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ABSTRACT

Six isolates of mineral-enveloped Strombidinopsis minima-like species were col-

lected from the coastal waters across several regions in Korea. Morphological

observations and molecular analyses were performed. The ribosomal DNA

sequences (including small subunit ribosomal DNA, internal transcriber spacer

1-5.8S ribosomal DNA-internal transcriber spacer 2; and part of large subunit

ribosomal DNA) of these six isolates were compared. Their morphological char-

acteristics were also compared with those of S. minima populations reported.

The marked genetic differences (with a similarity range of 96.85–98.48%) in

SSU rDNA among these S. minima-like entities suggest the existence of multi-

ple species. This finding is also supported by morphological variations detected

in this study and reported in the literature (e.g. 15–32 collar membranelles in dif-

ferent populations). In addition, S. minima-like species are clustered with

S. batos and S. sinicum, and therefore, our SSU rDNA results support previous

results suggesting that the genus Strombidinopsis is not monophyletic in origin.

Further collection of morphological and molecular data may facilitate the deter-

mination of a new genus carrying mineral-enveloped Strombidinopsis species.

MEMBERS of the genus Strombidinopsis (Ciliophora, Chor-

eotrichia) belonging to the aloricate choreotrichid ciliates

have been frequently reported in marine and brackish water

worldwide and can be an important part of the pelagic ciliate

assemblage (Agatha 2011). Strombidinopsis is also a key

phylogenetic taxon among the aloricate ciliates, representing

a potentially ancestral lineage (Kim et al. 2005, 2010a). How-

ever, recent studies (Gao et al. 2016; Liu et al. 2016) have

shown that Strombidinopsis is not monophyletic due to the

discovery of a second clade belonging to this genus. Addi-

tionally, molecular studies have demonstrated the presence

of genetically related species in this genus (Kim et al. 2010a).

Despite the comprehensive morphological studies related

to these common taxa (Agatha 2003; Alekperov and Asadul-

layeva 1997; Lei et al. 1999; Liu et al. 2016; Lynn et al.

1991; Montagnes and Taylor 1994; Song and Bradbury

1998), the identification of distinct species is not facilitated

due to similar and overlapping morphological characters. In

recent years, sequencing strategies using molecular markers

have enabled the identification and analysis of evolutionary

relationships between lineages of ciliates. However, the

small subunit ribosomal DNA (SSU rDNA) sequences are

only available for four species of Strombidinopsis (Gao et al.

2009; Kim et al. 2005, 2010a; Liu et al. 2016).

Among the Strombidinopsis spp., S. minima is generally

found in coastal and turbid waters (Agatha 2003), and is

characterized by a mineral envelope comprising mineral

particles and covering the whole body. However, the cell

size (19–64 9 18–62 lm) and the number of collar mem-

branelles (15–32) show significant differences among pop-

ulations (Agatha 2003; Lei et al. 1999; Song and Bradbury

1998). Therefore, S. minima is either morphologically

diverse, or distinct with species exhibiting established life

stages. To establish the likelihood of either hypothesis,

we collected the morphological characteristics and

sequence data (SSU rDNA, ITS1-5.8S-ITS2, partial LSU

rDNA) from six S. minima-like populations originating in

three different locations in Korean coastal waters.
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MATERIALS AND METHODS

Study site, sampling, cultivation, and isolation

Five samples were collected from three stations located in

the tidal flats of western Korea during low tide (Table 1).

The Hwangsan Island population was sampled using a 20-

lm net. Other populations were collected directly from sur-

face waters together with the bottom sediment using a cul-

ture flask. Samples (~40 ml each) were transferred to the

laboratory and distributed into 10-cm Petri dishes. Auto-

claved rice grains were added to the dishes to enrich the

bacteria used as a food source for Strombidium minima.

When the populations were abundant, the cells were iso-

lated with a micropipette for taxonomic and molecular anal-

yses. Each isolate was harvested for analysis within 15 d

after sampling, with the exception of the Hwangsan Island

population, which was harvested 2 mo after sampling.

