) Prochlorococcus. 
(d) Total picophytoplankton carbon biomass. (e) Proportional contribution of picophytoplankton to total phytoplankton carbon biomass. Total 
picophytoplankton carbon biomass was estimated as the sum of picoeukaryotes, Synechococcus and Prochlorococcus cellular abundance weighted by their 
cellular carbon biomass. Total phytoplankton biomass was predicted by the GFDL ES2M model.

Nature Geoscience | www.nature.com/naturegeoscience

http://www.nature.com/naturegeoscience


Articles NAturE GEOSCIEnCEArticles NAturE GEOSCIEnCE

Extended Data Fig. 7 | Projected impact of climate change on total picophytoplankton carbon biomass. Proportional area in the 30˚N-30˚S band 
accounted for by (a) total picophytoplankton biomass concentration for the historic and RCP8.5 CMIP5 scenarios, and (b) changes in biomass between 
RCP8.5 and historic CMIP5. (c) Percentage of change in surface total picophytoplankton carbon biomass estimated for the end of 21st and 20th centuries 
based on temperature and nitrate concentration simulated under the RCP8.5 and historic CMIP5 scenarios.
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Extended Data Fig. 8 | Design of a simple model describing the relationship between nutrient cycling and standing stock of phytoplankton biomass. 
Fluxes are identified by arrows and stocks by boxes. N and Nd represent nutrient concentration at the euphotic and deep layer respectively, and P represents  
phytoplankton biomass. k represents phytoplankton remineralization rate, u the phytoplankton nutrient uptake rate, s the phytoplankton sinking rate, and q 
the vertical mixing rate.
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Extended Data Fig. 9 | Sensitivity of global picophytoplankton biomass to changes in remineralization rates estimated with an ocean biogeochemical 
model.  b is the exponential decay of particulate organic matter in the water column following a power law Martin curve that represents nutrient trapping, 
and κd is the remineralization rate of DOP to DIP. Global biomass for the control used values in Table S2.
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Extended Data Fig. 10 | Availability of observations to inform future environmental conditions.  Number of observations and percent of ocean volume for 
the RCP8.5 in a combination of temperature and nitrate.
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