Morphological observation

Cells were selected randomly from the Petri dishes under

a dissecting microscope. The cells were visualized live

using light microscopy at magnifications of 100X to

1,000X under bright field and differential interference con-

trast. Protargol staining was conducted following Wilbert’s

method (Wilbert 1975), and only the Hwangsan Island

population successfully revealed infraciliature. Staining in

other populations failed due to the low number of cells.

To compare the morphological variation of S. minima-like

species, the data reported in previous studies were used.

We followed the terminology proposed by Agatha and Rie-

del-Lorj�e (2006).

PCR amplification, cloning, and sequencing

We selected a single cell from each population cultured in

the Petri dishes. Each cell was rinsed at least five times

with autoclaved seawater to remove other organisms. One

to two cells were transferred to individual PCR tubes con-

taining 10 ll of distilled water. Without a DNA extraction

step, the PCR mixture was transferred to a PCR tube con-

taining a single cell in a total volume of 50 ll. TaKaRa LA

Taq polymerase (Takara Bio Inc., Kusatsu, Japan) was used

to amplify the ribosomal RNA genes using EuKA (50-AAC
CTG GTT GAT CCT GCC AGT-30; Medlin et al. 1988) and

ReV2 primers (50-ACG ATC GAT TTG CAC GTC-30;
Sonnenberg et al. 2007) according to the manufacturer’s

instructions. The PCR product was purified, and directly

sequenced from both ends without cloning, using a com-

mercially available service (SolGent Co. Ltd, Daejeon,

Korea). The sequencing primers used were those described

by Kim et al. (2013). The PCR product of Seocheon’s popu-

lation (SC2) was cloned according to the procedures

described by Kim et al. (2010b). Two SC2 sequences

resulted from different PCR sequencing replicates. These

sequences were not identical and were labeled SC2-1 and

SC2-2 (Table 2).

DNA sequence comparisons

Species diversity was determined by comparing the DNA

sequences of Strombidinopsis in this study with sequences

of congeners obtained from the National Center for

Biotechnology Information (NCBI). The sequences were

aligned using MAFFT v 7.017 (Katoh et al. 2002). Intra- and

inter-specific similarities were investigated by comparing

the DNA similarities of SSU rDNA, partial large subunit

rDNA (LSU rDNA), the D2 domain of LSU rDNA, ITS1, and

Table 1. Sample list and site information

Isolate Collecting date Water temp. (°C) Salinity (psu) Site

DG Mar, 29. 2013 17.5 12.8 Donggeom Island (37°37ʹ27ʺ, 126°22ʹ32ʺ)

HS May, 25. 2013 20 27.0–29.5 Hwangsan Island Pier (37°37ʹ29ʺ, 126°32ʹ21ʺ)

SC1 June, 18. 2015 30 30 Seocheon tidal flat (36°01ʹ05ʺ, 126°39ʹ50ʺ)

SC2 Oct. 8. 2015 20 30 Seocheon tidal pool 1 (36°01ʹ05ʺ, 126°39ʹ50ʺ)

SC3 Oct. 8. 2015 20 17.5 Seocheon tidal pool 2 (36°01ʹ05ʺ, 126°39ʹ50ʺ)

Table 2. Morphometric characterization of Strombidinopsis from Hwang-

san Island (upper line) and Seocheon (lower line) populations

x M Min Max n

Cell, length 31.6 30 20 45 11

19.8 21 16 21.5 6

Cell, width 32.7 30 25 45 17

19.1 19 15 22 8

Macronucleus, width 13 14 7 15 17

9.7 10 7 12 3

Macronucleus, length 5 5 3 9 15

2.7 2.5 2.5 3 3

Macronuclei, number 2 2 2 2 11

2 2 2 2 3

Micronucleus, number 1 1 1 1 11

1 1 1 1 3

Collar membranelles, number 23 23 21 23 9

– – – – –

Buccal membranelle, number 1 1 1 1 11

– – – – –

Somatic kinety, number 21 21 19 22 7

– – – – –

Kinetosome, number 17 17 16 19 7

– – – – –

M = median; Max = maximum; Min = minimum; n = number of indi-

viduals investigated; x = arithmetic mean.

Data are based on protargol-impregnated specimens. Measurements

in lm.

© 2019 International Society of Protistologists

Journal of Eukaryotic Microbiology 2020, 67, 115–124116

Genetic Variation in Strombidinopsis minima Species Kim et al.



ITS1-5.8S rDNA-ITS2 using the Geneious program v. 9

(http://www.geneious.com). The genetic divergence was

calculated using MEGA X (Kumar et al. 2018) based on the

model of p-distance. The V4 region of SSU rDNA and D2

domain of LSU rDNA were identified following the guideli-

nes for Tetrahymena canadensis and Engberg et al. (1990),

respectively. For sequences obtained from clone SC2, chi-

merism was evaluated in the sequence alignment de novo.

No chimerism was found.

Phylogenetic analysis

Ninety SSU rRNA gene sequences of choreotrichs were

retrieved from the NCBI database (Table S1). Most

sequences of choreotrichs were included, although partial

sequences shorter than 1,537 bp were excluded. The data

set was aligned using MAFFT v 7.017 (Katoh et al. 2002).

After both ends of the alignments were trimmed, separate

phylogenetic analyses were performed for SSU rRNA

(1,585 bp). The following six species derived from subclasses

Oligotrichia and Stichotrichia were used as the outgroups:

Lynnella semiglobulosa (FJ876965), Halteria grandinella

(AF508759), Hemiurosomoida longa (AF508763), Sterkiella

histriomuscorum (AF508770), Urostyla grandis (AF508781),

and Strombidium rassoulzadegani (AY257125). The MrModel-

test v. 2 program (Nylander 2004) selected GTR + I

(0.6076) + G (0.4608) as the best model using Akaike infor-

mation criterion. A Bayesian tree was constructed based on

an output of 5,000 trees generated by MrBayes v. 3.1.2 (Ron-

quist and Huelsenbeck 2003) using 5,000,000 cycles for the

Markov chain Monte Carlo algorithm and sampling at every

1,000th generation. Stationary likelihood scores were deter-

mined by plotting the –lnL against the generation. The first

500 trees below the observed stationary level were discarded

for burn-in. A maximum likelihood (ML) tree was constructed

with RAxML version 7.2.8 (Stamatakis et al. 2008) installed in

Figure 1 Photomicrographs of Strombidinopsis minima-like species from Hwangsan Island of Korea, live (A–C) and after protargol impregnation

(D–F). A, C. Apical view shows collar and buccal membranelles. Arrow indicates buccal membranelle. B. Posterior view focuses on somatic cilia.

Arrowheads mark somatic kineties. D. Top panel shows collar and buccal membranelles. Arrow marks buccal membranelle. E. Top panel displays

macronuclei and micronucleus. Arrow marks micronuclei. F. Lateral view shows somatic kineties. Scale bars: 20 lm.
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the Geneious program (v.9.0.5). The nucleotide model used

was GTR GAMMA I and the algorithm involved rapid boot-

strapping and search for the best-scoring ML tree. The num-

ber of bootstrap replicates was 10,000. TreeView v. 1.6.6

(Page 1996) and MEGA v. 4.0 (Tamura et al. 2007) were used

to visualize tree topology.

Deposition of slides

Four voucher slides of Hwangsan Island were deposited

at the National Institute of Biological Resources with the

following registration numbers: KOSPPR0000104835–KOS

PPR0000104838.

RESULTS

Species identification

The Hwangsan Island specimens (HS) were identified

based on morphological characteristics, including infracilia-

ture (Table 2 and Fig. 1A–F). Other populations failed to

reveal infraciliature and were identified using distinct mor-

phological characteristics of a mineral envelope (Agatha

2003; Fig. 2A–G). The cell size and number of collar mem-

branelles were only observed in a few cells due to poor

protargol impregnation of the populations in Seochoen

(SC1) and Donggeom Island (DG; Table 2). Because mor-

phological characteristics could not be observed in the

other Seocheon populations (SC2, SC3), these populations

were not explicitly assigned to S. minima. Nonetheless,

these populations were affiliated to S. minima-like species

because of their mineral envelopes, which are the defining

characteristic of S. minima.

Morphological observation

Hwangsan Island population
After protargol impregnation, the cell size of the Hwang-

san Island population was determined to be 25–45 9 20–
45 lm. The body shape was ellipsoid (Tables 2,3 and

Fig. 1A–F). Two round-to-elongate macronuclei, measuring

7–15 9 3–9 lm in size, were present (Fig. 1E). A single

ovoid micronucleus, approximately 1.5–3.0 lm in diame-

ter, was present between the two macronuclei (Tables 2,3

and Fig. 1E). Nearly 21 longitudinal somatic kineties, each

consisting of 16 to 19 ciliated dikinetids, with ~2 lm long

cilia protruding outward in different directions (right and

left; Tables 2,3 and Fig. 1B, F). Twenty-three collar mem-

branelles and one buccal membranelle were observed in

this population (Tables 2,3 and Fig. 1A, C, D).

Donggeom Island population
After protargol impregnation, the cell size was 15–
16 9 15–16 lm (data not shown). Both live and preserved

cells carry mineral envelopes (Fig. 2A–D). Approximately

18 collar membranelles and one buccal membranelle were

observed (Fig. 2C).

Seocheon population (SC1)
Mineral envelopes were observed in both live and protar-

gol-stained specimens (Fig. 2E–G). After protargol impreg-

nation, the cell size was 15–22 9 16–21.5 lm. The body

shape changed from an ellipsoid to an elongated structure

Figure 2 Photomicrographs of Strombidinopsis species derived from Donggeom Island of Korea (A–D) and Seocheon in June 2013, (E–G) live (A,

B, E, F) and after protargol impregnation (C, D, G). A, B. Lateral view of a cell attaching to substrate. C. Top view shows collar and buccal mem-

branelles (arrows) and mineral envelope (arrowheads). D. Top panel displays collar membranelles and macronuclei (arrows). E. Cell attached to

substrate in the lateral view. F. Lateral view shows collar membranelles. G. Lateral view shows macronuclei. Arrowheads in (D–G) indicate min-

eral envelope. Scale bars: 10 lm.
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when two macronuclei were observed, resulting in a

round-to-elongated shape. No micronuclei were observed.

About 16 collar membranelles were observed. Buccal

membranelles and somatic ciliary patterns were not detected

due to poor impregnation. Morphological data obtained from

the Seocheon populations collected in October (SC2, SC3) are

not presented because only a few cells were observed, and

the impregnation was poor, without any pictures of live sam-

ples. However, SC2 and SC3 carried clear mineral envelopes

and were used for molecular analyses.

Genetic distance of rDNA sequences among
Strombidinopsis minima-like isolates

Table 4 summarizes the sequence data of the six isolates

obtained in this study. The total length of these

sequences was ~3,000 bp, including the D2 domain,

known to be a highly variable region in the LSU rDNA.

The SSU rDNA in the Korean populations of S. minima-like

species showed a similarity of 96.85–98.48% (88.69–
97.29% in the V4 region of SSU rDNA) and a p-distance

of 0.014–0.029 (0.027–0.109 in the V4 region of SSU

rDNA; Table 5).

We also found high variations in ITS1-5.8S-ITS2 (with

87.62–94.03% similarity and a p-distance of 0.056–0.102),
ITS1 (71.72–89.90% similarity and 0.082–0.211 p-distance),

partial LSU rDNA (92.67–95.93% similarity and 0.037–
0.069 p-distance), and the D2 domain of LSU rDNA (80.28–
88.26% similarity and 0.105–0.186 p-distance), among the

populations of S. minima-like species (Tables S2,S3).

Genetic diversities of rDNA sequences among
Strombidinopsis species

Among the Strombidinopsis species, the highest similarity

in SSU rDNA was 99.94% (0.001 p-distance) between

S. batos and S. minima-like species (SC3 population), while

the lowest similarity in SSU rDNA was 91.44% (0.081 p-dis-

tance) between S. acuminata and S. minima-like species

(SC1 population; Table 5). The similarity in the V4 region of

SSU rDNA was 79.64–100% (Table 5), with the highest

degree of similarity (100%; no genetic divergence) between

S. batos and the SC3 population and between S. jeokjo and

S. acuminata. The lowest similarity was found between the

DG population and S. jeokjo (79.64%, 0.2 p-distance) and

between the DG population and S. acuminata.

The similarities and p-distances between S. batos,

S. sinicum, and S. minima-like species in the Korean popu-

lations (96.28–99.94% and 0.001–0.035 in SSU rDNA and

88.69–100% and 0–0.109 in the V4 region of SSU, respec-

tively) almost overlapped with those of S. minima-like spe-

cies (96.85–98.48% and 0.014–0.029 in SSU rDNA,

88.69–97.29% and 0.027–0.109 in the V4 region of SSU

rDNA, respectively). Despite the low genetic diversity in

SSU, the similarity and p-distances were only 61.22% and

0.240, respectively, for the ITS1-5.8S-partial ITS2 between

S. batos and the SC3 population (data not shown). The

intraspecies variation between the other Strombidinopsis

in 5.8S, LSU, ITS1, and ITS2 could not be compared due

to lack of prior studies.

Phylogenetic analyses

In the phylogenetic tree, the sequences of the genus

Strombidinopsis were split into two clades. S. minima-like

species were clustered together with S. batos and

S. sinicum with high support in BI (1.0) and moderate sup-

port in ML (81%) analysis (Fig. 3). This clade clustered

together with other Strobilidiidae species with rather mod-

erate support in the BI analysis (0.93, Fig. 3). The second

clade, composed of S. acuminata, S. jekjo, and three other

Strombidinopsis spp., also secured a high degree of sup-

port, but did not constitute the sister clade in the Strom-

bidinopsis clade mentioned above (Fig. 3), rendering

Strombidinopsis polyphyletic in origin.

DISCUSSION

Morphological variation of Strombidinopsis minima-
like species

To date, 13 Strombidinopsis species have been described

using protargol staining methods, to elucidate their infracil-

iature, the key characteristic of species identification

(Table 3). A few characteristics overlapped within the

genus. The morphological characteristics of S. minima-like

species varied among the different populations. Specifically,

they showed significant variation in cell size (19–64 9 18–
62 lm), numbers of collar membranelles (ranging from 15

to 32), and somatic kineties (ranging from 13 to 30;

Table 3). Gruber (1884) described the length of S. minima

as an average of 30 lm, with small mineral particles

Table 4. Lengths of SSU, ITS1-5.8S- ITS2, and partial of LSU rDNA sequences from different samples

Sample list Total length (bp) SSU rDNA (V4 region) ITS 1-5.8S-ITS 2 (ITS 1) Partial of LSU rDNA (D2 domain) Accession number

DG 2,947 1,646 (221) 703 (99) 598 (212) MK585219

HS 3,046 1,746 (220) 703 (99) 597 (210) MK585220

SC1 3,029 1,747 (220) 686 (90) 596 (209) MK585221

SC2-1 3,049 1,749 (221) 702 (97) 598 (211) MK585222

SC2-2 3,050 1,749 (221) 703 (99) 598 (211) MK585223

SC3 3,044 1,748 (221) 697 (95) 599 (212) MK585224

DG = Donggeom population; HS = Hwangsan population; SC = Seocheon population.
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attached to the cell, sometimes fully covering the entire cell

surface. Since then, the identification of S. minima has

appeared to depend primarily on its mineral envelope,

although it does not always carry this feature (Gruber 1884).

Morphological variations have been reported among dif-

ferent populations of S. minima in previous studies

(Agatha 2003; Lei et al. 1999; Song and Bradbury 1998,

Table 3). In the Korean population of S. minima-like spe-

cies, the morphological characteristics of S. minima over-

lapped with S. batos and S. sinicum (Table 3). In this

context, whether or not a species had a mineral envelope,

S. batos, S. sinicum, and S. minima-like species in the

Korean population were closely related based on similari-

ties in SSU rDNA and were placed in the same clade of

the phylogenetic tree based on the SSU rDNA.

Here, five populations of S. minima were collected from

the coastal waters of Korea, three of which were exam-

ined using the protargol staining method, although only

partial infraciliatures were available for two populations.

The cell size and number of collar membranelles differed

between distinct isolates (Table 3). Results of our study

suggest that the mineral envelope is not always present,

and therefore, cannot be a defining characteristic of the

species. The Hwangsan Island population did not exhibit a

typical mineral envelope. However, other morphological

characteristics (e.g. cell size, number of somatic kineties,

and oral membranelles) of the Hwangsan population

matched well with those of populations belonging to this

species described in earlier studies (Table 3). Therefore,

we grouped the Hwangsan population with S. minima

(Fig. 3). We, therefore, conclude that the Hwangsan popu-

lation is Strombidinopsis minima. Notably, the Hwangsan

population was harvested 2 mo after sampling while the

other populations were investigated within 15 d. The min-

eral envelope may protect cells from “scratches” due to

environmental detritus to adapt to the benthic, detritus-

rich lifestyle (Agatha 2003). The mineral envelope may not

develop in culture. Thus, the presence of a mineral envel-

ope is not a specific characteristic of S. minima. Although

detailed morphological data of specific isolates were

unavailable, the molecular data and observations of the

presence or absence of a mineral envelope in five popula-

tions of S. minima-like species provided an opportunity to

evaluate morphological variation across S. minima-like spe-

cies.

Genetic variation in Strombidinopsis species

In Strombidinopsis, the sequences of SSU rDNA are only

available for S. batos, S. sinicum, S. acuminata, and

Figure 3 Bayesian tree based on small subunit rRNA gene sequences showing the relationships between Strombidinopsis species and other

choreotrichid ciliates. New sequences are shown in bold. Numbers at the nodes represent support values in the following order: Bayesian poste-

rior probabilities using the MrBayes algorithm (BI) and bootstrap values from maximum likelihood (ML) analyses as a percent of 1,000 replicates.

Asterisk (*) denotes nodes with full bootstrap support in all algorithms. A hyphen (-) represents support values < 50% and disagreement between

BI and ML at a given node.
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S. jeokjo, which were identified at the species level (Gao

et al. 2009; Kim et al. 2005, 2010a; Liu et al. 2016).

Because these sequences of S. acuminata and S. jeokjo

are almost identical, it is not easy to define intra- or inter-

species variation in molecular diversities of Strombidinop-

sis using SSU rDNA (Kim et al. 2010a). Comparison with

other molecular loci is currently not possible as only the

sequences of ITS1, 5.8S rDNA, and partial ITS2 of

S. batos have been analyzed. In addition, SSU rRNA gene

dissimilarities of S. mimina-like species ranged from

0.06% to 3.15% (0.00–11.31% for V4 regions). A 1% cut-

off is normally used in the molecular surveys of environ-

mental samples via high throughput screening (HTS) to

separate different ciliate operational taxonomic units

(OTUs). When this cutoff value was used for S. minima-

like species, it was difficult to estimate species diversity.

Here, both Donggeom (DG) and Seocheon (SC) popula-

tions had mineral envelopes. However, they showed vary-

ing similarities and p-distances in the SSU rRNA region

(Table 5 and Tables S2,S3). Furthermore, strong dissimilar-

ities were found between the Korean populations in the

D2 domain of the LSU rDNA and ITS regions. These

molecular regions have been used to analyze cryptic spe-

cies in ciliates (Kim et al. 2013; Nanney et al. 1998; Xu

et al. 2012). The high genetic variation of the D2 domain

in the LSU rDNA and ITS regions of S. minima-like species

implies that this species is currently ill-defined morphologi-

cally and consists of several genetically and morphologi-

cally distinct species.

CONCLUSION

Strombidinopsis minima manifests typical morphological

characteristics of the genus, such as dikinetidal somatic

kineties and two macronuclei. The SSU rDNA sequences

of the various S. minima-like populations investigated in

the present study were recovered in the clade with

S. batos and S. sinicum (Gao et al. 2016; Liu et al. 2016).

The current results further support the hypothesis by Liu

et al. (2016) that Strombidinopsis is nonmonophyletic

because all the species added in this study including the

true, S. minima, were recovered in the clade with S. batos

and S. sinicum. Apparently, a species found in one of the

Strombidinopsis clades was assigned to a new genus.

Notably, Agatha (2003) observed that the cell division of

S. minima differed from that of S. spinifera and S. acumi-

nata, that is, the oral primordium above two anteriorly

shortened dorsal kineties in S. minima and between two

dorsal kineties of ordinary left in S. spinifera and S. acumi-

nata. However, at this stage, the essential morphological

information to separate the two clades is unavailable to

provide a comprehensive morphological description of the

two species, or modify the description of the genus

Strombidinopsis.
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